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Preface

Middleware is one of those topics in computer science for which it appears dif-
ficult to reach consensus on its exact meaning. Broadly speaking, one could say
that middleware contains solutions to the distribution of processes, data, and
control that are more or less independent from applications, and that allow un-
derlying platforms and hardware to be hidden from applications. In other words,
it covers a lot.

However, there does seem to be consensus on the fact that middleware is
about distributed systems, and that the solutions incorporated into middleware
are applicable to a wide range of applications. Following the trend of past Middle-
ware conferences, this seventh edition has continued to take a broad perspective
on what middleware is all about, and there was general agreement among the
Program Committee members that we should be open-minded as to what should
be considered on topic or not. This open-mindedness is reflected in an interest-
ing collection of papers that cover many fields of middleware, and even touch
upon areas that have traditionally belonged more to the systems arena, such as
virtualization.

However, not everything changes. As usual, the number of strong submis-
sions was remarkably high, and there were many discussions among committee
members as to which papers to accept. (Almost every paper was reviewed by
four committee members.) Eventually, we selected 21 out of the 122 submissions,
with space limitations forcing us to reject even papers that reflected good and
original research.

We would like to thank all authors who submitted papers for Middleware
2006. Also, we both feel that we had a strong committee with members who not
only did an excellent job reviewing submissions, but also submitted their reviews
on time and acted promptly during the discussion phase, which allowed us to
send out notifications to the authors as originally planned. We also gratefully
acknowledge the work done by external reviewers, who often provided detailed
and high-quality reports.

September 2006 Maarten van Steen and Michi Henning
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Caching Dynamic Web Content: Designing and

Analysing an Aspect-Oriented Solution

Sara Bouchenak1, Alan Cox2, Steven Dropsho3,
Sumit Mittal4,�, and Willy Zwaenepoel3
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4 IBM India Research Lab, Block-1, IIT, Hauz Khas, New Delhi, India
sumittal@in.ibm.com

Abstract. Caching dynamic web content is an effective approach to re-
duce Internet latency and server load. An ideal caching solution is one
that can be added transparently by the developers and provides com-
plete consistency of the cached documents, while minimizing false cache
invalidations. In this paper, we design and implement AutoWebCache, a
middleware system for adding caching of dynamic content transparently
to J2EE server-side applications having a backend database. For this
purpose, we first present the principles involved in caching dynamic web
content, including our logic to ensure consistency of the cached entries.
Thereafter, we demonstrate the use of aspect-oriented (AOP) techniques
to implement our system, showing how AOP provides modularity and
transparency to the entire process. Further, we evaluate the effectiveness
of AutoWebCache in reducing response times of applications, thereby
improving throughput. We also analyze the transparency of our system
for a general application suite, considering issues such as dynamic web
pages aggregating data from multiple sources, presence of insufficiently
structured interfaces for exchanging information and the use of applica-
tion semantics while caching. We use two standard J2EE web benchmark
applications, RUBiS and TPC-W, to conduct our experiments and dis-
cuss the results obtained.

Keywords: Caching, aspect-oriented programming, J2EE applications,
dynamic content.

1 Introduction

Dynamically generated web content represents a large portion of web requests.
The rate at which dynamic documents are delivered is often orders of magnitudes
slower than static documents [9,11]. Therefore, caching dynamic web content is
� Work done while being at Rice University, Houston and EPFL University, Lausanne.

M. van Steen and M. Henning (Eds.): Middleware 2006, LNCS 4290, pp. 1–21, 2006.
c© IFIP International Federation for Information Processing 2006



2 S. Bouchenak et al.

an appealing approach to reduce Internet latency and server load. Web sites
for dynamic content are usually based on a multi-tier J2EE architecture using
several middleware systems [27]: an HTTP server as a web front-end and provider
of static content, an application server to execute the business logic and generate
the dynamic web content, and a database to store the persistent data required by
the application. Dynamic content generation places a significant burden on the
servers, often leading to performance bottlenecks. Caching dynamic web content
can directly address these bottlenecks.

Implementing caching as a middleware solution is particularly attractive. Of
course, an ideal solution is one that can be added transparently by the developers,
possibly even as an after-thought. Some examples of transparently adding caching
to an application are given in [17,6,4], but these ignore consistency of the cached
entries. Other solutions provide consistency, but ignore transparency, requiring
manual insertion [10]. There are some projects that provide both consistency and
transparency, such as those caching SQL query result sets [8] at the back-end. The
interesting property of data from result sets of SQL queries is that it is from a sin-
gle interface and hence, of one type (homogeneous). An open question is whether
similar techniques can be successful for more complex content such as web pages
that aggregate data from multiple sources (i.e., heterogeneous).

In this paper, we present the design and implementation of AutoWebCache, a
middleware solution for caching dynamically generated content in J2EE applica-
tions. A goal is to move the caching as far forward in the multi-tier architecture to
not only reduce the database activity in the back-end but also the business logic
activity, which is becoming ever more complex and costly at the middle tier. Unlike
caching data such as JDBC SQL results at a single well-specified interface, caching
fully formed web pages requires interfacing to both the front-end (e.g., Tomcat
servlet engine) and the back-end (e.g., JDBC interface). Caching at this level re-
quires information from both interfaces to maintain consistency of the cached doc-
uments. To keep the caching transparent, we cast caching as an aspect of the ap-
plication and use an aspect oriented programming (AOP) framework to capture
the information flowing through various interfaces. We give details of the AutoWe-
bCache cache system based on AOP principles and the AspectJ [2] weaving rules
that add the caching logic transparently to the application.

We evaluate the performance of our middleware solution with the help of two
J2EE benchmarks - RUBiS and TPC-W. RUBiS implements the core functional-
ity of an auction-site: selling, browsing and bidding [1], while TPC-W simulates an
online-bookstore [30]. We demonstrate the gains in response times using AutoWe-
bCache for each. We also analyze the transparency of AutoWebCache for a general
application suite. We argue that for the general case, issues can arise when caching
dynamic content at the front-end due to 1) dynamic web pages aggregating data
from multiple sources, 2) some sources not having sufficiently structured interfaces
for exchanging information and 3) the need to consider semantics of the applica-
tion while caching. Although our benchmark applications are servlets-based and
use SQL queries to incorporate dynamism, we believe that the results and argu-
ments presented in this paper hold true for a general architecture as well.
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The contributions of this paper can be summarized as follows:

1. Design, implementation and evaluation of AutoWebCache, a middleware so-
lution that caches dynamic web pages at the front-end while maintaining
consistency with the back-end database(s).

2. Demonstrating that dynamic web caching can be considered a crosscutting
aspect and, therefore, AOP methods should be considered as a flexible and
easy-to-use tool to develop the middleware support.

The remainder of this paper is organized as follows. Section 2 gives some back-
ground on dynamic web applications and aspect-oriented programming. Section
3 outlines the principles involved in designing a dynamic web cache and gives
an overview of our AutoWebCache system. Section 4 describes the implementa-
tion of AutoWebCache using aspect-oriented techniques, and analyzes its trans-
parency with respect to an application. Sections 5 and 6 present our evaluation
environment and the results of our evaluation, respectively. Section 7 provides a
discussion of our experiences. Section 8 discusses some related work and finally,
Section 9 draws our conclusions.

2 Background

2.1 J2EE Web Applications

Java 2 Platform, Enterprise Edition (J2EE) defines a model for developing dis-
tributed applications, e.g., web applications, in a multi-tiered architecture [27].
Such applications usually start with requests from web clients that flow through
an HTTP server front-end and provider of static content, then to an applica-
tion server to execute the business logic and generate web pages on-the-fly, and
finally to a database that stores resources and data (see Figure 1).

Fig. 1. Architecture of Dynamic Web Applications

Upon an HTTP client request, either the request targets a static web docu-
ment that the web server can return directly; or the request refers to a dynamic
document, in which case the web server forwards that request to the applica-
tion server. The application server runs one or more software components (e.g.,
Servlets, EJB) that query a database through a JDBC driver (Java DataBase
Connection driver) [28] and retrieve data to generate a web document on-the-fly.
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2.2 Aspect-Oriented Programming

Aspect-Oriented Programming (AOP) is a methodology with concepts and con-
structs to modularize crosscutting concerns (i.e., aspects) [15]. With AOP, the dif-
ferent aspects involved in a system are separately implemented in different mod-
ules. The developer can also specify the manner in which these modules need to
be woven to form the final system. Aspects are woven together via the join point
model, a fundamental concept in AOP specifying identifiable execution points in
a system. Such join points include method calls and executions, constructor calls,
read andwrite access to fields, exceptionhandler invocations, etc.Pointcuts allowa
programmer to capture certain join pointswhile anadviceprovides away to express
crosscutting actions to be performed at a certain pointcut. At a pointcut, an advice
specifies the weaving rules involving that point, such as performing some actions
before or after the execution of the pointcut. Figure 2 shows the basic principle of
adding caching transparently to a web application, using aspect weaving.

Original 
web application

Original 
web application

Cache-enabled 
web application 

version

Cache-enabled 
web application 

version

Weaving 
rules

Caching 
library

Caching 
library

Aspect         weaving

Original 
web application

Original 
web application

Cache-enabled 
web application 

version

Cache-enabled 
web application 

version

Weaving 
rules

Caching 
library

Caching 
library

Aspect         weaving

Fig. 2. Aspectizing Caching

3 Dynamic Web Caching

Caching dynamic web content prevents the client from remotely re-accessing the
database server to re-execute SQL queries, and from regenerating dynamic web
pages on the application server. In this section, we first present the principles
involved in designing a dynamic web cache, including our logic to ensure consis-
tency of the cached documents. We then give an overview of our implemented
system. Concrete details about the implementation based on aspectizing web
caching are provided in the next section.

3.1 Designing a Web Cache

Designing a cache for web documents is rendered complicated by the dynamic na-
ture of web applications, requiring mechanisms to maintain consistency between
the data and its cached copy. Specifically, dependency needs to be established
between requests that read the data in the back-end (read-only requests) and
those that make updates to the back-end (write-requests). We divide the design
of such a caching system into the following mechanisms:
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- Cache checks. Upon a client read-only request, the cache is first checked
to look up the requested document. In case of a hit, the cached document (e.g.
a web page) is simply returned to the client, bypassing the request execution.
- Cache inserts. Upon a miss in the cache during a client read-only request,
the request is executed by the application server (and SQL queries are possibly
executed on the database server) to dynamically generate a web document that
is returned to the client; and a copy of that document is stored in the cache.
- Collecting consistency information. For a read request, we attach the
information mapping the underlying database set used in the generation of re-
sponse to this request (dependency information). Similarly, for a write request,
we associate information regarding the database set updated by this request (in-
validation information).
- Cache invalidations. Upon a client write request, the cache entries that are
affected by the write must be invalidated. This would require making use of the
consistency information.

……

WebPage2URI2

WebPage1URI1

Cached web 
page

Index: URI 
(readHandlerName

+ 
readHandlerArgs)

<instance values2a, URI7>ReadQueryTemplate2

<instance values3a, URI12>ReadQueryTemplate3

……

<instance values1a, URI1>
<instance values1b, URI41>
<instance values1c, URI57>

ReadQueryTemplate1

<value vector, URI> pairIndex: SQL String

……

WebPage2URI2

WebPage1URI1

Cached web 
page

Index: URI 
(readHandlerName

+ 
readHandlerArgs)

<instance values2a, URI7>ReadQueryTemplate2

<instance values3a, URI12>ReadQueryTemplate3

……

<instance values1a, URI1>
<instance values1b, URI41>
<instance values1c, URI57>

ReadQueryTemplate1

<value vector, URI> pairIndex: SQL String

Fig. 3. Cache Structure

Figure 3 shows the basic structure of our cache. The first table stores the
entries of web pages, indexed by URI of the client requests including the request
arguments (input info). The second table maintains details about the read-only
queries (template + vector of dynamic values = dependency info) used in the
formation of the cached pages. When a write query occurs, a query analysis
engine determines the set of read queries affected by the update. This information
is then used to remove the invalidated entries from the cache.

3.2 Maintaining Cache Consistency

Determining if a client write request invalidates the cached page resulting from
a previous client read-only request is equivalent to determining if the set of SQL
queries associated with the former request invalidates one of the SQL queries un-
derlying the latter request. For this purpose, our implemented solution includes a
query analysis engine that has the task of determining the dependencies between
SQL queries. Query analysis has two primary components:
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– Determining possible dependencies between queries. SQL queries are
given as templates (the vector of dynamic values for a particular instance to
be known at run-time). If a read query template shares common tables and
columns with an update query template, then a dependency is established.

– Actual intersection testing to reveal true dependencies. A true in-
tersection between a read query and an update query (with a dependency
established) exists if the update modifies one or more columns in the row(s)
being read, and/or results in changing the set of rows satisfying the selection
clause of the read query [20].

It is interesting to note that while the first component of this analysis is based
on the static portion of the query string (i.e. query template), the second com-
ponent comes into play at run-time, once we know the actual values used in the
selection criteria. For efficiency, our system caches the results of the first com-
ponent and re-uses them while encountering the same queries again. In practice,
there are usually a small fixed number of different query templates, thus, the
query analysis cache stabilizes very quickly (Figure 4).

Fig. 4. Query Analysis Cache Statistics for RUBiS and TPC-W

Our analysis engine explores a balance between invalidation precision and
its associated evaluation cost, the cost of precision being determined by the
detail of query analysis required to extract the relationship needed. The engine
supports three cache invalidation policies that increase precision by providing
progressively more refined analysis:

1. A simple method is to check if the columns used in the read query are also
updated in the write query. This column-only check may result in many false
positive indications that an intersection exists when, in fact, there is none.
E.g., reading then updating column a from table T creates an intersection,
but reading column a and updating column c does not.
(a) “SELECT a FROM T WHERE b=X” vs “UPDATE T SET a=new val...” may inter-

sect if the column updated is a (as here) or b.
(b) “SELECT a FROM T WHERE b=X” vs “UPDATE T SET c=new val...” does not in-

tersect (assuming c!= a,b).
2. To make the test for intersection more precise, selection criteria in the read

query’s WHERE-clause are matched to values from the write query to see if
the same rows are being updated. E.g., if a read’s selection clause requires
that T.b=X, but for the write query T.b=Y and X �= Y, then the queries do
not intersect.
(a) “SELECT a FROM T WHERE b=X” vs “UPDATE T SET a=new val WHERE b=Y”,

does not intersect if X �= Y .
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Fig. 5. Caching Read Requests

Fig. 6. Handling Write Requests

3. Invalidates can be made even more precise by executing extra queries to re-
trieve missing data needed to test for intersection. Continuing with the prior
example, if the value of the field T.b is not specified in the write query itself,
then an extra query can be made to the database to read the value of T.b in the
row(s) being updated. This option generates additional queries (by the cache)
to the back-end but reduces unnecessary webpage invalidations. E.g.,
(a) “SELECT a FROM T WHERE b=X” vs “UPDATE T SET a=new val WHERE d=W”,

but there is no reference to the value of b in the update query.
(b) Therefore, the cache generates a query for column b of the row being

updated: “SELECT b FROM T WHERE d=W”.

(c) The read and update queries intersect if the value returned equals X
(from the read query).

We refer the reader to [20] for detailed descriptions of the engine’s handling of var-
ious query types for each of the above three cases. The last (and most aggressive)
technique which we call the AC-extraQuery strategy is used in this study.

Figure 5 and Figure 6 show how collecting dependency and invalidation in-
formation, and how cache check, insert and invalidation operations take place
within web application request handlers. From the figures, it is clear that to
provide consistency, information is gathered both at the front-end (request ar-
guments in the servlet engine) as well as the back-end (queries being shuttled to
the database).
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This is in contrast to caching of SQL query result sets, which requires cap-
turing calls to the database at the JDBC interface only [8].

3.3 Overview of the AutoWebCache System

Our design is called AutoWebCache, a system for caching web pages and man-
aging their consistency [3,20]. In AutoWebCache, the cache is located on (in
front of) the application server (though it could easily be used in a proxy cache
formation), and it consists of a set of web pages from read-only requests indexed
by the request URI + set of arguments. A page is invalidated if a client update
request modifies the data set used to generate the cached page. AutoWebCache
uses the most precise cache invalidation strategy discussed prior, namely the
AC-extraQuery strategy. Web pages resulting from client write requests are not
cached.

jwebcaching.cache
Class Cache
java.lang.Object

|
+ - - jwebcaching.cache.Cache

remove(java.util.Set invalidationInfo)
Removes the cache entries corresponding to the 

specified invalidation information.

static void

add (java.lang.String webDoc, java.lang.String uri, 
java.lang.String inputData, java.util.Set dependencyInfo)

Adds a cache entry corresponding to a web document, a 
component URI, component input data and the associated 
dependency information.

static void

get(java.lang.String uri java.lang.String inputData)
Returns the cached web document associated with the 

given component URI and input data if any, null otherwise.

static java.lang.String

Method Summary

public class Cache
extends java.lang.Object
A Cache implements consistent caching of web pages.

jwebcaching.cache
Class Cache
java.lang.Object

|
+ - - jwebcaching.cache.Cache

remove(java.util.Set invalidationInfo)
Removes the cache entries corresponding to the 

specified invalidation information.

static void

add (java.lang.String webDoc, java.lang.String uri, 
java.lang.String inputData, java.util.Set dependencyInfo)

Adds a cache entry corresponding to a web document, a 
component URI, component input data and the associated 
dependency information.

static void

get(java.lang.String uri java.lang.String inputData)
Returns the cached web document associated with the 

given component URI and input data if any, null otherwise.

static java.lang.String

Method Summary

public class Cache
extends java.lang.Object
A Cache implements consistent caching of web pages.

Fig. 7. Cache API

The main package of the AutoWebCache system is the jwebcaching.cache pack-
age. It provides several classes, among which the Cache class provides the neces-
sary features for cache management, including interaction with the query analy-
sis engine to maintain consistency of the cached web pages. Figure 7 illustrates
a part of the API of this class.

4 Aspectizing Web Caching

Aspect-oriented programming (AOP) hands us an efficient tool to perform
caching by treating it as a concern that cuts across the application. In this sec-
tion, we describe our implementation of AutoWebCache, an AOP based caching
middleware system. We will also analyze the transparency of the caching aspect
with respect to a general application suite.
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4.1 Implementing an AOP Based Caching

AspectJ [2] is an aspect-oriented environment that provides the AOP constructs
and set of tools for aspects written in the Java programming language. The
AspectJ language exposes a set of join points that are well-defined places in the
execution of a Java program flow.

(a)   aspect ServletExecution {
(b)   // Pointcut definition
(c)      pointcut doGetExecution() :
(d)           execution(
(e)                   void HttpServlet+.doGet(
(f)                           HttpServletRequest, HttpServletResponse)) ;
(g)   // Advice definition
(h)      before() : doGetExecution() { ... crosscutting actions ...}
(i)   }

(a)   aspect ServletExecution {
(b)   // Pointcut definition
(c)      pointcut doGetExecution() :
(d)           execution(
(e)                   void HttpServlet+.doGet(
(f)                           HttpServletRequest, HttpServletResponse)) ;
(g)   // Advice definition
(h)      before() : doGetExecution() { ... crosscutting actions ...}
(i)   }

Fig. 8. Pointcut and Advice Examples

Figure 8 gives an example of a pointcut and advice declaration in the AspectJ
language. This example defines a pointcut called doGetExecution that designates
the execution of the doGet method in the HttpServlet class or its subclasses1 that
takes a first argument of type HttpServletRequest and a second argument of type
HttpServletResponse (lines (c)-(f) in Figure 8). This example also defines an
advice that executes prior to the specified pointcut (the doGet method, line (h)
in Figure 8). Please notice that the pointcuts and advices that define the weaving
rules to be applied are specified as entities separate from the individual aspect
modules. Weaving the final system from individual aspects is performed by the
ajc tool, the AspectJ compiler.

In order to apply aspect-oriented techniques for caching dynamic web pages
in J2EE applications, the following properties are needed:

– The entry and exit points of request handlers in web applications must be
well-known points. This is necessary to automatically inject cache check,
insert and invalidation operations to those handlers.

– The call to SQL queries that underlie the request handlers in web applica-
tions must be well-known points. This is necessary to collect dependency
and invalidation information.

4.2 AutoWebCache-An AOP Based Web Cache

We implemented AutoWebCache as an AOP-based solution that helps in trans-
parently injecting caching mechanisms to web applications. This involved the
following steps:

– Weaving rules specification - defines how to integrate the caching aspect
into the web application core aspect. The weaving rules specify the points
in the application where mechanisms for cache check, insert, invalidation
operations etc. need to be injected (see Figure 5 and Figure 6).

1 The + sign following the HttpServlet class name in Figure 8 designates its subclasses.
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– Aspect weaving - the process of composing the final cache-enabled system
from individual web application and AutoWebCache aspects by following
the weaving rules, using the AOP compiler (see Figure 2).

Fig. 9. Capturing Servlets’ main method

Figure 9 shows how to capture the execution of a Servlet’s main method in
AspectJ; this is necessary to inject cache checks, inserts and invalidations. Since
Java Servlets are defined with a standard API, their main methods are known
as being either doGet or doPost that respectively implement HTTP GET and
POST; and the AspectJ’s execution keyword used in the pointcut captures the
execution of those methods 2.
Cache checks and inserts. Figure 10 describes the rules for tackling read-only
Servlets. The around advice surrounds the normal execution of the main method
of a Servlet with cache checks and inserts (the proceed keyword calls the normal
execution of the method). In case of a cache hit, the normal execution of this
Servlet is bypassed. For a cache miss, an entry is added in the cache along with
the dependency information associated with this request (c.f., Figure 5).

Fig. 10. Weaving rules for cache checks and inserts

Cache invalidations. Figure 11 describes an advice that is aimed at tackling
write Servlets; it defines the after advice that executes following a Servlet’s
2 In case a Servlet’s doGet and doPost methods are interleaved, it is necessary not

to capture the execution of both methods, but only the top-level one. This can be
achieved in AspectJ using a cflowbelow pointcut (see [17], Chapter 3). For simplicity
purposes, we do not use it here.
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Fig. 11. Weaving rules for cache invalidations

main method. Specifically, it uses the invalidation information attached with
this request (c.f., Figure 6) to invalidate the affected cache entries.
Collecting consistency information. Figure 12 declares a pointcut that cap-
tures calls to read-only and write SQL queries (through standard JDBC API
calls, e.g., executeQuery, executeUpdate). The after advice executes following an
SQL query and collects the consistency information - dependency (read query
templates + value vectors for a read-only request handler) or invalidation (write
query templates + value vectors for a write request), derived from that query.

If a read query is aborted during the formation of response for a client request,
the corresponding web page is not stored in the cache. Further, if a write query
does not complete successfully, it is not considered for determining the cache
entries affected. For simplicity, implementation details concerning these points
have been omitted from our presentation.

Fig. 12. Collecting Consistency Information

4.3 Analysing Transparency of AutoWebCache

Caching of dynamic web content can not be considered as an aspect completely
orthogonal to the application, in general. In this subsection, we outline some
issues that affect the transparency of AutoWebCache with respect to a general
application suite.

Capturing Information Flow through various Interfaces. To maintain
complete consistency of the cache with the back-end databases, the caching
scheme must capture all flow of information in the application, from front-to-
back. Such information can flow through various interfaces:
- Entry and Exit points. AutoWebCache requires well-defined interfaces for iden-
tifying the entry and exit points of a request. In our benchmarks, the Java Servlet
APIs provide a standard way to capture entry and exit of a http client request.
Further, each cached document is uniquely identified by the URI and Servlet
parameters specified in the request.
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- Modification to underlying Data Sets. When time-lagged weak consistency is
employed, once cached, entries are valid until some timeout occurs. To provide
a strong consistency of cached documents, however, changes must be tracked on
the data used to generate the documents. In our case, we capture modifications
to the data sets by capturing the associated SQL requests.
- Cookies. Some web applications store part of their request parameters in cook-
ies, instead of specifying them explicitly in the http requests (e.g., the user name
and password). In this case, the client includes its cookie [21] in all requests to
the server. A cookie is a small amount of state with no defined structure. Thus,
if each web application defines its own ad-hoc cookie structure, transparency is
difficult to achieve in AutoWebCache.
- Multiple Sources of Dynamism. A dynamic web page can be formed by aggre-
gating data from multiple sources. Currently, AutoWebCache handles dynamism
resulting out of SQL queries to a database. However, as long as the interfaces
for accessing such sources of dynamism are well-defined, AutoWebCache can be
extended easily to provide a high degree of transparency.

The Hidden State Problem. Implied in the design of AutoWebCache is
that the http request contains all the information necessary for the servlet to
create the web page, thus, identical requests (which will map to the same cache
entry) result in the same page being generated. Any other state that affects
the web page content is considered hidden state. For example, some applications
employ randomly generated information for advertisement banners [25]. Another
instance is the use of static variables inside the application. In such setups, each
subsequent identical http request results in generation of different web pages.
Such requests should be marked as uncacheable by the developer.

Use of Application Semantics. For aspect-orientedness to be used, the key
semantic concepts must be conveyed via the syntax of the code and, therefore,
must be rather straightforward. In some cases, however, understanding the na-
ture of application provides avenues for improving performance of the caching
system. For instance, in one of our benchmarks, the TPC-W application, the
expensive Best Seller web interaction uses a 30 second window allowing dirty
reads. In essence, the effects of a change committed to the database by any web
interaction which completed less than 30 seconds before the Best Seller is per-
mitted to be not reflected in the response page for Best Seller. This conforms to
clauses 3.1.4.1 and 6.3.3.1 of the TPC-W v1.8 specification [30]. Such concepts
form a part of the complex application semantics, and as we demonstrate in the
results section, can be quite effective in performance improvement.

5 Evaluation Environment

Test-bed J2EE Web Applications. We tested with the J2EE applications on-
line bookstore TPC-W and auction site RUBiS. TPC-W implements an on-line
bookstore [30] and defines 14 different interactions among which are accessing
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a user home page, listing new products and best sellers, registering a new user,
updating the shopping cart, ordering. We used an implementation of TPC-W
proposed by the University of Wisconsin [18]. RUBiS implements the core func-
tionality of an auction site modeled over eBay [1]. It defines 26 interactions
including registering new users, browsing items by category or region, bidding,
buying or selling items, and leaving comments. Both TPC-W and RUBiS provide
a benchmarking tool that emulates web client behavior and provides statistics
(e.g., client response time). For evaluation, we use the shopping mix for TPCW
(80% read requests), and the bidding mix for RUBiS (85% read requests). We
vary the client load but the size of the database is fixed.

Client Emulator. Both benchmarks use a client-browser emulator to generate
requests. A client session is a sequence of interactions for the same client. For
each client session, the client emulator opens a persistent HTTP connection to
the Web server and closes it at the end of the session. The average think time
between requests (7 sec) and session time (15 min) conform to clauses 5.3.1.1
and 6.2.1.2 of the TPC-W v1.8 specification [30]. All our experiments warm the
cache for 15 minutes before collecting statistics over the next 30 minutes.

Software & Hardware. We use the Apache v.1.3.22 web server and the Jakarta
Tomcat v3.2.4 servlet engine, with the MySQL v2.04 type 4 JDBC driver, run-
ning on Sun JDK 1.4.2. The database is MySQL v.3.23.43-max with MyISAM
tables. All machines have an Intel Xeon 2.4GHz CPU, 1GB ECC SDRAM, the
2.4.20 Linux kernel, and a 120GB 7200 rpm disk drive. All machines are con-
nected through a switched 1Gbps Ethernet LAN.

Using this setup, we next analyse the AutoWebCache system, and shed light
on some of these important questions:

– What is the effect of AutoWebCache on the performance of an application?
– How does the semantics of an application relate to cache efficiency?
– What is the relative benefit of caching on different read-only requests?
– How much do AOP techniques help in implementing the caching system?

6 Results

In our first experiment, we study the effectiveness of AutoWebCache in reducing
the response time of applications. Figure 13 shows the response time for RUBiS,
comparing the results of the cache-enabled version (AutoWebCache) with the
original application (No cache). Here, RUBiS is running the bidding mix which
has updates. Thus, we need to generate cache invalidations to ensure cache
consistency. For this mix, the cache hit rate is 54% 3. We see that AutoWebCache
provides a clear performance benefit, improving response time by upto 64%.
3 All numbers reported here are for the most optimal AC-extraQuery cache invalidation

strategy of AutoWebCache. See [20] for results comparing different strategies.
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Fig. 13. Response Time for RUBiS - Bidding Mix
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Fig. 14. Response Time for TPC-W - Shopping Mix

Figure 14 shows the results for TPC-W, using the primary reporting mix of
shopping which has updates. Please note the log scale of the y-axis. From the
graph, we again see that AutoWebCache version of the application has signifi-
cantly faster response times than the No cache version. In this case, the response
time is reduced by up to 98%, and the cache hit rate is 43%. The overhead of
processing cache lookups can be measured by forcing a cache miss on every
lookup. The performance difference to NoCache is negligible (not distinguish-
able at the millisecond scale) so it is not shown in the graph.
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Fig. 15. Cache Improvement in TPC-W based on Application Semantics

In our second experiment, we present how knowledge of the application se-
mantics can help in improving the efficiency of AutoWebCache. In TPC-W ap-
plication, the expensive BestSeller request uses a 30 second window allowing
dirty reads, permitting those changes committed to the database less than 30
seconds before this request to be not reflected in the response (c.f., Section 4.3).
Making use of this semantics, the best seller pages were marked cacheable for a
full 30 second window. The performance improvement with this optimization is
shown in Figure 15.
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Fig. 16. Relative Benefits for different Requests in RUBiS

In our next experiment, we analyze the relative benefit of caching on different
individual read-only requests. Figure 16 shows that for RUBis (with 1000 clients),
as expected, requests benefit by varying degree using the AutoWebCache system.
Requests BrowseCategories and BrowseRegions have an almost 100% hit rate,
while requests BuyNow and PutComment have the least cache hit ratios. While
most of the misses in the last two categories were cold misses,4 for ViewItem
and ViewBids, most of the misses were due to invalidation of the cached entries.
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Fig. 17. Relative Benefits for different Requests in TPCW

Figure 17 shows the relative benefits experienced by different requests for
TPCW, running with 400 clients. However, there are two differences in this graph
from the one we obtained for RUBiS. Firstly, in the case of TPCW, two requests
(unlike any in RUBiS), SearchRequest and HomeInteraction were explicity
marked uncacheable because they use a random number generator to produce
advertisement banners. Secondly, most of the hits for BestSeller request were
obtained using a 30 second window for invalidation (described earlier). Such
application semantics were not used for any request in RUBiS.

Figures 18 and 19 report the improvement in response times of individual
requests with AutoWebCache, for RUBiS and TPCW with 1000 and 400 clients,
respectively. For each request, the graphs show the average extra time required to
generate the response for that request in case of a cache miss. Hence, for a miss,
the response time for a request is the sum of the two components. In the case of
RUBiS, AboutMe has high penalty for a miss. However, this is compensated by
4 Hits for these requests require the same customer and item as a previous request.
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Fig. 18. Breakdown of different Requests in RUBiS w.r.t. Response Time

a high hit rate for this request. Same arguments can be applied for BestSeller,
ExecuteSearch and NewProducts requests in TPCW. Also, since the requests
SearchRequest and HomeInteraction have low response times, marking them
uncacheable does not impact the performance of AutoWebCache a great deal.
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Fig. 19. Breakdown of different Requests in TPCW w.r.t. Response Time

Fig. 20. Web App & Cache Library Code Size vs. Aspect-J Code Size

Figure 20 compares the code size of the individual aspects, the TPC-W and
RUBiS testbed applications and the JWebCaching library. Most of the code
for the AutoWebCache system, including the query analysis engine, lies in the
JWebCaching library. This library implements the cache interfaces and can be
reused for various applications. Size of code written in AspectJ for weaving
caching into the application is much smaller. Thus, it is easy to maintain and
customize for different applications.

7 Discussion

A goal in web cache research has been to develop designs that are completely
transparent to the application yet supports strong consistency. Complete trans-
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parency means that no effort is required from the application programmer to
achieve caching - such a cache would be easy to add. Support for strong consis-
tency means the cache can ensure it is always synchronized with the state of the
persistent backing store - such a cache would have a wide audience. Caching of
static content achieves both goals. Strong consistency is trivial by the fact that
the content does not change. Transparency is easily achieved as the final content
can be captured at a well-known point - while being sent as the response to a
client’s request.

The complexity of maintaining consistency in our case is due to caching de-
rived data. We call data such as web pages derived because they are obtained
using some set of data in the persistent store of the application (e.g., rows in the
database tables). In contrast, non-derived data objects map directly to unique
items in the persistent store. Thus, checking for inclusion in the cache is a simple
matter of checking for the existence of a unique global identifier (e.g., a simple
id). When caching derived data, however, the mapping relationship is obscured.
Complexities arise as more than one document can depend on the same field in
the database. Also, dynamic web pages can aggregate data from multiple data-
bases. Therefore, detecting if a change to a database affects a web page involves
testing for inclusion of the changes in each page’s input set.

Aspect-oriented programming is an efficient tool to capture the information
flow in an application and can be used to inject the caching calls at appropriate
points. Working with AOP gives several benefits:
Modularity. Separation of concerns is inherent to AOP-based systems. The
implementation of each individual aspect (e.g., the J2EE web application and
the logic for caching dynamic content) may evolve separately without inducing
a change in the implementation of the others.
Generality. The AutoWebCache prototype uses AOP to add caching of dy-
namic web pages to a Servlet-based web application that interfaces a database
with JDBC. This methodology is general enough to encompass other sources of
dynamic data. Specifically, individual aspects can be developed separately for
each source and then woven together.
Transparency. Any modification/extension to the application interfaces is cap-
tured by making appropriate changes in the pointcut specifications, and not the
way individual aspects have been developed or woven. This provides a clean way
to make caching look oblivious to the developer.

Our AOP-based framework combines simplicity with flexibility to achieve a
good level of transparency. Let us compare our technique with a compiler-based
approach as in [8]. The compiler does a similar query analysis at compile time
and embeds the results for simple look-up at run-time. The proposed AutoWe-
bCache system also achieves almost zero run-time analysis overhead via result
caching [3], but is much easier to develop than compiler techniques, making use of
AOP tools. Another subtle advantage of our approach is that it is robust even if
the SQL queries are dynamically formed, as it captures the run-time value of the
string at the point of SQL call. For a compiler, query strings must be statically
available. This assumption might not hold for real-life, complex applications.
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We believe that achieving the simultaneous goals of complete transparency
and strong consistency in web caching is not possible for the general case. The
key problem is in automatically verifying that no essential data in an applica-
tion needed for caching flows through unexpected interfaces and, thus, elude
the consistency logic. Cookies, randomly generated data and application seman-
tics are some examples of this phenomena from our benchmarks. If an applica-
tion presents a fairly orthogonal caching aspect, AutoWebCache would require
only minimal developer intervention. If not, a special weaving rule would be
constructed for each non-orthogonal concept. In the worst case, AOP would
extend only modularity as a benefit, same as that offered by object-oriented
techniques.

8 Related Work

Caching of dynamic content with weak consistency can achieve transparency
because, as for static content, no information is needed to synchronize the cached
documents with the backing store. Typically, pages can be set to timeout so that
the cache content is periodically refreshed. CachePortal [4] has a unique form
of weak, time-lagged consistency. It relies on timestamps and HTTP logs to
conservatively determine which pages to invalidate. Inconsistencies can exist for
a time between the cache and the backing store.

While caching the contents of the persistent store (non-derived data) directly,
a high degree of transparency with strong consistency can be achieved. Exam-
ples include caching direct copies of raw DBMS tables [29] or caching copies of
persistent Java objects [13]. A framework where business rule SQL query re-
sult sets are cached is presented in [8,12]. As with our work, strong consistency
is maintained through complex analysis of the SQL queries. A high degree of
transparency is achieved through the compiler-based solution to insert the cache
API calls tuned to the Websphere environment. In contrast, our work uses much
simpler AOP tools.

Examples of caching derived data with strong consistency suffer from a low
level of transparency that requires considerable developer input about request
structure or dependencies. DynamicWeb [10] provides a strongly consistent web
page cache, but not transparently as developers must define the dependencies
between events, e.g., read and write queries. Similarly, form-based proxy caching
[19] of web pages requires developers to pre-define configurations of web page
formats. Weave [33] requires the programmer to use a specialized language to
describe dynamic web pages and event handlers to specify invalidations. Various
commercial solutions such as SpiderCache [26], Xcache [32], and Oracle9iAS [22]
provide an event API to the developers to add consistency management.

The current prototype of AutoWebCache is implemented as a generic solution
for a J2EE web application that uses Servlets embedding SQL queries based on
JDBC [27] since this pattern is widely used in many J2EE applications [5]. It can
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be easily extended to include other sources of dynamism, as well as other ways of
forming dynamic content, such as PHP [31]. Furthermore, the proposed caching
solution is completely transparent when all database updates go through the
server-side application. However, if some updates are directly performed on the
database, transparency is difficult to achieve. A possible solution is to extend the
caching system with an API similar to the ones provided by the DynamicWeb
and Weave systems to allow an external entity to invalidate cache entries [10,33].
This external entity could, for instance, work through database triggers.

AOP techniques were experimented for profiling [7], persistence [23], distrib-
ution [14], web cache pre-fetching [24], caching static content [17], caching (non-
derived) Java objects [13], and also for transactions [16] where the authors con-
clude that, as for consistent caching of dynamic web content, transactions can
not be aspectized in general.

9 Conclusions

In this paper, we presented AutoWebCache, a middleware system for adding
caching of dynamic content transparently to J2EE server-side applications hav-
ing a backend database. Caching fully-formed webpages reduces the work at both
the increasingly costly business logic tier as well as the back-end database tier.
We first outlined the principles involved in caching dynamic web content, in-
cluding the logic to ensure consistency of the cached documents. Thereafter, we
demonstrated the use of aspect-oriented techniques to implement our system. We
showed how aspect-oriented techniques improve modularity and transparency of
the entire solution.

Using two standard J2EE web benchmarks, RUBiS and TPC-W, we evaluated
AutoWebCache along various dimensions. First, we studied the effectiveness of
AutoWebCache in reducing the response time of applications. Second, we ana-
lyzed the transparency of our system for a general application suite. We argued
that for the general case, issues may arise when caching at the front-end as dy-
namic web pages can aggregate data from multiple sources and also some sources
might not have sufficiently structured interfaces for exchanging the information
necessary for tracking coherency. Furthermore, we showed that knowledge about
application semantics can improve the efficiency of caching.

Our work presents itself several avenues for extension. A database query-
results cache is complementary to webpage caching. Complex SQL queries that
cannot be efficiently parsed for coherency dependency information (e.g., range
queries) can be declared uncacheable at the front-end webpage cache but have
its result sets cached at the back-end, thus, reducing the database costs if not
the business logic costs for those requests. We also want to extend the AutoWe-
bCache system to incorporate sources of dynamism other than SQL queries, and
study their transparency w.r.t. AOP. Finally, we want to analyze the effect of
varying cache size on the hit rates of requests and investigate different cache
replacement strategies in this context.
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Abstract. Networked computer services are increasingly hosted on shared con-
solidated physical resources (servers, storage, network) in data centers. Thus,
some form of resource control is required to ensure contractual performance tar-
gets for service customers under dynamic workload and system conditions. This
paper proposes a solution for resource control that maximizes the yield of the
performance contracts given the available physical resources, while it does not
require any modifications to the clients’ and the computing services’ software or
hardware. Our approach achieves this by manipulating the flow of requests into
the service by using one or more proxies between the clients and the service.

This paper evaluates Proteus, a prototype implementation of the proposed ap-
proach, on two different services: a 3-tier e-commerce system and a networked
file service. We show that existing proxies for the two respective protocols (HTTP
and NFS RPC) can easily be modified to use Proteus to schedule their requests.
Once the modified proxies have been deployed, our approach is transparent to
clients and services. Moreover, we show that, in contrast to prior art, our solution
(1) is stable when workloads and systems change, (2) automatically tunes itself
to different services, (3) can enforce flexible quality of service specifications, and
(4) correctly detects and reacts to contention of internal service resources.

1 Introduction

Increasingly, computing services are hosted using clustered architectures, rather than
single servers, where a number of distributed physical resources (servers, storage, net-
work) together offer a service. Moreover, service providers and enterprises use shared
pools of resources to host multiple customers of a service and/or more than one service.
Multiplexing services onto a shared infrastructure allows for on-demand assignment of
resources and, thus, improves resource efficiency and cuts management costs.

This paper is concerned with how to manage the performance of a shared computing
infrastructure. Negotiated Service Level Agreements (SLAs) define contractual perfor-
mance objectives, such as throughput and response time bounds, and corresponding
monetary returns for those performance objectives. The yield derives from the rev-
enue for serving the service workloads, less any penalties for failing to meet contract
terms. This paper focuses on the problem of performance management, i.e., how to
share resources between customers/workloads given the choices already made for ad-
mission control and provisioning. These policies usually overbook resources to improve
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resource utilization and efficiency, assuming a statistical multiplexing of the service de-
mands of different customers. When the total demand exceeds the capacity of the pro-
visioned resources, then a performance management mechanism is needed to share the
available capacity, in a way that first isolates workloads from each other and second
maximizes the yield obtained from the service given the SLAs in place.

A lot of existing research and commercial systems that provide performance man-
agement depend on modifications in the operating system [1,2], middleware [3], or
application code [4]. Clearly, such intrusive approaches are not generally applicable.
Thus, a number of non-intrusive approaches have been proposed to intercept and control
the workloads as they enter the service infrastructure [5,6,7,8,9]. All these approaches
suffer from drawbacks that affect their general applicability.

First, all non-intrusive approaches depend on some form of feedback about the per-
formance delivered to each performance class. The feedback loops of existing solutions
are implemented in some ad hoc way, usually employing heuristic algorithms. As a re-
sult, there is no guarantee that the system is stable and that it converges to the desirable
performance goals when workloads and systems outside the experimental evaluation
are used. Second, prior art requires tuning according to the specific service, infrastruc-
ture configuration and workload characteristics, something that is ever changing. Third,
they may unfairly penalize the performance of workloads given that they do not know
who contends for what resources in the infrastructure. For example, if we have ten
workloads and one of them has poor performance because it contends for resources
with only one other class, then the only way to improve its performance is to reduce the
throughput of the contending class. Reducing the others, as usually happens with prior
approaches [5,6,7,8,9], will only decrease the total system throughput.

Finally, none of them allows for enforcing flexible performance goals that take into
account the state of the workloads and resource usage. Prior approaches [5,7,8] assume
simple static SLAs in the form of a single latency goal that will be guaranteed up to
a throughput limit. If demand exceeds the throughput limit or the service cannot pro-
vide the latency goal due to workload or system variations, then either no performance
guarantees are made [9], the client application is required to throttle back requests [8],
or requests are dropped from mainly the performance class with the strictest latency
goal [5]. Clearly, such approaches are not acceptable by all applications and services.
E.g., dropping requests destined for a disk array is not an option and penalizing the class
with the strictest latency goal is unacceptable if that one workload is more important
than the others. A more flexible way of specifying performance goals is required.

To address these needs, we propose a new non-intrusive approach for performance
management of computing services. Our approach uses standard proxies to intercept
service requests before entering the system. These proxies have been modified to use
our Proteus library to schedule their requests. Once the modified proxies have been de-
ployed, our approach is transparent to clients and services. Internally, Proteus uses a
control-theoretic adaptive controller to schedule the requests so that the performance
of the service is automatically adjusted according to the specified SLAs. The con-
troller automatically adapts to system and workload characteristics. Thus, it requires
no tuning between different services or as the system and workloads change. We prove
that the proposed closed-loop design is stable for throughput goals. Last, the controller
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automatically detects workloads that contend for internal service resources without any
prior knowledge about those resources. Thus, control actions do not penalize workloads
that do not use bottleneck resources. We report on an prototype of our approach and on
experimental results with two diverse computing services: a 3-tier e-commerce system
and an NFS service. In both cases, we show that Proteus can achieve all the previously
mentioned goals and that the proxies can easily be modified to use Proteus.

2 Overview

This section introduces the basic system model in Section 2.1 and a flexible and generic
way of describing performance goals and performance differentiation policies in Sec-
tion 2.2. In Section 2.3, we show that the performance of a real service varies quickly
and often. Thus a static solution or a human in the loop is not an option. Instead, we
need an automatic controller that we develop in Section 3.

2.1 System Model

We assume that the system consists of a stream of requests dispatched from a set of
clients. The requests are processed by a service and returned to the clients in some
arbitrary order. Each request can be associated with a performance class. A class can
be made up of e.g., a specific set of clients or any client using a set of services. A
service usually uses a multitude of compute, storage and networking resources. The
actual number, layout and performance characteristics of these resources are assumed
to be unknown.

In order to be able to isolate and differentiate performance classes, one or more prox-
ies are interposed on the network path between the service and its clients as in Figure 1.
The proxies are modified to use our software library to schedule their requests through
the API discussed in Section 4. The library consists of two parts: a controller and a
scheduler. The scheduler intercepts requests and re-orders or delays them to achieve the
partition of throughput capacity corresponding to a configurable share setting. For ex-
ample, with two classes, setting the share to 2:1 means that one class will get 2/3 of the
throughput, while the other one gets 1/3. The second scheduler parameter is the con-
currency level that decides the maximum number of requests inside the system at any
given point in time from all the classes. The premise is that the performance (latency
and/or throughput) of a class varies with the amount of resources available to execute it.
Thus, the scheduler enforces approximate proportional sharing of the service’s capacity
to serve requests aiming at meeting the performance goals of the different classes. The
controller (described in Section 3) will then set these parameters so that the performance
goals are met.

The scheduler in our system implements Controllable Start-Time Weighted Fair
Queuing (C-SFQ(D) ) [10], a scheduling algorithm common in computer systems, for
four reasons. First, it is computationally efficient; second, being work conserving it re-
sults in high resource utilization; third, it is responsive to parameter changes; and fourth,
it works in systems with high degree of concurrency.
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Fig. 1. Our software layer is integrated into a proxy and consists of two parts: a scheduler and a
controller. The scheduler controls how a resource is shared by a number of performance classes,
while the controller sets the scheduling parameters based on performance feedback.

2.2 Specifying Performance Goals

In contrast to prior approaches, we provide a way to generically specify any perfor-
mance goal and performance differentiation policy. A performance differentiation pol-
icy is used to modify the performance goals when there is not enough capacity in the
system to satisfy all the classes’ performance goals. The reason for this is that we do
not believe that a single policy or goal formulation is good for all possible services,
workloads and systems. For a web service with gold, silver and bronze class customers,
it might be enough to have a simple priority differentiation policy to prioritize gold
over silver over bronze when the system is overloaded. On the other hand, for a shared
remote file system in a company, we might want to provide low latency for business
critical workloads, but at the same time ensure some slice of the throughput to guar-
antee forward progress of the backup application. Other situations require completely
different performance goals and differentiation policies.

Utility functions [11] provide a way to flexibly specify performance goals and differ-
entiation policies. These are monotonically increasing (for throughput and bandwidth)
or decreasing (for latency) functions of one or more performance measurement. The
measurements can either be averages or percentiles and there is one utility function per
class. The goal of the system is to maximize the total utility obtained, given the utility
functions of the classes. In the example of Figure 2, a user of performance class 1 does
not want the request latencies to be above 300 ms. In that case the provider should pay
40 monetary units as a penalty. The user is willing to pay for performance above 300
ms, but at the most 100 monetary units for 100 ms. Simpler goals such as “provide at the
most 100 ms latency and nothing else” of prior work [5,8,9] can be achieved by a utility
function that gives x monetary units for 100 ms or less and −x for anything above 100
ms. It is also possible to describe the utility as a function of more than one goal, e.g.,
utility as a function of both latency and throughput is useful. With these, throughput
and latency can be traded off against each other according to user specifications, or we
can specify strict goals for both of them.

The performance differentiation policy is captured by the difference between the
utility functions of the classes. If one class consistently pays more than another, as is
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Fig. 2. A utility function example to the left. The right graph shows that a fixed share of the
service capacity result in widely varying throughput and latency in our experimental service.

the case in Figure 2 where class 1 always pays more than class 2, we have a priority
policy preferring the high-paying class. If the utility functions alternately pay more than
each other for each performance level, we have a fair sharing policy, as maximum utility
is achieved by alternately giving each class a little bit more of performance. A plethora
of other differentiation policies are possible. This way, the users of our system are not
locked into a specific differentiation policy or performance goal specification as in prior
art [5,8,9].

Throughout the paper we will mostly talk about high level performance goals such
as “provide 100 ms request latency” or “give me between 100 and 400 req/s” combined
with high level performance differentiation policies such as “priority”, “fair share” and
“best effort”. The reason for this is that these are easier both to understand and to val-
idate than arbitrary chosen utility functions. Note, that these performance goals and
differentiation policies are all specified with utility functions and, as we will see in Sec-
tion 3, utility functions are the only performance specification that is used internally by
our library to achieve our goal of flexibility.

2.3 Need to Vary Shares and Concurrency

A key problem is that, in the general case, certain share and concurrency level assign-
ments do not result in steady and predictable performance, because of the dynamic
nature of workloads and systems. The right graph in Figure 2 depicts the example of a
typical workload of a remote file service. Even in this static example where the system
does not change (there is a fixed number of clients running the same workload on a
fixed set of resources), a fixed share and concurrency level (80% and 16 in this exam-
ple) for one class results in widely oscillating throughput and latency. If for example, we
would like to provide exactly 2,000 req/s to a class, that would mean 100% of the share
around 30 s. and around 50% of the share at the beginning of the execution. Clearly,
the shares need to change dynamically. A solution that does not dynamically vary the
shares [5,8,9] can fundamentally not provide a flexible performance differentiation pol-
icy, as the sharing of the system is fixed.
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The concurrency level also needs to vary dynamically. When the concurrency level
is high, the system is used efficiently as it provides the highest total throughput. But the
more requests inside the service, the higher the request latencies will be, given a fixed
amount of resources. There is thus a trade-off between these goals. The concurrency
level that achieves the best trade-off varies with for example, what other requests are
inside the system, what resources are used and resource lay-out. As this changes, the
concurrency level also needs to vary dynamically.

3 Adaptive Resource Control

In this section, we will design a controller for automatically and dynamically setting
the shares and the level of concurrency of the scheduler. We will use adaptive control
theory [12] described in Section 3.1, as it provides a well understood methodology for
designing closed-loop systems that are stable, efficient and meet their goals. On a high
level, an adaptive controller has two sets of inputs, a set of performance measurements
from the system and a set of desired performance references. The goal of the controller
is to get the performance measurements to equal the desired references by adjusting
one or more system parameters. In order to achieve this, one of the most important
tasks for it is to internally estimate a model of how the system parameters affect the
measurements.

Figure 3 shows an overview of the control architecture we propose to provide adap-
tive resource control. It consists of one controller for setting the shares and one for
setting the level of concurrency. The share controller in Section 3.2 sets the shares of
the performance classes so that their performance goals are met. The concurrency con-
troller in Section 3.3 adjusts the level of concurrency as to achieve the best trade-off
between high capacity and meeting the strictest latency goal. An optimizer, described
in Section 3.4, computes the performance targets for the classes, using the utility func-
tions of the classes and the performance model produced in the share controller. These
performance targets are then fed as references to both controllers, that they can ad-
just the shares and concurrency so that the classes achieve their performance targets.
The targets are continuously modified so that they are always possible to achieve. The
extension to distributed proxies is described in Section 3.5.
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Fig. 3. Overview of our solution to the left and a self-tuning regulator to the right
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3.1 Adaptive Optimal Control Theory

In order to explain the controllers, we need to introduce some notation. Assume that
there are N measurements of interest made in a system, and let y(k) be a column vector
of the N measurements sampled at time k. These measurements are statistical metrics
(e.g., average or percentile) computed over the sample period (k − 1, k]. The elapsed
wall clock time between k − 1 and k is called the sample interval and is assumed to
be constant over time. Let column vector yref(k) denote the desired values for the N
measurements at time k, and let u(k) capture M actuator settings at time k. An actuator
is a system parameter that can be dynamically set. For example, it can be the resource
share of each performance class. Informally, the problem is to have the N measurements
converge to the specified desired values by dynamically setting the M actuators in the
system. This can be formalized as the following optimization problem:

minimize J(u(k)) = ‖W (y(k + 1) − yref (k + 1))‖2 + ‖Q(u(k)− u(k − 1))‖2(1)

W ∈ RN×N and Q ∈ RN×M are positive-semidefinite weighting matrices. W cap-
tures the importance of meeting the reference values for different measurements, and Q
reflects the penalties for large actuation changes. This objective function J is expressed
as a function of u(k), as the latter is the only input that can affect the state of the system.
Note that J(u(k)) ≥ 0 in all cases. It becomes zero when all the measurement refer-
ences are met and there is no change to the actuators between consecutive intervals, i.e.
the desired state.

The advantage of the problem formulation in (1) is that there are well-understood
controllers that can be applied to solve it. More specifically, optimal control [13] is a
field of control theory, in which control goals are formulated as optimization problems.
Controllers designed following this approach are constructed so that they aim for the
optimal solution to (1), while guaranteeing that the system is stable and converges fast.

There are a number of requirements that such a controller should meet. It has to be
computationally efficient—as it needs to perform on-line control of the system. The
controller should require little or no knowledge of the target system and should need
little or no manual tuning before being applied. It should also quickly adapt to changes
to the system and its workloads and the closed-loop should always be stable.

We propose using a certain type of adaptive controllers called Self-Tuning Regulators
(STR) [12], that can enforce on-line optimization of optimal control problems while
they satisfy the above practical requirements. The structure of an STR is shown in the
right diagram of Figure 3. It consists of an estimator module that on-line estimates a
model that describes how actuator setting affect the measurements. That model is then
used by a control law that decides how to set the actuators so that (1) is minimized
while guaranteeing stability.

3.2 Shares Controller

Meeting performance goals and providing flexible performance differentiation by ma-
nipulating the share of resources each class gets, can be formulated as an optimization
problem using (1). In this case, the vector y(k) refers to the performance measurements
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of each of the N performance classes, sampled at time k. These measurements can
refer to either request latencies, throughput, or both. Vector yref (k) represents the de-
sired performance. When these targets cannot be met, yref (k) will be adjusted by the
optimizer in Section 3.4 according to the performance differentiation policy. u(k) cap-
tures the individual share settings of each of the N performance classes. Minimizing
J(u(k)) in this case means that the system converges to the performance targets for the
N classes, while minimizing the necessary changes in share settings.

For model estimation in the STR we use a linear model of the following form:

y(k) =
n∑

i=1

Aiy(k − i) +
n−1∑
i=0

Biu(k − i − d0) (2)

Here Ai and Bi are the model parameters. Note that Ai ∈ RN×N , Bj ∈ RN×M ,
0 < i ≤ n, 0 ≤ j < n, where n is the model order that captures how much history
the model takes into account. Parameter d0 is the delay between an actuation and the
time the first effects of that actuation are observed. The diagonals of Ai and Bi state
what performance a class receives from a given share setting, while the anti-diagonals
describe the effect changing the shares of the other classes have on a given class. Thus,
the first advantage of the model is that it models how the classes are contending for
resources. To correctly capture and react to this was one of our goals of the architecture.
A second advantage is that it is simple and generic, a prerequisite for wide system
applicability. A third advantage of this model is that it captures the dynamics of the
system. This is important as higher share many times results in worse performance for
a short period before the performance gets better. The underlying reason for this is e.g.,
warming up of caches. If the model in the controller did not take this into account, it
might increase the share even further as a response to the worse performance observed
shortly after the change, leading to oscillations and in the worst case to instability. The
final advantage with this model is that it does not assume that all requests in all classes
consume the same amount of resources. One class can have a higher entry in Bi than
the others reflecting requests that take longer to serve. Prior work [5,9] does not take
any of these four effects into account.

We know that the relation between actuation and performance is not always linear.
For example, latency is inversely related to the share. However, even in the case of non-
linear metrics, a linear model is a good enough local approximation for the controller,
as it usually only makes small changes to actuator settings. But the estimation can be
improved by inputting the inverse of the latency, which we do for the rest of the paper.
The advantage of using linear models is that they can be estimated in computationally
efficient ways, that result in tractable control laws and there are stability proofs for
them.

The unknown model parameters Ai and Bi are estimated using Recursive Least-
Squares (RLS) estimation [12]. This is a standard, computationally fast estimation
technique that fits (2) to a number of measurements, so that the sum of squared er-
rors between the measurements and the model is minimized. RLS is able to estimate
even the performance correlation between the classes (the anti-diagonals of Ai and Bi).

The control law is a function that, based on the estimated system model (2), decides
what the actuator settings should be so that objective function (1) is minimized. One
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of the reasons we specifically chose (1) and (2) is that u(k) can be computed using a
computationally efficient closed-form expression. The full derivation can be found in
Karlsson et al. [14].

From a systems perspective, the important point is that the control law provides a
computationally efficient way to calculate u(k) which can be performed on-line. This
STR requires little system-specific tuning as it uses a dynamically estimated model of
the system, the control law automatically adapts to system and workload dynamics.

It has been shown [12] that this STR is stable iff the following is true of the system:
(i) the initial delay (d0) is known and bounded; (ii) the system is minimum phase1;
(iii) the signs of the triangular elements of B0 are known; (iv) the upper bound on
the order (n) of the system is known; and (v) the measurements are linearly related to
the actuators. If true, our control-loop is stable and the performance converges to the
performance goals in steady state. Independently of the system we run on, we know
that the diagonal of B0 is positive for throughput and negative for latency, and that
throughput is linearly related to the share, while latency is nonlinearly related. The other
parameters are system dependent and hold for our experimental systems. This means
that the controller is provably stable for throughput goals and for latency goals when the
changes to the system and workloads are small (as linearity is a good approximation).
It is a topic of future work to analyze the stability of the loop for latency goals under
arbitrary workload and system changes.

3.3 Concurrency Controller

For the concurrency level controller we are going to use the same control law and es-
timator as for the share controller, though with different measurements and actuators
in y(k) and u(k), respectively. u(k) will now contain the concurrency level as that is
what we desire to set. The trade-off in setting this is between high total throughput
of the system and being able to meet the tightest latency goal. Generally, the higher
the concurrency, the higher the total throughput (until we get into overload). The end-
to-end latency consists of the sum of two parts: the waiting time inside the scheduler
(w(k)) and the service time2 (σ(k)) inside the service itself. As the service times also
monotonically increase with an increase in concurrency level, we can achieve the best
total throughput while still being able to satisfy the tightest latency goal by having the
system operate around a service time that will provide that end-to-end latency goal.
Thus, yref (k) of the concurrency controller should contain the service time it should
aim for, that is the tightest latency goal minus the wait time w(k) for that class. The
corresponding measured service time is put in y(k). This computation of yref (k) is
performed by the performance target optimizer and fed to this controller. The control
law is then used to compute the concurrency level in u(k). Note, that we do not need
to care about the other classes’ latency goals here, as they will be met by adjusting the
shares with the share controller.

The stability conditions are the same as for the share controller. Note that these two
stability proofs are only valid when the two controllers are applied to the scheduler

1 This basically means that new actuator settings have precedence over old actuator settings.
2 Queuing time plus processing time inside the service.
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1 sip = 0 ∀i ∈ classes, ∀p ∈ proxies
2 Ucurr

i = −∞ ∀i ∈ classes

3 while N
i=1 sip < 1 ∀p ∈ proxies

4 for all performance classes i and proxies p

5 find smallest integer dip > 0 for which Ui(X̂p(sip + dip/Ttot,p(k))) > Ucurr
i

6 if no such dip or dip + N
i=1 sip > 1

7 dip = 1
8 end for
9 find j and p that maximize Uj(X̂p(sjp + djp/Ttot,p(k)))/djp − Ucurr

j

10 sjp = sjp + djp/Ttot,p(k)

11 Ucurr
j = Uj(X̂p(sjp))

12 end while
13 yref,p(k) = X̂p(sp) ∀p ∈ proxies

Fig. 4. Pseudo-code of the performance target optimizer used to compute yref,p(k)

individually. It is a topic of future work to analyze the stability of the two loops together.
Currently, we make sure that the concurrency controller’s effect on the share controller’s
measurements are small by increasing Q in (1) for the concurrency controller, making
it less aggressive than the share controller.

3.4 Performance Target Optimizer

As noted in the beginning of Section 3, the utility functions we use to describe per-
formance goals and differentiation policies need to be translated into a setting of the
references (yref (k)) for the controllers at each time interval. The problem is to find the
share settings or resource partitioning that maximize the utility of the system given the
current service capacity. Fortunately, we can derive a function relating shares to utility,
as utility (U ) is a given function of performance and RLS estimates a model correlating
performance with shares inside the share controller. For notational convenience, we will
here denote that model from (2) as X̂p(s) where s is a vector of shares for the N classes
and p indicates what proxy this is from. We have so far only presented the solution for
one proxy, so this p can be ignored for now. But in the next section, we will present a
distributed solution that will use multiple proxies.

Throughput is linearly dependent on the shares, so this optimization problem can
be easily solved using linear algebra. But for latency, the model X̂p(s) has a nonlinear
dependency on the shares (in contrast to the latency inverse that was entered). Thus
we cannot solve this optimization problem using standard linear algebra. Instead, we
use a greedy optimization heuristic depicted in Figure 4 that works as follows. Each
performance class is initially given 0 in share (s) in line 1 and the current utility (U curr

i )
provided by class i is initialized to minus infinity in line 2. We then find the smallest
increase in share that will provide an increase in utility for each class in line 5. (The
granularity of share increases is set to the share that one request consumed on average
during the last interval, i.e. 1/Ttot,p(k).) The reason we do this is to deal with utility
functions that have sections that are flat (as in Figure 2 for latencies above 300 ms). If
there is no such share increase or this increase would be larger than giving that class
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the rest of the system capacity, the share increase is set to its minimal value in line 7.
In line 9, we then find the class that provides the largest increase in utility per share
by giving it a share corresponding to the share increase computed in line 5. This class
is then given this amount of extra share in line 10, and the process is repeated until
the sum of all shares given equals 1. Finally in line 13, we enter the computed shares
into the estimated model to compute the latency values to put into yref (k) for the share
controller. The concurrency controller is fed the strictest latency goal found in yref (k)
minus the queue wait time for that class. Note, that changing the reference values does
not affect the stability of the controllers, only the time it takes for them to reach the
desired goals.

3.5 Distributed Proxies

A solution with multiple distributed proxies can be employed in front of the service
when there are multiple entry points or when the request rate is so high that one proxy
cannot handle it. In this case, the controllers and the scheduler are run on each proxy us-
ing local information. However, the optimizer is only executed on one node using mea-
surements gathered from all the distributed proxies, thus it becomes a global optimizer
for all the proxies. The same algorithm as in Figure 4 is used, but now there are multiple
proxies so the algorithm will iterate over all proxies. That way, we now loop through
line 3 to 12 until we have used up all shares on all proxies. Once the algorithm termi-
nates, the individual references for each proxy are distributed to the local controllers
on each proxy. The amount of floating point numbers transmitted over the network per
sample period is (4N + 2N2)(P − 1), where N is the number of performance classes
and P is the number of proxies. The quadratic term stems from transferring the model
and the linear term from the measurements and results. The physical location of this
global optimizer is statically defined at start up.

4 Implementation and API of Proteus

Our implementation of the controllers, optimizer and scheduler is called Proteus. We
have implemented it as a library weighting in at slightly over 10,000 lines of C++. Pro-
teus exports the API tabulated in Table 1. It consists of two parts. The first part is used
to initialize the library and register and unregister performance classes and their goals.
The second part of the interface is related to the handling of application requests. When-
ever a request arrives at the proxy, the request is queued in the proxy and is registered
with prRequest(), which returns a unique handle for the request. Similarly, when a
reply to a request goes through the proxy, the reply is also registered with prReply()
using the handle of the corresponding request. Proteus specifies the next request to be
submitted to the backend service in either of two ways, depending on whether the proxy
is implemented as an event-driven or a multi-threaded program. Event-driven proxies
register a call-back function using prInit(). Whenever one of the Proteus functions
are called, Proteus may invoke the call-back with the handle of the next request to be
sent out. Threaded proxies, instead, may use a thread to call prDequeueRequest()
to obtain the handle of the next request to be sent to the service or return an error if
there is no request for delivery.
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Table 1. The API of Proteus

Function name Description

void prInit(cb1, cb2) Initializes Proteus and registers application callbacks for
sending the next request (for event-driven proxies) and
dropping requests.

ClassID prClassInit(PerfGoal) Registers a class and its performance goals. Returns a
unique ID for this class.

void Changes the performance goal of the class identified
prPerfGoal(ClassID, PerfGoal) by ClassID.

void prExecCtrl() To be called repeatedly by the proxy. Once every sample
interval, a call to this function will execute the controllers.

QoSReqID Register an incoming client request to belong to class
prRequest(AppReqID, ClassID) ClassID. AppReqID is the proxy’s request ID. Returns a

unique identifier for this request.
void Registers a reply with Proteus. The reply is uniquely

prReply(QoSReqID, AppReqID) identified by the <QoSReqID,AppReqID> tuple.
<QoSReqID,AppReqID> Synchronous call to dequeue the next request for

prDequeueRequest() submission to the system. QoSReqID is -1 if there is no
request to send. Used by threaded proxies.

void prRemoveRequest Explicitly remove a pending request from Proteus.
(QoSReqID, AppReqID)

The running time of Proteus is around 150 μs on our machines, a low overhead to
incur at every sample interval. The sample interval is 1 s which we found to work well
empirically. The overhead of Proteus incurred when registering requests and replies is
negligible.

5 Evaluation

In this section, we present our prototype implementation Proteus and experimental re-
sults showing that it can achieve the goals stated in the introduction.

5.1 Experimental Methodology

Our evaluation demonstrates the effectiveness of Proteus using two different network
services: a 3-tier e-commerce system and an NFS service. The 3-tier system consists
of a web server, two application servers and one database server. They are hosted on
separate server blades, each with two 1 GHz Pentium III processors, 2 GB of RAM,
one 46 GB 15 krpm SCSI Ultra160 disk, and two 100 Mbps Ethernet cards. The web
server is Apache version 2.0.48 with a BEA WebLogic plug-in. The application server
is BEA WebLogic 7.0 SP4 over Java SDK version 1.3.1 from Sun. The database client
and server are Oracle 9iR2. All three tiers run on Windows 2000 Server SP4. The site
hosted on the 3-tier system is the Java PetStore3.

3 http://java.sun.com/developer/releases/petstore/
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The workload applied to this system mimics real-world client behavior on shopping
sites. These clients log in, browse and search for products, put products in their carts,
and sometimes checkout the cart which gives rise to credit card verifications, adjustment
of inventory, etc. The response latencies vary between 10 ms and 700 ms for the various
operations. The workload also captures the corresponding time scales and probabilities
these occur with and is generated using httperf on a separate machine. Proteus has
been integrated into tinyproxy v1.6.3 that intercepts the traffic between the client
machine and the 3-tier system. Only 15 lines of code had to be added to tinyproxy to
use Proteus. For the experiments in the rest of this section, we generate 80 concurrent
client sessions and we consider 2 performance classes of 40 clients each, unless noted.

We generate three workload patterns in order to stress the system. Smooth keeps
the number of clients and their shopping behavior steady with a minimum of changes.
In Ramp, more clients are gradually added as in TPC-W. After 80 is reached, they grad-
ually start to check out more things which gives rise to even higher load on the system,
especially on the database tier. The third pattern, Step, makes the same changes as
ramp but all at once. This change is repeated in a square wave pattern with a change
occurring every 30 s. Note that it is not possible to perform this change instantaneously,
as clients must add products to their carts before they can check them out. Thus, the
step takes 3-4 s in practice.

Second, we use an NFS file service consisting of five blades with the same hardware
specification as the ones above. All blades run Linux 2.4.20. Two blades are used as
clients, two as servers and one as an NFS proxy. Both clients and servers use NFS v.3
with asynchronous writes. In order to stress the system, the clients make random reads
and writes to individual files on the NFS servers. The full data set is large enough that
it does not fit in the in-memory cache of the file server. The traffic between clients and
servers is intercepted by a user-space NFS v.3 proxy. Only 20 lines of code were added
to integrate Proteus into this proxy. There are 16 concurrent client threads generating
requests on each client node. Each node belong forms a different performance class.

5.2 Comparison Against Prior Art

First we will compare Proteus to prior art. We will only compare against non-intrusive
techniques as another non-intrusive technique [5] already showed it was comparable to
the best intrusive ones. Of the non-intrusive techniques, we did not consider techniques
that cannot provide performance isolation [7,9], nor do we think it is fair to compare
a technique [6,8] not designed for 3-tier systems or NFS servers. This leaves us with
Quorum [5] designed for Internet services. We implemented Quorum according to the
algorithmic pseudo code reported in their paper. Their scheduler and dropping module
was used instead of C-SFQ(D) and their controller replaced ours.

In order to make the comparison fair, we will only consider the case which Quorum
was designed for; a 3-tier system when there is a combined latency and throughput goal
per class and achievable goals. Quorum adjusts the concurrency dynamically based on
the latency goal, while the shares (called weights in Quorum) are static and set off-
line according to the ratio between the throughput goals. Class one (C1) has a latency
goal of 200 ms and a throughput goal of 60 req/s. Class two (C2) has a latency goal
of 5,000 ms (effectively best effort so that we can ignore it for the comparison) and a
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Fig. 5. A comparison against Quorum on the 3-tier system. C1 has a 200 ms latency goal and C2
has a best-effort goal and is not shown in the graphs. Quorum shows unstable behavior when the
workload is changing between 10 s and 60 s. As can be seen in the right graph, the stability of
Quorum is also dependent on the throughput goals used to statically set the shares.

throughput goal of 30 req/s. The static share ratio is then set to 60 : 30 = 2/1 in the
Quorum scheduler. The workload used is ramp as we want to evaluate how Quorum
deals with change.

The left graph in Figure 5 shows the provided latency over time for Quorum and for
Proteus. A latency of zero means that there were no requests at all during that interval.
From this figure we can see that Quorum oscillates widely and misses the latency target
during the period the ramp workload changes between 10 s and 50 s. Quorum exhibits
instabilities around 20, 30 and 50 s when the dropping module of Quorum drops all
requests from C1. Proteus with the same latency and throughput goals, on the other
hand, has no problem with the changing workload and varies smoothly slightly under
the latency target most of the time. After 60 s, when the workload and system is not
changing, Quorum and Proteus are comparable.

If we then change the throughput goals to 60:60 (a 1:1 share ratio) or 60:20 (a 3:1
share ratio) we expect Quorum to provide similar latency measurements as for the 60:30
case, as the throughput goals are still easily going to be met (the total capacity is around
150 req/s) and therefore have no impact on the system. But this is not the case as seen
in the right graph of Figure 5. Quorum oscillates widely when the share ratio is 3:1 and
shows complete starvation for 1:1 during the ramp up, then undershoots the goal by
a wide margin once the workload stabilizes. One of the reasons for this is that shares
have an impact on not only the throughput but also the request latencies as seen in Fig-
ure 2. Proteus, on the other hand, automatically adjusts the shares to produce the desired
performance goals. Proteus behaves the same in all these three cases as the references
produced by the optimizer are the same in all three cases, because the throughput goals
are always met. Clearly, the shares need to be set dynamically in response to both la-
tency and throughput goals and measurements, and not set statically according to the
throughput goals only. Moreover, if we would like to support flexible performance dif-
ferentiation policies and react to internal resource contentions as in Proteus, being able
to vary the shares is imperative.



36 M. Karlsson and C. Karamanolis

 0

 50

 100

 150

 200

 10  20  30  40  50  60  70  80  90  100

T
hr

ou
gh

pu
t (

re
q/

s)

Time (seconds)

Class 1
Class 2

Throughput target

 0

 50

 100

 150

 200

 20  40  60  80  100  120

Time (seconds)

Class 1
Class 2

Throughput target

smooth step

Fig. 6. Proteus on the 3-tier system with throughput goals. C2 has a best-effort goal.

5.3 3-Tier e-Commerce System

For the rest of the evaluation we will evaluate how well Proteus can achieve the ob-
jectives stated previously. That is, to be able to provide flexible performance goals and
differentiation policies, show that it works between systems without any system-specific
modifications or tuning, it is stable, and show that Proteus can successfully detect and
deal with workload and system changes as well as contention for unknown internal
service resources.

In this section, we will focus on the 3-tier system. We will start to show that Proteus
works for throughput goals with a strict prioritization between the classes. C1 has higher
priority than C2. The throughput target of C1 and C2 is given in the graphs and C2 gets
any spare capacity. In this case, the goal of C1 can be met for the workloads shown in
Figure 6. The throughput does vary a little around the performance target, because the
total throughput of the 3-tier system is not constant as was shown in Figure 2.

Figure 7 shows that we can also enforce latency goals. In these experiments, C1 and
C2 have the same latency goal, but C1 has higher priority. If it is not possible to meet
both class goals, then the latency goal of C1 is met at the expense of C2. To introduce
even more variation from the previous experiment, if both goals can be met, then any
remaining resources are shared fairly resulting in better latency for both classes. We can
see from the graphs that this indeed is the case for all three workloads: for smooth,
C1 gets a latency around its requested target value, while C2 gets only what is possible;
with stepwe can also see that when the capacity is high enough to satisfy both classes,
they equally share the excess capacity (with the exception of the initial start up period).

The previous experiments have only considered absolute performance goals with pri-
oritization. However, any other performance goal or performance differentiation policy
is possible as long as it can be described by utility functions. Figure 8 shows results for
proportional performance goals: in the left graph, throughput is shared 2/3 to C1 and 1/3
to C2; and in the right graph, C1 has to have half of C2’s latency. The ramp workload
is used for both experiments. We see that Proteus effectively also enforces proportional
performance goals. Note that C2’s latency varies more than C1’s. The reason is that the
higher the latency, the more sensitive it is to even slight throughput changes. When few
requests are let into the system from a class, admitting one more or less will have a
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Fig. 7. Proteus on the 3-tier system with latency goals. C1 has higher priority than C2.

 0

 20

 40

 60

 80

 100

 120

 140

 10  20  30  40  50  60  70  80  90  100

T
hr

ou
gh

pu
t (

re
q/

s)

Time (seconds)

Class 1
Class 2

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 10  20  30  40  50  60  70

La
te

nc
y 

(m
s)

Time (seconds)

Class 1
Class 2

Fig. 8. Demonstrating the enforcement of proportional performance goals in the 3-tier system
with ramp. On the left, C1 gets 2/3 of the throughput; and on the right, C1 has half the latency
of C2.

large impact on the average latency measured for that class. One the other hand, when
there are many requests from one class, one more or less makes little difference in the
measured latency.

To show that Proteus can handle more than two performance classes, we ran an ex-
periment with 4 classes. The results are shown in Figure 9. Each class has a throughput
goal of 70 req/s. Priorities are set as C1 > C2 > C3 > C4. We use the ramp workload
to show how Proteus reacts to changes. As specified, a class receives some throughput
only if there is spare capacity after the goals of higher priority classes have been met.
C4 is the first one to get throttled back to 0 req/s, followed by C3. Then C2 is scaled
back to around 45 req/s, while C1 receives its requested 70 req/s throughout the run.

5.4 A Shared NFS Service

To demonstrate that Proteus can be effectively used in different systems, we applied
the same library used for the 3-tier system to enforce performance differentiation in a
shared NFS service. The two services have workloads with different types of requests,
response latencies that are orders of magnitude different, and internal structures that are
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Fig. 9. Showing that Proteus can handle more than 2 performance classes. Here is an example
with 4 classes with strict priority amongst them.
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Fig. 10. Using Proteus to meet performance goals in an NFS server. Throughput goals are shown
on the left and latency goals to the right.

representative of different types of resource contentions. For example, the application
server in the 3-tier system is mostly CPU-bound, while the NFS servers are disk-bound.

Figure 10 demonstrates performance differentiation in the NFS service. Class 1 is
the high priority one, while class 2 is best effort. Note, that the performance of the NFS
system varies more than the performance of the 3-tier system. The dip in throughput
right before 90 s is due to the kswapd daemon in Linux being invoked to write pages
to disk. During those 1-2 s the throughput of the NFS server is close to zero.

To show that Proteus can successfully detect and deal with changing internal bot-
tleneck resources due to workload variations and/or resource failures, we conducted an
experiment where the two classes are accessing different NFS servers during the first
30 s. After that, class 2 switches to accessing the same server as class 1. In this ex-
periment we mounted the NFS partitions in synchronous mode to be able to load the
servers more, hence the lower performance numbers. The results of this experiment are
shown in Figure 11 for throughput goals. Before time 30 s, both classes are getting
their desired 150 req/s as they are accessing disjoint servers. But at time 30 s, they start
to share the same server, which cannot meet the goals of both workloads. This is de-
tected by the model estimator in the share controller, and the model starts to show that
the performance of the two classes is now correlated. This is taken into account by the
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Fig. 11. Proteus can adapt to dynamic resource contention inside the system. At time 30 s, Class
2 switches from its own NFS server to accessing the same server as Class 1.

optimizer that adjusts the performance target of the low priority C2 downwards so that
the target of the high priority C1 can be met. This takes Proteus only a few seconds.

6 Related Work

During the last few years, there has been a surge of research on automatic performance
management of systems. For on-line management problems, most existing solutions
consider some form of feedback approach. Many of them use classical non-adaptive
controllers [4,15,16,17,18], which for most practical purposes are not adequate in com-
puter systems due to their ever changing characteristics [7,8,19]. Some approaches have
addressed this problem by proposing some form of adaptive controller designed in an
ad-hoc manner [6,7,9,20,21,22]. Given that the analysis of the controller is based on
empirical data, it is unknown whether the resulting controller is stable and performs
well beyond the generally narrow experimental evaluation performed. Moreover, they
are designed for a specific service and many require modifications to the target service.

To the best of our knowledge, there are six published papers that use adaptive con-
trollers designed using a formal control-theoretic approach to achieve performance
goals in computer systems. All of them are intrusive, target a specific system, cannot
detect contention between performance classes, and have a static performance differ-
entiation policy, if any at all. Proteus addresses all of these problems. Lu et al. [23]
constructed an STR to satisfy absolute latency goals in web servers by partitioning the
cache space. Wu et al. [24] used a dual STR to control the hit ratio of a web cache by
allocating cache space to different users. Karlsson et al. [8] used an STR to achieve
latency differentiation in a clustered file-system. Zhu et al. [25] use a adaptive pole
placement controller to set the CPU resources given to a performance class in a web
server, while Wei et al. [19] use an adaptive fuzzy controller to guarantee latency goals
in web servers. Finally, Lu et al. [26] used another type of adaptive controller called
model-based predictive controller to satisfy end-to-end latency bounds in distributed
real-time systems. The controller we use here is of the same general type (STR) as the
first three approaches, though they only design single input and single output controllers
and do not use optimal control.
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7 Conclusions

In this paper, we proposed a solution for performance management that maximizes the
yield of the performance contracts given the available physical resources, while it does
not require any modifications to the software or hardware of the computing services or
the clients. Our approach achieves this by manipulating the flow of requests into the
service by using one or more proxies between the clients and the service. In contrast
to prior art, our solution is stable, runs on different services and can enforce flexible
performance goals.

We implemented a prototype of our design called Proteus, that was evaluated on two
systems, a 3-tier e-commerce system and an NFS file service. We show that existing
proxies for the two respective protocols (HTTP and NFS RPC) can easily be modified
to use Proteus to schedule their requests. Once the modified proxies have been deployed,
our approach is transparent to clients and services. Proteus ensures that both services
effectively conform to the SLAs of multiple competing workloads and enforces flexible
performance specifications. It adapts within a few seconds to system and workload
dynamics, is more stable than prior art, and automatically detects contention on internal
service resources to improve overall resource utilization. We also show that it can be
used on both systems without any tuning between them.
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Abstract. Next-generation middleware must support complex compo-
sitions that involve dependencies between multiple components residing
in different contexts and locations in the network.

In this paper we present DyMAC, an aspect-oriented middleware plat-
form that offers an aspect-component model to support such complex
distributed compositions by means of advanced remote pointcuts, trans-
parent remote advice and distributed instantiation scopes for aspects.
The remote pointcuts can evaluate on calls and executions of remote
method invocations and can also evaluate on the distributed context.
The remote advice can be executed transparently in a remote environ-
ment while still respecting the full semantics of existing types of advice,
including around advice. The component model unifies aspects and com-
ponents into one entity with one interaction standard.

To our knowledge, DyMAC middleware is the first AO middleware
platform that distributes the concepts of aspect-oriented composition
completely and transparently.

1 Introduction

The environments in which distributed software applications must execute have
become very dynamic and heterogeneous. As a result, software must be dynam-
ically composed and even be adapted at runtime. This is for instance the case
in ubiquitous computing environments. Typical enterprise applications expose
similar needs.

Distributed applications are typically built on middleware, the software that
sits between lower level system software (such as the OS) and the distributed pro-
gramming platform. A dominant trend in (typical) enterprise middleware is the
fact that specialized servers combine many middleware functions with specific
component frameworks (e.g. J2EE, .NET etc.). The value of such a middleware
component framework is twofold [1,2]: first, a specific component model enables
the construction of applications from independently developed third party com-
ponents - at least in principle - and second, built-in services facilitate covering
non-functional requirements of a distributed application. The presence of built-
in (container managed) services is often the basis for acceptance of a specific
middleware platform. However, this critical success factor is at the same time
the basis for the limitations of such a middleware platform. Built-in services sup-
port modularized, declarative composition of concerns of a cross-cutting nature:
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these are concerns that cannot easily be addressed without creating code that is
scattered over the application and middleware artifacts. However, these built-in
services are hard to modify or customize. Solutions for these shortcomings have
been proposed in [3,13]. But, the services also cannot be used in complex com-
positions. This observation characterizes the limited flexibility that is supported
by state-of-the-art middleware: more complex compositions must be enabled.
The types of compositions that should be supported are very broad. Many of
these compositions involve dependencies between multiple components residing
in different contexts and locations in the network. This is extremely hard if one
has to rely purely on state-of-the-art software development technologies - i.e.
object-oriented and component based software engineering.

To address this problem, aspect-oriented software development (AOSD[7]) of-
ten has been put forward as a possible solution. AOSD addresses this shortcom-
ing by focusing on the systematic identification, modularization, representation
and composition of (often crosscutting) concerns or requirements throughout
the entire software development process. The core concept in AOSD is an as-
pect [4,5]: a coherent entity that addresses one specific concern and that has
the properties of a module that can be changed independently of other modules.
An aspect defines behaviour that can be executed (so called advice) and de-
fines composition logic to describe complex and dynamic dependencies between
this behaviour and the rest of the software system. This composition logic is
expressed using a joinpoint model. A common definition of a joinpoint refers to
well-defined places in the structure or execution flow of a program [5,7]. In any
case, joinpoints represent dynamic, runtime conditions that arise during program
execution. The occurrence of such a condition is an event that can trigger the
execution of aspect behaviour (advice). A set of joinpoints can typically be spec-
ified with pointcut designators that address and describe the kind and context
of the joinpoints [7]. By the kind of a joinpoint we mean for instance a method
call or a field access, etc. By the context we refer to additional information that
can be made available to constrain the condition, such as the method signature,
type and identity of the caller or callee of a method, further credentials and
properties of the caller etc. The statically decidable conditions of a pointcut can
be evaluated at compiletime or loadtime. The dynamic conditions are evaluated
at runtime.

In state-of-the-art AOP, context information is essentially limited to local
information, managed in a single VM. In a realistic distributed application how-
ever, joinpoints must refer to context information that is inherently distributed.
Relative to state-of-the-art AOP, distributed joinpoints are advanced in that they
transparently distribute the basic concept of a joinpoint: they refer to sophisti-
cated conditions in distributed systems that are required to express composition
in a distributed application. In general, the context information that is needed
must refer to (potentially multiple) components that are not local, and possibly
to distributed infrastructure. In particular, to express these runtime conditions
and express compositions, we need support for aspects with three key features.
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1. We need remote pointcuts, that can evaluate on calls and executions of
remote method invocations and also can evaluate on distributed context.

2. Remote advice is required, which can be transparently executed in a remote
environment (different from the pointcut evaluation), while still respecting
the full semantics of existing types of advice, including around advice1.

3. To be part of a mature middleware concept, aspects need component seman-
tics, including clearly defined interfaces, supporting third party composition
and interaction with other aspects.

Many initiatives in the domain of aspect-oriented middleware (AO middleware)
have started to support creation, deployment and execution of distributed
aspects for a distributed environment [9,15,18,17]. However, so far none of these
research results have defined and illustrated a complete solution to the above
mentioned challenges. In this paper, we present DyMAC, a middleware ar-
chitecture that offers true and transparent distributed composition of aspect-
components. Its component and composition model offers a solution for the
three key challenges.

The rest of this paper is structured as follows. In section 2 we refine the prob-
lem statement and motivate why true and transparent distributed composition of
aspect-components will be an important feature of next-generation middleware.
Section 3 describes the model, architecture and implementation of our solution,
DyMAC middleware. Section 4 evaluates our prototype. We discuss related work
in section 5 and we conclude in section 6.

2 Problem Refinement

We use an example of a banking application that manages checking accounts
and offers support to perform transactions on the checking accounts. The core
business component is BasicBanking, which is a component offering operations
to create new checking accounts, and execute transactions: withdrawals, deposits
and transfers. This component is located at the application server. The employees
at the branch offices use the EmployeeClient component at their workstations to
handle the requests of the customers to create a new checking account or perform
a transaction. The clients send the requested operations to the BasicBanking
service at the application server. We have depicted the deployment architecture
of the application in Figure 1. It also describes the set of additional middleware
services that are part of the application:

1. A client-side, local component asking the employees for credentials, before
the EmployeeClient component starts up.

2. An authentication service to authenticate the credentials of the employees
and add an authentication token to their execution context. This authen-
tication service is located at the central authentication server and is called
after the client has provided his credentials.

1 Around advice replaces the advised method invocation.
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Fig. 1. The deployment architecture of the banking application

3. An authorization service at a central authorization server that verifies the
application-level rights associated with the authenticated user. Before the
execution of a remote method invocation at the BasicBanking service, this
authorization server is called.

4. A load-balancing and fail-over service that delegates the calls of the clients to
one of the application servers, based on the load or availability of the servers.
This middleware service is located at a dedicated server (called reverse proxy-
server).

5. A secure logging component at the central audit server that keeps track of
all authentication and authorization attempts and the results.

The composition policies of these middleware services should solve the problem
of crosscutting calls to the services in the core business components, and should
allow a clean separation of concerns. Therefore the component and composition
model needs to support the three key features from section 1. We motivate and
refine the three key features with illustrations from the example.

Advanced remote pointcuts

1. Remote pointcuts that are able to refer to joinpoints before and after call-
ing and executing remote method invocations in a distributed system. This
notion extends the kind of the joinpoint for distributed systems. E.g. for the
load balancing service: whenever a client machine calls the BasicBanking
service, before that call load balancing advice should be called.

2. Remote pointcuts that can evaluate over the contextual properties about the
components involved: the calling and receiving component name, the inter-
face of the receiving component or the dependency name 2 of the sending
component. E.g. for the authorization service: it has to be called each time
a method is executed at the BasicBanking service. But this service is dupli-
cated for load balancing as different components and has different names. By

2 A dependency defines a required interface to be fulfilled by another component.
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using the interface of the component as contextual property of the receiving
component, all duplicated BasicBanking components can be captured in one
pointcut.

3. Remote pointcuts that allow to evaluate over the contextual properties about
the distributed location of sending an receiving component. E.g. for the load
balancing service: the composition policy above uses the contextual property
hostgroup3 of the calling component. This scales better when other client-
side components are using the BasicBanking service.

Transparent remote advice with full semantics

4. Transparent remote execution of advices, based on the deployment speci-
fication of an advising component. E.g. for the authorization service. The
deployment location of that service should be transparent when defining the
composition.

5. Remote before, after and around advice with full remote semantics. This
allows to capture remote behaviour that is associated with calling and exe-
cuting remote invocations.

• E.g. for the validation at the authentication server of the given creden-
tials, remote after advice is needed after the client has provided the
credentials.

• E.g. for the evaluation of the load balancing policy, remote around advice
is needed: based on the load or availability of the application server it
can replace the original call with a call to a backup server or it can just
let the original call continue.

Unified aspect-component model

6. Unification of the entities. Components are aspects and aspects are com-
ponents. E.g. the logger entity to log executing messages. This should be a
reusable component, offering support for aspect-oriented composition in its
interface. And it should be reusable and deployable in third party composi-
tions and deployment infrastructures.

7. Unification of interaction: advices and methods are considered normal re-
mote method invocations and are both subject to aspect-oriented composi-
tion. E.g. the remote authentication advice for validating the credentials is
remotely advised by the logging component at the audit server.

State-of-the-art aspect-oriented middleware fails to define the complete range of
compositions as sketched above. For instance, the contextual information pro-
vided for pointcut expressions is too limited and remote around advice with
full semantics is not supported. We further discuss the shortcomings and the
consequences in the related work section.

3 A name for a group of hosts in the application, e.g. workstations.
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3 DyMAC Middleware

In this section we discuss the DyMAC middleware platform. First, we briefly
describe the basic concepts of the component model. Second, we explain the
support for aspect-oriented composition in a distributed environment. Third, we
explain how the middleware supports the concepts of the component and compo-
sition model. We explain the basic architecture of the middleware and describe
the important subsystems that support distributed joinpoints, remote pointcuts
and the coordination of remote advices. We also motivate the architectural deci-
sions in the middleware that manage performance overhead. Fourth, we present
a brief description of the .NET implementation of DyMAC.

The component model has been inspired by two evolutions: the first one is
the evolution to distributed object-based component technology, such as EJB [8].
The second one is the evolution in AOSD towards the concept of an aspect with
component semantics[10,11,15,14], and even towards a unified concept of aspect
and component [19]. A pure object-based approach to the latter is currently
supported for single-process applications [23]. Aspects are reduced to normal
Java classes and advices are reduced to normal object methods, having a special
signature. The resulting programming model offers one entity with one inter-
action standard. The aspect-oriented composition itself is defined in a separate
specification file. These specifications define a pointcut, and which class and ad-
vice to bind. This way the advising entities become more reusable in third party
compositions, an essential property for component based software development.
DyMAC leverages the unified, object-based approach to aspects to the level of
distributed object-based component models.

3.1 DyMAC’s Basic Component Model

DyMAC components are object-based entities that separate interfaces and im-
plementation. DyMAC components declare their required interfaces by means
of dependencies. Components are composed in an application and are deployed
on a distributed infrastructure. We explain these different concepts.

Components have two interfaces: a create-interface that specifies how to in-
stantiate a component, and an instance-interface that specifies which methods
are offered by a component instance. We illustrate this for the BasicBanking
component in listing 1.1.4

The implementation of the component implements the members of the two
interfaces as follows. First, it implements a constructor for each create-method
specified in the create-interface. Second, it explicitly implements the instance
interface. Client components implement the predefined interface IExecutable,
which defines a main method, as an entry point for execution. Each component
implementation also inherits from ComponentInstance, which binds a component
to the DyMAC framework. Listing 1.2 illustrates the implementation of the
BasicBanking component and the EmployeeClient component. It also illustrates

4 The examples are implemented on the DyMAC.NET prototype and use plain C#.
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Listing 1.1. BasicBanking interfaces

interface IBasicBankingCreate {
IBasicBanking Create ( ) ; }

interface IBasicBanking {
void CreateAccount ( s t r i n g id ) ;
void WithDraw ( s t r i n g account , double amount ) ;
void Deposit ( s t r i n g account , double amount ) ;
void Transf e r ( s t r i n g from , s t r i n g to , double amount , s t r i n g msg ) ; }

Listing 1.2. Component implementations

class BasicBankingImpl : IBasicBanking , ComponentInstance {
public BasicBanking (){}
public void WithDraw ( s t r i n g account , double amount ) { . . . }
. . . }

class EmployeeClientImpl : IExecutable , ComponentInstance{
public void Main( s t r i n g [ ] args ){

. . .
// create an instance
IBasicBanking ibb = Factory . Create ( ”mybanking” ) as IBasicBanking ;
. . .
ibb . WithDraw ( accountid , amount ) ; // c a l l an instance method

}}

how to create instances and how to do remote method invocations using the
instance interface.

The component descriptor defines the component name, the provided inter-
faces, the implementation file and the dependencies of the component. A de-
pendency is defined by a dependency name and the interfaces that are expected
of the component that will be bound to the dependency. This is similar to the
approach that is used in the EJB component model.

The application descriptor first defines a name for the distributed application,
then it defines the set of components that is used, by referring to their descriptor.
Then the compositions of the components are defined. These compositions can be
normal compositions between dependencies and components, as well as aspect-
oriented compositions.

Deployment descriptor. A distributed DyMAC application consists of a set of
components that are deployed across a distributed infrastructure. This distrib-
uted infrastructure has a hierarchical structure: a hostgroup contains multiple
hosts, (E.g. the client workstations), a host can contain multiple framework
instances, which are processes. A framework instance can host multiple applica-
tions, each in an application domain. Multiple application domains are typically
used on web servers and application servers to host multiple applications in one
process. An application domain is a contextual unit of isolation for an applica-
tion. The isolation guarantees that an application can be independently stopped.
Furthermore an application cannot directly access code or resources in another
application. A fault in an application cannot affect other applications. Processes
with multiple application domains are only used for server processes; for the
client tier of distributed applications, each application starts a different process
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at the client, containing one application domain with the client tier components.
For one distributed application, the deployment infrastructure consists of a set
of application domains that are located on multiple processes and hosts. The
deployment descriptor of an application defines those deployment locations of
the components. For a remotely accessible component, this location is unique in
the infrastructure and is defined by the name of a host, framework instance and
application domain. A component can also be deployed as a local component,
then it is deployed in every application domain of the distributed application.
When components are deployed locally, then an instantiation call always creates
a local instance of the component.

3.2 Support for Aspect-Oriented Composition

In DyMAC, aspect-oriented compositions are defined in the application descrip-
tor. They consist of two main parts.

1. The component providing the aspect behaviour and its instantiation scope.
2. A set of bindings in which each binding defines a pointcut, refers to an advice-

method of the advising component, and specifies an advice type (before, after
or around).

We first explain the pointcut expressions, then we explain advice and the instan-
tiation scopes of an advising component. For each concept, we emphasize how
it supports AO composition in a distributed environment. Finally we illustrate
AO compositions in DyMAC by means of the example from section 2.

Pointcut expressions. Pointcuts are logical expressions that evaluate over the kind
and context properties of the joinpoints. The kind of the joinpoint can be re-
stricted to calling and executing remote method invocations. The pointcut ex-
pressions to support that are a call and execution pointcut. Pointcuts can further
evaluate over two sets of contextual properties. First, the component-related prop-
erties of the joinpoint model: the message signature, the dependency name of the
sending component, the interface of the receiving component, and the names of the
sending and receiving component and the name of the distributed application they
belong to. Second, the infrastructure-related properties of the joinpoint model: the
host names of sending and receiving component, their hostgroups, their framework
and the application domain they belong to. If pointcuts do not specify a value for
a certain property, it has the default value all. This breakdown of the contextual
properties implies that pointcuts can be remote in an implicit and explicit way.
Pointcuts evaluating on the component-related contextual properties only, are im-
plicit remote pointcuts. They allow to refer to distributed components, without
being aware (containing no information) of their distributed location. Notice that
in this way the concept of a pointcut is transparently remote. Pointcuts that eval-
uate on the infrastructure-related contextual properties are explicitly aware of re-
mote locations of components in the infrastructure. But, even with explicit remote
pointcuts, AO compositions in applications can be made reusable in third party
deployment scenarios by means of hostgroups. These are deployment-independent
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groups of hosts, defined by the application. The deployment descriptor defines
which hosts belong to the groups.

Advice. First we describe briefly the different types of advice that are supported
in DyMAC. Second we describe the definition of advice methods in the interfaces
of components. Third, we explain the implementation of advice and the joinpoint
API. Last, we discuss the execution semantics of advice.

Types of advice. In DyMAC, three types of advice are supported: before, after
and around. Before and after advices are respectively called after and before the
call or execution of a remote method invocation. Around advice replaces the
actual invocation it advises, but a proceed operation can be called in the advice
to continue with the original remote method invocation. In case multiple advices
have to be called on a certain joinpoint, the proceed call continues with the next
advice in the advice chain. In case the advice is terminal in the chain, the call
or execution of the original method invocation continues. After the execution of
the advices later in the chain, the control flow returns to the rest of the around
advice where the proceed was called.

Specifying Advice Methods. Methods, defined in the interface of a component,
that are used as advice in an aspect-oriented composition, need to have a special
signature. The advice can also be annotated with the kind of the joinpoint that
the advice supports, requires or prohibits to be composed with. The possible
advice kinds are BeforeCall, AfterCall, AroundCall, BeforeExection, AfterExe-
cution and AroundExecution. Multiple prohibits and supports annotations can
be defined. Only one requires annotation can be defined. These annotations
are part of the interface (and thus the contract of the component [1]) because
they express explicit requirements of the component when composed with other
components. These need to be fulfilled to guarantee correct behaviour of the
component. We specify the log method of the secure logger as an example. It
only supports to be composed after an execution or call, because it needs the
return message to check for exceptions.

[ Supports (Kind . Af te rExecut ion ) ]
[ Supports (Kind . A f t e rCa l l ) ]
void Log ( RuntimeJoinPoint r j p ) ;

Advice implementation and the joinpoint API. The implementation of a compo-
nent implements the behaviour of the advice methods specified in the interface.
In this implementation the joinpoint API can be used to reflect on the current
joinpoint. In DyMAC the current joinpoint is accessed using the RuntimeJoin-
Point parameter of the advice. It contains information about the kind and con-
text of the joinpoint. The joinpoint API contains contextual properties about the
remote method invocation that is being advised and the calling and executing
component instance of that invocation. Component properties like component
name, interface and dependency names are read only. Infrastructure properties
are read only too. Arguments of the method invocation can be altered. In case
the joinpoint’s kind is after a call or execution, the return message can also be
inspected and altered. The joinpoint API also contains the proxies to the sending
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and receiving component instance. Remote method invocations can be called on
those remote instances out of the advices. This can be required to pull state
of the component instances, that is needed in the advice, for example to evalu-
ate an authorization policy using application-level domain knowledge. Another
advantage of those proxies is that additional application-level behaviour can be
called out of the advice.
Execution semantics of advice. Advice is considered a normal remote method
invocation when it is called from the joinpoint context and executed at the re-
ceiving component. It is advisable like any other method invocation. The sending
component of an advice is the component instance in whose context the advised
joinpoint is situated. In case of a call, the sending component instance of the
advice is the sending component of the invocation that currently is being ad-
vised. In case of an execution, the sending component instance of the advice is
the receiving component of the invocation that currently is being advised.

Defining Distributed Instantiation Scopes. Instances of advising components are
created implicitly. Aspect scopes [5,7] define the creation moment and usage
scope of the instance. Typical instantiation scopes in single-process AOP systems
are: per joinpoint, per class, per instance, per thread, per VM. The per instance
instantiation scope, for example, means that there is one instance of the advising
aspect for each object instance that is advised. For every new object a new aspect
instance is created. That instance is reused for all advised method invocations
on the advised object. DyMAC supports distributed instantiation scopes for
components that are used to remotely advise in a distributed system, and thus
includes scopes beyond process boundaries.

– Singleton : one instance in the distributed system.
– Per hostgroup : one instance per group of hosts.
– Per host : one instance per host.
– Per application domain : one instance per application domain.
– Per application : one instance per distributed application
– Per component type : one instance per component type in the distributed

system
– Per component instance : one instance per component instance in the dis-

tributed system
– Per logical thread : one instance per logical thread (or distributed thread),

which is used for remote control flows.

Example. We define the AO compositions of the load balancer and the secure
logger in detail. They illustrate true remote around advice and after advice,
but also the supported kinds of pointcuts and their evaluation on contextual
properties. The load balancing composition in listing 1.3 expresses first that
the LoadBalancing component is used as a singleton for this composition. The
pointcut refers to all calls from the workstations hostgroup to the components
with the IBasicBanking interface. They are advised by the LoadBalancer using
the method Balance as around advice. Based on load and availability of the
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application servers, the load balancer decides to proceed with the message or it
calls one of the backup servers itself, thus replacing the original call of the client.
We assume that the BasicBanking service is stateless, and therefore, all remote
invocations to the instances can be redirected to another instance on another
server. The location of the LoadBalancer is transparent in this composition. It
is defined in a separate deployment descriptor.

The composition of the SecureLogger in listing 1.4 specifies that advice log is
called after each execution on the authentication server. This log method uses
the joinpoint API to check the return message. If it contains an exception, an
authentication failure is logged with the contextual properties of the caller in
the joinpoint. The binding with the authorization server is similar.

The concrete syntax of the application descriptor is XML based in the .NET
implementation of DyMAC, but for readability and conciseness we use the Java
configuration file syntax. The structure or abstract syntax of the composition is
the same in both notations.

Listing 1.3. LoadBalancer

ao−compos i t i on{
AdvisingComponent : LoadBalancer ;
Scope : S i ng l e t on ;
Binding{
Pointcut {
Kind : c a l l ;
MethodMessage : ∗ ∗ ( . . ) ;
Ca l l e r {
Hostgroup : workstat ions ;}

Ca l l e e{
I n t e r f a c e : IBasicBanking ;}}

Advice{
Kind : around ;
MethodMessage : Balance ;

}}
}

Listing 1.4. SecureLogger

ao−compos i t i on{
AdvisingComponent : SecureLogger ;
Scope : S i ng l e t on ;
Binding {
Pointcut {
Kind : execut ion ;
MethodMessage : ∗ ∗ ( . . ) ;
Ca l l e e{
Host : Authent i cat ionServer ;}}

Advice{
Kind : a f t e r ;
MethodMessage : Log ;

}}
Binding {

// au thor i za t ion logg ing
}}

3.3 The Middleware Architecture

In this description of the middleware architecture we first describe briefly the top-
level global architecture and its distributed deployment on the network. Then we
focus on the essential subsystems that support the key features of the component
and composition model: the aspectbinder and interception core that process the
remote pointcuts at loadtime and at runtime, the distributed joinpoint archi-
tecture that supports advanced remote pointcuts with acceptable performance
overhead, and the advice coordination infrastructure supporting multi-threaded,
remote around-advices. In addition we discuss instance management, especially
the component factory and instance registry for distributed instantiation scopes
of advising components.

The top-level architecture. Each DyMAC framework can host multiple appli-
cation domains for different distributed DyMAC applications. The framework
middleware offers a remote interface framework facade to deploy, startup, stop
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Fig. 2. DyMAC deployment view

and undeploy applications on the framework. The deployer distributes the ap-
plication binaries and descriptors to the framework middleware to store them on
the application repository. Then the distributed application can start up. The
framework middleware first instantiates an application domain and loads the ap-
plication middleware into it. The application middleware loads and manages the
different components that are deployed in its application domain. A deployment
scenario for the framework middleware, application domains, application mid-
dleware and some application components is depicted in Figure 2 . We now focus
on the different subsystems of the middleware. An overview of these subsystems
is depicted in Figure 3. The following subsystems are involved in the load-
ing process. First the application descriptor is handled by the ApplicationParser
and an ApplicationSpec model is built. After parsing successfully, the application
domain loads the binaries and the ApplicationVerifier checks the Application-
Spec model to verify if it conforms to the component model, and whether all
binaries referenced are loaded. If the ApplicationSpec is sound, the application
builder builds an application metamodel (ApplicationType). This model contains
a component type for each component spec in the application spec model. Each
component type contains a list of dependencies with a list of method definitions.
The component type also contains a list of provided method definitions. In this
step of the loading process all method definitions have an empty advice chain.
The AspectBinder then handles the bindings defined in the AO compositions.

The AspectBinder. We first explain the common approach for call-pointcuts as
well as execution-pointcuts in the bindings. Then we refine the explanation for
each kind of pointcut. For each binding, the properties of the pointcut that are
known at loadtime are evaluated. If the loadtime known properties of a method
definition match, an advice thunk is inserted into the advice chain of the method.
Advice thunks define a set of properties to evaluate at runtime (the pointcut
residue[6]) and an advice method to be called when the runtime properties
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Fig. 3. DyMAC subsystem view

evaluate to true. In case of an execution pointcut, the method signature and
the properties of the callee in the pointcut are evaluated at loadtime. The prop-
erties of the caller can only be evaluated at runtime when a method message
arrives at the component. In case of a call pointcut, the method signature and the
properties of the caller in the pointcut are evaluated at loadtime. The properties
of the callee are evaluated at runtime when the message is sent to the compo-
nent instance that is bound to the dependency. This binding can be different
at runtime because of possible runtime changes to the component satisfying the
dependency, such as its location.

Once the application is running, the interception core processes the remote
invocations between components. This interception core has two important ser-
vices. The first one is the distributed joinpoint infrastructure, that manages the
runtime representations of distributed joinpoints. The second service is the re-
mote advice coordinator. This service selects and evaluates the advice thunks
for a joinpoint, iterates the resulting advices and handles the execution of them.

The distributed joinpoint infrastructure. Joinpoints in DyMAC contain runtime
information about calling or executing method invocations between component
instances in the distributed infrastructure. Four different kinds of joinpoints are
distinguished at runtime : before a call, before an execution, after an execution
and after a call. The distributed joinpoint infrastructure creates a runtime rep-
resentation of these joinpoints, that localizes all information that is needed to
select and evaluate the advice thunk.

Before a remote invocation is called a before-call joinpoint is constructed using
the following information: (1) the contextual properties of the sending compo-
nent, which are locally stored in the component type model, and (2) the contex-
tual properties of the receiving component, stored in the proxy to the receiving
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component instance. The properties of the sending component are added to the
call context of the method message. The call context containing the caller prop-
erties is serialized as a piggy back on the remote invocation. Before a remote
invocation is executed at the destination component, a before-execution joinpoint
is created. The call context of the message is deserialized and the caller’s con-
textual properties are added to the execution-joinpoint. The callee’s contextual
properties are stored local in the typemodel of the receiving application middle-
ware platform and are added to the joinpoint After the execution the kind of the
before-execution joinpoint is changed to after-execution, and the return message
is added to the joinpoint. After the call, the call-joinpoint’s kind is changed to
after-call and the received return message is added to the joinpoint.

Architectural decisions about the management of the contextual properties
are incorporated to avoid chattiness. Chattiness could have occurred when the
information that is remote to the location of a joinpoint is pulled from the remote
host by need. This could have occurred during call-joinpoint evaluation, when
information about the callee is needed and during execution-joinpoint evalua-
tion when information is needed about the caller. It could have occurred when
contextual information about caller and callee is accessed using the joinpoint
API at the execution location of the remote advice.

Therefore, when a component is instantiated, its contextual properties are stored
in its proxy. Every remote client of the component receives the contextual prop-
erties along with the proxy. This does involve an initial transport overhead when
the proxy is created, but the properties of the callee are always local for the call-
joinpoint. To achieve locality of the caller-properties for an execution-joinpoint,
the properties of the caller are added as a piggy back on the remote message to the
callee. This omits a call-back of the callee to the caller to query contextual infor-
mation during runtime evaluation. When the remote advice methods access the
contextual properties of the joinpoint parameter, that information is local. The
joinpoint object is a composite value object, and therefor a complete local copy is
available in the execution context of remote advice methods.

The remote advice coordination infrastructure. The interception core of DyMAC
coordinates remote advice with the advice handler. The advice handler of DyMAC
is instantiated when advice needs to be executed for a certain joinpoint. The list of
advices matching the joinpoint is handed over to the new advice handler instance.
In case the advice chain contains a remote around advice, the advice coordinator
is a remotely accessible instance. This remote access is necessary to give back the
control flow in case a proceed is called in the remote around advice. In case the
advice bindings do not contain remote around advices, the advice handler instance
is a local object. This avoids expensive instantiation of a remotely accessible advice
handler. In case the advice is local around advice, the proceed call to the advice
handler is also local, and no remote advice handler is needed. In case the advice is
remote before advice or remote after advice, the control flow returns to the local
advice handler automatically after the execution of advice. We show the message
flow for the execution of the withdrawoperation in figure 4. Only the aroundadvice
of the load balancer and the AdviceHandler at the client are illustrated.



56 B. Lagaisse and W. Joosen

Fig. 4. Remote AdviceHandler for Remote Around Advice

Component Factory. Instantiation of components is supported by the DyMAC
factory. This service provides a create-operation with as first argument a de-
pendency name and then a variable number of arguments. When the create-
operation is called, the factory looks up the dependency name, binds a compo-
nent to it and creates an instance of the component, using the appropriate con-
structor in the implementation. This instance can be remote, depending on the
deployment location of the component. The remote interface of the application
middleware containing the component is called to create the remote instance.
Distributed instance registry. The instance of an advising component is implicitly
created when it is needed in an AO composition. It is registered in the aspect
registry at the deployment location of the component. If a new instantiation
request arrives at the instance registry, the registry checks if there is already
an instance bound to the requested instantiation context. This can be deducted
from the caller properties that are a piggyback on the instantiation call. If such
an instance exists, a proxy to the existing instance is returned to the requesting
advice binding.

The application middleware of an application domain has a local cache of
the aspect registry. It contains the proxies to the remote instances that are re-
lated to the application domain. This avoids expensive remote lookups before
advice is executed, and also reduces chattiness. Concretely, the application mid-
dleware has a hash-based cache structure that is divided into substructures for
the different instantiation scopes : group, host, framework, application domain,
distributed application, component type and component instance.

For the logical thread instantiation scope, DyMAC supports another opti-
mization for the distribution of the instance proxy along the distributed call
flow. The proxy is piggy backed with a method message whenever the call flow
is transferred to the next application middleware instance. This again avoids
a lot of chattiness. Chattiness could have occurred due to lookups for the re-
mote component instance handling the advice. In fact, these lookups would be
performed at every application domain.

3.4 Prototype Implementation

The DyMAC middleware platform has been prototyped on .NET 2.0. It is imple-
mented as a framework and does not involve any language extension. Component
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interfaces and implementation can be defined in any CTS/CLS compliant lan-
guage. Remote method invocations are normal method calls and do not involve
any meta object protocol as in some other AO middleware approaches [15]. This
implies that components and their interactions are statically verified by a pro-
duction .NET compiler.

The InterceptionCore in the middleware is built on the Context Bound Object
technology to intercept remote messages. This interception happens in the .NET
CLR. The CLR then activates the DyMAC message sink of the InterceptionCore,
which creates a runtime joinpoint and starts the DyMAC AdviceCombiner. This
way of dynamic interception does not require byte code weaving on components
and does not require the CLR to run in debug mode.

The remote method invocations between component instances are imple-
mented on .NET remoting. Piggy backs added by the DyMAC middleware are
stored in the call context of a remote message. This is a hashtable associated
with the call flow and .NET remoting serializes this information along with the
remote method invocation.

4 Evaluation

We evaluate the runtime overhead introduced by the middleware platform to
support the features of the component model. This runtime overhead is evalu-
ated in terms of three kinds of resource usage: increased data access, increased
network usage and increased usage of computation resources. We compare the
runtime overhead of a DyMAC based application with an application based on
state-of-the-art distributed component technology. For this comparison we use
the .NET implementation of DyMAC. The distributed aspect-component model
of DyMAC.NET is built on top of .NET remoting. So the first version of the
application has been built on DyMAC, the second version of the application uses
only the .NET remoting infrastructure.
Performance analysis. The runtime overhead of the DyMAC is evaluated in
terms of increased data access, increased number of remote messages, increased
size of remote messages, and increased usage of computation resources. DyMAC
does not introduce additional data access at runtime. The application descrip-
tors and configuration files are loaded at startup time of the application. So
in case data access is involved in an application operation, that latency is the
main performance bottle neck, because it is orders of magnitude larger than
the networking and computing overhead. If we ignore data access, then the net-
work overhead is the next important performance overhead. We evaluate network
overhead in the next paragraph in detail. The overhead of calculating advice ac-
tivation caused by the middleware layer is neglectable in comparison with the
latencies of the network access. However, when using the framework for pure
single-process, single-user AOP applications, without network communication
or data access, the framework’s overhead is significant. Offering features like
client-specific middleware extensions and dynamic adaptability does involve a
large computation overhead, due to the use of runtime interception, reflection
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and access of data-structures containing component metadata. That overhead is
acceptable for large-scale distributed enterprise applications, and even unavoid-
able for the features required in that domain. 5

Network overhead. The network overhead of DyMAC has to be evaluated on
two properties : the number of additional messages involved, and the increased
message size. If a remote before or after advice is used in stead of an ordinary
method message, the number of messages stays the same. If an around advice is
used with a proceed call, the proceed call seems to involve an additional remote
call: i.e. the call-back to the advice coordinator. But, implementing the behav-
iour of around advice in the pure .NET remoting environment also involves two
normal method messages: one to query if the remote message should be exe-
cuted, and then another message to execute the behaviour that normally would
come after the proceed call. The second element to compare is the overhead
caused by increased message sizes. A method message in DyMAC carries addi-
tional information about the caller in its call context. This causes overhead in
the transmission time. The parameter of advising method messages in DyMAC
is a value copy of the joinpoint object, which contains kind and distributed con-
text information. This also introduces a transmission overhead. To measure the
network overhead, we compare the execution time of four kind of messages:

1. A pure .NET remoting method message with empty body, no parameters
and no return value. We call this a minimal method message.

2. A DyMAC method message with the caller properties piggybacked.
3. A DyMAC advising method message, with caller properties piggybacked,

but without the joinpoint object (the parameter is null).
4. A DyMAC advising method message with the joinpoint object.

First, the messages are sent between two processes on the localhost and second,
between two different hosts on a 100MBit network. The first test simulates an
optimal network. The second one compares messages in a real-life network. Timing
started after 10 calls, to avoid delays by the .NET JIT compiler, because that
would scale down the overhead. The timing results for each 1000 executions are:
Loca lhost : 100 Mbit :
1 : 1.1093750 sec 1 : 1.3785850 sec
2 : 1.1875000 sec 2 : 1.4935000 sec
3 : 1.1875000 sec 3 : 1.5175150 sec
4 : 1.4075000 sec 4 : 1.7695000 sec

The caller properties add a 6 to 7 % overhead maximally, on a minimal method
message. The runtime joinpoint object adds another 18-20 % compared to the
minimal method message. These overheads are calculated for minimal method
messages and thus are an upper limit. As the method message gets more or
5 For AOP systems focusing on single-user, single-process applications, different re-

quirements exist. It is one of the key features to minimize overhead of activation of
advice added by aspects. The application domain of one of the first AOP papers was
the implementation of computation intensive algorithms for image processing[4]. In
that domain, the performance overhead of activating added advice is crucial. Ap-
propriate AOP tools, focusing on optimal advice weaving should be used then.
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larger parameters, the relative overhead gets substantially smaller. In distributed
enterprise applications, the facade pattern [8] is applied for remote components.
In this pattern, remote messages have more parameters, and also have larger
value objects as parameters or as return value. The average overhead will be
smaller in that type of applications.

Based on our initial measurements, we claim that the runtime overhead of
DyMAC is acceptable in a distributed application. We have illustrated that the
penalty of fully distributed aspect-oriented middleware can be limited to network
(message size) overhead as no additional messages are required to support remote
pointcuts and remote advices. Recall that the figures presented above present an
upper limit. Moreover we are working on optimizations that leverage pro-active
distribution of useful context information, again without additional messages.

5 Related Work

This section focuses on existing AO middleware technologies that support to a
certain extent distributed aspects with a notion of remote pointcut and remote
advice: JAC[9], CAM/DAOP[15,16] and AWED[18].

JAC (Java Aspect Components [9]) is a Java-based framework that offers
an aspect model to advice objects locally. Using this aspect model, a lot of
internal middleware services of the framework itself are developed as aspects on
the framework. The framework also supports distribution of components and
distributed deployment. Both services are even implemented as aspects on the
framework. JAC simulates the semantics of remote advice by executing local
advice on a local copy of the aspect (aspects are replicated on each host). The
states of the aspect instances are synchronized at each state change. The example
from section 2 cannot be modeled using JAC. For instance, the security of the
authentication service would be broken by duplicating private keys. Moreover,
the workaround in JAC causes a lot of extra communication (chattiness). Finally,
JAC has a limited join point model when it comes to evaluating distributed
context information.

CAM/DAOP[15,16] is a framework for distributed applications that offers
aspect-components and regular distributed components supporting broadcast-
ing, events, synchronous and asynchronous messages. The aspect-components
can offer remote before and after advice on sending and receiving messages.
The CAM component model supports defining provided and required interfaces
for components and aspect-components. DAOP does not offer remote around
advice. The example from section 2 needs remote around advice for security
services and for load balancing. The security services could be simulated with
critical aspects, in which the before advice has to evaluate to true in order to let
the message continue. But for the load balancing service this is not a solution.
DAOP also has very limited pointcut expressions that do not allow to evalu-
ate on contextual properties apart from the sending and receiving component
role. Support for context properties concerning the distributed location or other
component-related properties like interfaces are not supported.
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AWED[18] is a language for distributed AOP and offers explicit remote point-
cuts and explicit remote advice. The pointcut language offers the keyword host()
to evaluate on the host of the joinpoint. Remote advice is explicitly remote us-
ing the on() keyword to specify the host on which the advice should execute.
AWED’s approach to distributed aspects and remote around advice does not
offer the abstraction of around advice in a fully distributed way. The proceed
statement in the remote around advice has local semantics. The original inter-
cepted message is executed at the host where the around advice is executed. This
approach only works if the destination component is a static class or singleton
deployed in every VM. In the example of section 2, the effect of the proceed call
is that the messages to the application server are executed on the reverse-proxy
server. AWED deploys each aspect and each class on every host to realize this.
AWED also doesn’t support transparent execution of remote advice: the host on
which the advice should be executed is explicitly stated in the pointcut using the
on() construct. Defining the deployment location of the advising component in
the pointcut destroys the separation of composition and deployment. This also
mixes up the separation of the specification of pointcut and advice. A pointcut
should express the events in the system that need to be advised. The host of the
advice itself is not part of that, but part of the advice’s deployment specification.

Other approaches have been proposed to integrate AOP into middleware, but
without integrating the component model, only the class model of the program-
ming language: JBOSS AOP[12,21], AspectWerkz[23], Spring AOP[22]. This de-
sign choice is clearly reflected in the kind and context of joinpoints that can be
specified in pointcut expressions. The above mentioned approaches do not offer
true support for distributed aspect composition anyway: they do not support a
distributed joinpoint model, remote pointcuts or remote advice. AspectJ2EE[20]
however, has the same approach offering a local AOP framework on Java classes,
but with the difference that it offers one special kind of pointcut: remotecall, to
advise remote calls from clients to EJBs. The use of contextual properties about
location or components is not supported.

6 Conclusion

Complex compositions cannot be expressed effectively in state-of-the-art mid-
dleware and AOSD is a promising technology that can assist in improving the
situation. In this paper we presented DyMAC middleware. The AO middleware
platform offers true and transparent distributed composition by means of ad-
vanced remote pointcuts that can evaluate on distributed context, transparently
remote advice with full semantics and a unified distributed component model.
To our knowledge, this is the first middleware architecture that transparently
and completely extends the power of aspect composition (join point model and
advice execution) in a distributed context. We have prototyped DyMAC in a
.NET environment and initial benchmarks show promising performance results.
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Abstract. We present our policy-based middleware, called Manageable and 
Adaptive Service Compositions (MASC), for dynamic self-adaptation of Web 
services compositions to various changes. MASC integrates and extends our 
earlier middleware called the Web Services Message Bus (wsBus). In particu-
lar, we discuss MASC support for customization of Web services compositions 
to address business exceptions and wsBus support for correction (fault man-
agement) of Web services compositions to improve reliability. We have evalu-
ated the former support on a stock trading case study and the latter support on a 
supply chain management case study. Our solutions are complementary to the 
existing approaches and provide: coordination of fault management between 
SOAP messaging and business process orchestration, greater diversity of moni-
toring and control constructs, specification of both technical and business as-
pects used for adaptation decisions, higher level of abstraction easier for use by 
non-technical people, and externalization of monitoring and adaptation actions 
from definitions of business processes. 

Keywords: Web services middleware, Web services composition, policy-based 
management and adaptation, Microsoft .NET. 

1   Introduction and Motivation 

Web services compositions (orchestrations and choreographies) are rapidly becoming 
a dominant approach for implementing business processes and building open distrib-
uted systems. The widely accepted Web services technologies (the Web Services De-
scription Language – WSDL, SOAP, and the Universal Description, Discovery, and 
Integration – UDDI) are not enough for implementing Web services compositions [4]. 
Several languages for describing Web services compositions have appeared and the 
Web Services Business Process Execution Language (WSBPEL or BPEL) is the most 
widely accepted among them. A number of additional technologies (often named 
‘WS-*’) have been developed to address requirements such as security, reliable  
messaging and transactional service coordination. However, a number of important 
issues are not completely solved. Many of them are related to building more powerful 
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middleware to support creation, execution, and management of Web services compo-
sitions. Such an important research question, discussed in this paper, is how to build 
more powerful middleware to enable autonomous self-adaptation of Web services 
compositions to various runtime changes.  

In preparation for this research, we had studied different types of adaptations of 
Web services composition and decided to classify them based on 3 dimensions, each 
orthogonal to the other 2. The first dimension is whether the complete class of com-
positions (e.g., an abstract process in BPEL) is changed or whether only a particular 
composition instance is changed. In this paper, we focus on the latter, because the 
need for such adaptations is much more frequent. The second dimension is the rela-
tive time when a Web services composition instance is changed. Adaptation is static 
when a composition instance is changed before it is started, while it is dynamic when 
a running composition instance is changed without being stopped and restarted from 
the beginning. In this paper, we focus on dynamic adaptation, because it is much more 
challenging. The third dimension describes the reason why the adaptation is done, 
which impacts how the adaptation is done. On this dimension, adaptation can be: a) 
customization – to add/remove/replace activities specific to the composition instance 
(but not to the complete class of compositions); b) correction – to handle faults re-
ported during execution of this composition instance; c) optimization – to improve 
extra-functional (usually performance or billing) issues noticed during correct execu-
tion of this instance; or d) prevention – to prevent future faults or extra-functional 
issues before they occur. This classification is similar to the classification of software 
evolution into adaptive, corrective, perfective, and preventive [17]. In this paper we 
focus on customization and correction. While we have some results related to optimi-
zation, they will be discussed only in relationship to using corrective adaptation (i.e., 
fault management) to improve reliability of Web services compositions. A long-term 
goal of our research is to study and enable all identified adaptation types. 

Special cases ('business exceptions') can occur relatively frequently in business 
processes. Such a special case has almost all activities as in a regularly occurring base 
business process, but some activities are removed or replaced and/or new activities 
are added. An example is when a company has set up a complex business process for 
domestic business partners (e.g., within one country), but an unexpected request 
comes to set up a version of this business process for some international partners with 
additional activities to handle payment in multiple currencies. This special case can be 
addressed with customization of the base business process for domestic partners. Such 
a customization can be performed in different ways. One way is to add into the de-
scription of the base business process (e.g., in BPEL) appropriate new exceptions, 
event handling constructs (e.g., timeouts), compensation activities, and/or message 
correlation. While this is a simple and straightforward approach, it has several draw-
backs, which reduce its applicability to advanced scenarios. The most important 
drawbacks are that (1) it enables only static and not dynamic customization (i.e., 
change of running process instance), and that (2) it cannot be applied in cases when 
the base business process is defined by a standardization body and its description can-
not be changed easily. The latter drawback can be addressed if the base process de-
scription is copied and then manually changed into a description of a new business 
process. However, this approach also does not address dynamic customization.  
In addition, it significantly reduces maintainability because if a change in the base 
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process occurs, descriptions of all customized processes have to be updated manually. 
When dynamic customization is needed, it is usually advantageous to externalize de-
scriptions of specifics of individual cases from the description of the base process. 
This simplifies development, composition, and management activities (and corre-
sponding software) and fosters reuse. Such separation of concerns is used frequently 
in software engineering, e.g., in aspect-oriented programming, and distributed sys-
tems and network management, particularly policy-based management [12].   

Additionally, various faults can occur relatively often and unexpectedly in distrib-
uted systems. For example, remote computers can be down or unavailable (e.g., due 
to denial of service attacks), network links can be congested or broken, or remote ap-
plications can produce unexpected results due to semantic misunderstandings. In Web 
services compositions, the diversity of possible faults is particularly high because 
implementations of Web services have to be treated as ‘black boxes’, participants in 
business-to-business (B2B) interactions usually relinquish no or very little control to 
other participants, and SOAP communication mostly uses unmanaged Internet infra-
structure. On the other hand, Web services compositions often implement business-
critical processes whose correct and uninterrupted operation is paramount. Therefore, 
to achieve dependable business processes, Web services compositions have to be 
made reliable. Reliability can be defined as the continuity of correct service delivery. 
This implies zero or, at worst, relatively few failures and rapid recovery time. Reli-
ability of Web services compositions is a complex and challenging task that has to be 
addressed at several layers: service provider layer (e.g., service hosting containers), 
transport layer, SOAP messaging layer, and business process layer. Some reliability 
aspects (e.g., invocation retries) can be solved at different layers with different trade-
offs, but some reliability aspects are best solved only at one particular layer (e.g., in-
fluences of dependencies between activities on the reliability of the whole process can 
be determined only at the business process layer). In our approach, events can trigger 
cross-layer adaptation that could span both the process layer and the messaging layer. 
Among the advantages of the adaptation at the messaging layer is the potential reus-
ability across process instances and process types. In particular, executing faults han-
dling policies at the messaging layer shields faults from the process orchestration.  

During the last several years, a number of academic papers (e.g., [13]), industrial 
standardization efforts (e.g., WS-ReliableMessaging, WS-Reliability, WS-
Transaction), and industrial products have made contributions to improving reliability 
at different layers. However, they have limitations, particularly in the diversity of 
events (e.g., QoS degradations that cause faults) that they can monitor and handle, 
customizability and diversity of actions (apart from rollback and compensation) that 
they can perform in different contexts, specification of technical (e.g., performance, 
security) and business benefits/costs of particular actions, and cross-layer integration 
of reliability solutions at different layers (e.g., retries considered only at the SOAP 
messaging layer could cause business process timeout). One of the recent research 
trends to address reliability issues is augmenting Web services middleware with 
autonomous behavior capabilities such as self-healing and self-configuring [15]. Our 
work belongs to this emerging direction.  

Policies can be used for representation of all types of adaptation and monitoring 
activities. The term 'policy' is used in different ways in the literature. A general defini-
tion is that a policy is a declarative, high-level description of goals to be achieved and 
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actions to be taken in different situations. There are different types of policies, but in 
this paper we focus on Event-Condition-Action (ECA) rules [9]. Such a rule specifies 
a triggering event (e.g., arrival of a message, start of a process instance, runtime fault, 
or performance problem), additional conditions to be satisfied (e.g., referring to proc-
ess state or history), and actions to be taken (e.g., change of a process instance) when 
the event occurs and the conditions are satisfied. The main advantage of policies over 
alternatives (e.g., aspect-oriented programming) is that policies are higher-level ab-
stractions, so humans (e.g., business analysts) can specify them more easily.  

In this paper, we present our work on policy-based middleware, called Manageable 
and Adaptive Service Compositions (MASC) (http://masc.web.cse.unsw.edu.au), for 
dynamic self-adaptation of Web services compositions to various changes. While 
some of our previous publications, particularly [6], also discuss some aspects of our 
work in this area, this paper complements them by providing both an overall picture 
of our research and additional technical details about our recent solutions. MASC is 
an evolution of our previous research of middleware for Web services. It integrates 
and extends our previous middleware-related projects, the Web Services Message Bus 
(wsBus) [5] and AdaptiveBPEL [7]. In addition, we have performed a technology 
switch – while our previous projects were built with Java-based technologies, the new 
implementation of MASC is based on the novel Microsoft .NET Framework 3.0 tech-
nologies and C#. An important aspect of our work on the MASC middleware is that 
we aim to provide policy-based adaptation (particularly optimization and prevention) 
based on maximizing business metrics (e.g., profit). This complements current works 
on dynamic adaptation of Web services compositions, which mostly focus on maxi-
mizing technical QoS metrics (e.g., throughput), but rarely ([11]) study business met-
rics in detail.  

This section provided an introduction to our research and summarized our motiva-
tion. The second section presents MASC middleware solutions for customization of 
Web services compositions. We elaborate our .NET-based architecture and imple-
mentation and explain their evaluation on a stock trading case study. The third section 
presents our middleware solutions for corrective adaptation of Web services composi-
tions to improve their reliability. We discuss our Java-based architecture and imple-
mentation of wsBus and its evaluation on a supply chain management case study. 
wsBus is now a part of the MASC project, so their relationships are discussed in the 
third section. The fourth section compares our research with related work, while the 
last section summarizes conclusions and outlines our future work.  

2   Middleware for Policy-Based Customization 

To be able to perform policy-based management, it is necessary to define an appro-
priate machine processeable and precise format for policy specification. We have 
been developing a novel XML (Extensible Markup Language) format, called WS-
Policy4MASC. Its goal is to enable specification of policies for monitoring of func-
tional and QoS aspects (such as performance and reliability) and different types of 
adaptation for Web services and their compositions, in a way that can be used  
for automatic configuration of our MASC middleware presented in this section. Our 
language is an extension of the Web Services Policy Framework (WS-Policy) [16], an 
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industrial specification standardized by the World Wide Web Consortium (W3C). In 
WS-Policy, policies are collections of policy alternatives, which are collections of 
policy assertions. WS-Policy Attachment defines a generic mechanism to associate a 
policy with subjects (e.g., WSDL elements) to which the policy applies. WS-Policy is 
a general and extensible framework for specification of policies for Web services and 
it has very good properties in this respect. However, it does not contain detailed rules 
for specification of policies in particular areas, such as security, QoS monitoring, and 
adaptation. Specification of such detailed rules is left for WS-Policy extensions. Un-
fortunately, only extensions for security, reliable messaging, and a few other man-
agement areas that are not the focus of our project have been suggested. Therefore, 
we had to develop a new WS-Policy extension for use in our middleware. WS-
Policy4MASC is also compatible with other Web services standards such as WSDL 
and BPEL, as well as Microsoft .NET 3.0 technologies. Since our MASC middleware 
has ambitious goals in several areas, WS-Policy4MASC offers a number of constructs 
for powerful and precise policy specification. Details and examples of the WS-
Policy4MASC expressive power and syntax will be given in a future publication. We 
only provide here a short overview of the current support for customization policies.  

An adaptation (including customization) policy in the current version of WS-
Policy4MASC can define events which cause its evaluation, optional conditions on its 
relevance (e.g., a policy may be relevant only in particular contexts), a state in which 
the adapted system (e.g., a Web services composition) should be before the adapta-
tion, additional conditions on the adapted system (e.g., historical values of QoS met-
rics), a set of actions to be taken if all previous conditions are met, a state in which the 
system will be after the adaptation, and change of business value (e.g., monetary 
payments) associated with this adaptation. The basic adaptation actions include re-
moval, addition, and replacement. In removal and replacement, an activity or an activ-
ity block in a base business process is deleted. All business processes, including base 
processes and variation processes, are defined in appropriate other documents (e.g., 
BPEL files), so they are only referenced in WS-Policy4MASC policies. Thus, an ac-
tivity block is specified using beginning and ending points. In addition and replace-
ment, a new variation process or a single activity is inserted into a particular point in a 
base process. If the inserted single activity is a Web services call, the policy can spec-
ify a particular Web service or a set of criteria for dynamically selecting the best Web 
service from a directory. Data exchange (i.e., required parameters binding and value 
passing) between a base process and a variation process/activity is also described.  

2.1   Architecture of MASC Support for Customization and Its Implementation 

To enable different types of adaptation of Web services compositions, we have been 
developing the MASC middleware. It extends the new Microsoft .NET Framework 
3.0 (currently in pre-release - http://www.netfx3.com/), particularly its components 
the Windows Communication Foundation (WCF) and the Windows Workflow Foun-
dation (WF). For the MASC solutions presented in this section, the extensions of WF 
are more important. WF provides an extensible framework for building processes 
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Fig. 1. Architecture of MASC support for customization of Web services compositions 

(workflows) and embedding them into .NET applications to orchestrate activities of 
objects and services. In this respect, a WF process can represent a Web services com-
position (orchestration). WF processes are defined in Microsoft’s Extensible Applica-
tions Markup Language (XAML, but file extension for WF is ‘.xoml’) and not BPEL. 
Translation between XAML and BPEL is promised for a future version. The glue 
code for connecting activities, such as activity input validation, can be encapsulated 
into a ‘code beside’ .NET class. To execute a process, WF has a lightweight WF run-
time engine that can be hosted in any .NET application. The WF runtime engine man-
ages the instantiation and execution of the workflow activities. Additionally, it takes 
care of different middleware concerns through an extensible set of WF runtime ser-
vices (e.g., Tracking, Persistence and Transaction support are built-in). Therefore, we 
designed and implemented another WF runtime service, named MASCAdaptation-
Service, for policy-based adaptation of Web services compositions implemented as 
WF processes. It currently enables static and dynamic customization, while its future 
version will provide support for static and dynamic corrective, optimizing, and pre-
ventive adaptation based on maximizing business metrics. The support for dynamic 
adaptation means that MASCAdaptationService can use policies to change a running 
process instance without any changes to process definition or implementation of ac-
tivities (e.g., composed Web services). The WF runtime engine can be configured to 
include MASCAdaptationService and support its operation. MASC is a complex mid-
dleware with many modules (some of which are not yet implemented). For readability 
purposes, we will describe in this section only MASC support for customization. The 
overall architecture of MASC will be given in another publication.  

The conceptual architecture of the MASC support for policy-based customization is 
shown in Figure 1. We have implemented its prototype in C#. Monitoring and adapta-
tion policy assertions are stored in a policy repository, which is a collection of instances 
of policy classes. The policy classes are generated automatically from the WS-
Policy4MASC schema, using an XML-schema-to-C#-classes generator (in our case, the 
XSD tool from .NET). When the MASCAdaptationService starts, our MASCPolicy-
Parser imports WS-Policy4MASC files, creates instances of corresponding policy 
classes, and stores these instances in the policy repository. Static customization  
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Fig. 2. Example Web services interactions in the Stock Trading case study 

is started when the WF runtime raises an event that a process instance is created. Dy-
namic customization is started when the MASCMonitoringService module raises an 
event that for a particular process instance it detected (e.g., by introspecting exchanged 
SOAP messages and/or measuring QoS metrics such as response time) adaptation  
pre-conditions specified in monitoring policies. Such events can also be raised by the 
MonitoringStore database in situations when adaptation pre-conditions refer to several 
different SOAP messages. For both static and dynamic adaptation, the raised events are  
handled by MASCPolicyDecisionMaker, which determines adaptation policy assertions 
to be applied to the process instance and sends an event to MASCAdaptationService. 
Policy priorities are used to determine the order of execution if several policy assertions 
apply per event. In case of dynamic adaptation, MASCAdaptationService suspends the 
running process instance to be adapted. Then, it asks the WF runtime engine for a de-
scription of the process to be adapted and gets back a transient copy of the process’  
object representation. For this copy, MASCAdaptationService performs the changes 
specified in the policies, using primitives built into the WF runtime. If data exchange is 
required between the base process and the variation processes/activities, our service also 
takes care of required parameters binding and value passing between base processes and 
their variation processes. When MASCAdaptationService passes the modified copy of 
the process’ object representation back to the WF runtime, the latter applies the changes 
using built-in algorithms. After this, the execution of the adapted process instance is 
resumed.  

2.2   MASC Evaluation on the Stock Trading Case Study 

The MASC support for customization has been evaluated and demonstrated in various 
adaptation scenarios using a simplified Stock Trading case study implemented with 
C#, .NET 3.0, and MASC. Parts of this case study are shown in Figure 2. The base 
Trading Process is initiated when a human investor places an investment or redemp-
tion order with their FundManagerService. The latter, after verifying the order, in-
vokes the FinancialAnalysisService to get a recommendation to enable an informed 
investment/redemption decision. The FinancialAnalysisService gets periodic notifica-
tions from the StockNotificationService about the current stock values and real-time 
market surveillance, announcements, quotes, and other information. Based on this 
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information, historical records, and predictive models built into the service (for our 
prototype, we used very simple models), the FinancialAnalysisService informs the 
FundManagerService about how well certain stocks are performing. The FundMan-
agerService makes a decision which stock to buy/sell for the monetary amount re-
quested by the investor. (In our prototype, this decision is very simple, e.g., buy one 
best stock or sell as many poorly performing stocks as needed to get the redeemed 
money.) Then, the FundManagerService sends the buying/selling request to the 
StockMarketService. The latter performs a simple trade matching between the buy 
orders and the sell orders. When a trade match is formed, the StockMarketService 
invokes in parallel the StockRegistryService to transfer the stock share ownership and 
the PaymentService to transfer funds. Note that, with the exception of the FundMan-
agerService, there can be multiple different services of the same type in the composi-
tion. For example, there can be more than one FinancialAnalysisService, e.g.,  
provided by different vendors and/or performing different types of financial analyses.  

To evaluate MASC’s static and dynamic adaptation capabilities, we have con-
ducted several experiments to customize the base business process for national 
stock trading, described above, to support international stock trading. WS-
Policy4MASC was used for policy description. Among the conducted experiments 
was dynamic addition of a CurrencyConversion Web service (CC1, CC2…CCn) to 
convert stock prices of foreign stocks to a local currency. Also, depending on the 
country of foreign stock, a PESTAnalysis Web service (PS1, PS2…PSn) was added 
to assess the non-financial aspects (political, economic, social and technology) that 
influence the trade. Additionally, monitoring policies were used to define con-
straints over the trade transaction amount and/or the customer's profile (e.g., per-
sonal investor vs. corporate investor) to dynamically add a CreditRating Web  
service (CR1, CR2…CRn) before processing the trade. In terms of removing activi-
ties, we have experimented with dynamic removal of the invocation of Market-
ComplianceService when the trade amount is less than a particular threshold. The 
conducted experiments were successful and demonstrated feasibility and usefulness 
of the MASC approach in adding dynamic customization capabilities to existing 
Web services compositions, guided by declarative policies specified in WS-
Policy4MASC. MASC has provided a solution for policy-based static and dynamic 
customization without any changes to either the process definition or the constituent 
services implementations. All that is needed is a WS-Policy4MASC document de-
scribing monitoring and adaptation policies to be enforced. When a WS-
Policy4MASC document changes, these changes are automatically enforced the 
next time adaptation is needed with no need to restart any software component. The 
above scenarios will be further extended to evaluate MASC and WS-Policy4MASC 
support for corrective, optimizing, and preventive optimization, once they are  
completed.  

3   Middleware for Policy-Based Corrective Adaptation 

Our work addresses reliability at the business process layer and the SOAP messaging 
layer by specifying and enforcing monitoring policies to help in fault detection and 
corrective adaptation policies to guide fault correction. It is complementary to the 
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existing approaches and provides: (1) coordination of fault handling across these two 
layers, (2) greater diversity of monitoring and control constructs, (3) specification of 
both technical and business aspects that can be used for adaptation decisions, (4) 
higher level of abstraction easier for use by non-technical people, and (5) externaliza-
tion of monitoring and adaptation actions from definitions of business processes.  

Our main past project in the area of reliability of Web services compositions was 
the wsBus middleware built using Java-based technologies and an early version of our 
WS-Policy extensions in this area (the name ‘WS-Policy4MASC’ was not used at that 
time). As mentioned in the introductory section, our focus has recently shifted to-
wards the more general MASC middleware built upon .NET technologies. WS-
Policy4MASC grammar was also updated. We have been working on integrating 
wsBus solutions with other parts of MASC, including .NET and C# reimplementation 
and support for the new WS-Policy4MASC grammar. However, since our results are 
still more complete for the Java-based implementation of wsBus, we will describe it 
in this paper and leave discussion of recent improvement for another publication.  

Policies that can be enforced by the Java-based version of wsBus are specified in a 
WS-Policy extension described and illustrated in [6]. The main types of actions in 
these policies are: invocation retries, Web services substitution, concurrent invocation 
of multiple equivalent services, skipping of activities, and relatively simple dynamic 
changes of process instances (e.g., add/remove/skip an activity, change sequence of 
activities, delay/suspend/resume/terminate process). Only the latter is at the business 
process layer, while the others are at the SOAP messaging layer. In this way, they 
complement the policies described in the previous section, which are all at the busi-
ness process layer.  

3.1   Architecture of wsBus and Its Implementation 

This section presents the architecture of wsBus with emphasis on the modules that 
facilitate the enactment of adaptation policies. As shown in Figure 3, adaptation poli-
cies supported by wsBus work via injecting runtime inspectors and custom Message 
Processing Modules into a messaging pipeline at different message processing stages 
such as before sending a request and after receiving a response. These custom mod-
ules can be applied at different scopes such as the whole service, a particular endpoint 
or a particular service operation. For example, the Invocation Retry Handler places 
the messages that fail to be delivered in a retry queue and the queue reader tries rede-
livery using the pattern specified by the used recovery policy. Messages for which 
processing repeatedly fails are placed in a ‘dead letter’ queue after exhausting the 
maximum number of allowed retries and no further delivery will be attempted. 

wsBus key architectural abstraction is the concept of a Virtual End Point (VEP). A 
VEP allows virtualization by grouping a set of functionally equivalent services and 
exposes an abstract WSDL for accessing the configured services (e.g., Web search 
service exposing Google, Yahoo and MSN search as one virtual service). The 
grouped services might have different QoS properties. The VEP acts as a recovery 
block and various runtime policies can be associating with it.  
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Fig. 3. wsBus Architecture 

wsBus can be deployed either as a gateway to a Process Orchestration Engine or it 
can act as a transparent HTTP Proxy. In the first case the Process Orchestration En-
gine should be configured to explicitly direct service calls to the virtual endpoints 
configured in wsBus and the later routes request messages to the real services. The 
VEP takes care of the dynamic Find, Select, Bind and Invoke on behalf of the BPEL 
engine, using the configured selection and binding policies. The VEP does ‘on the fly’ 
selection of service provider or intermediary based on a selection criteria specified in 
the policy attached to the VEP, such as message content and context (e.g., requester 
profile), or the service provider’s capabilities or QoS of prior interactions. The VEP 
then manages the automatic enforcement of adaptation policies (e.g., retry and substi-
tute policies) by inspecting messages going into and out of the composed services and 
interposing additional Message Processing Modules along the message pipeline. To 
decide the relevant Message Processing Modules applicable to a given message, the 
VEP uses simple rules expressed as a regular expression or XPath query against the 
header or the payload of the message. Additionally, the VEP provides middleware 
services to service compositions such as QoS measurement and monitoring, conversa-
tion management and fault management. Our fault management approach is based on 
two models: (1) the capturing model uses assertion-based monitoring to detect faults 
and to notify the relevant middleware component, and (2) the handling model uses 
adaptation policies represents to resolve faults. For example, a policy might stipulate 
that for particular type of faults, the VEP should retry to the original service and if the 
fault persists then it should select an equivalent backup service. 

The enactment of adaptation policies is managed by the following key components:  

1) QoS Measurement Service is responsible for management data collection and 
analysis either through direct computation of QoS metrics (e.g., collecting statistical 
metrics about the performance) or via periodic probing for management information 
from other management intermediaries (e.g., third QoS measurement entity). The key 
QoS metrics measured by this component are: (a) Reliability (calculated as a ratio of 
successful invocations over the number of total invocations in given period of time); 
(b) Response Time (the time interval between when a service is requested and when it 
is delivered; (c) Availability: the percentage of time that a service is available during 
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some time interval. Because the lack of space, the QoS measurement algorithms are 
not presented is this paper.  

2) Monitoring service continuously monitors interactions with the participating 
services to verify that the configured monitoring policies are being satisfied and to 
detect any condition changes such as faults. The monitoring policies specify the de-
sired behavior of the system in terms of (a) pre-conditions and post-conditions that 
express constraints over exchanged messages (b) thresholds over QoS guarantees (e.g. 
service response time) as stipulated in pre-established Service Level Agreements 
(SLAs). The monitoring policies can be attached to Monitoring Points at various lev-
els of granularity such as a Service Endpoint or a Service Operation. For example, the 
monitoring policies could specify that exchanged messages between participant ser-
vices must be validated to ensure conformance to the service contract expected by the 
service composition. The Monitoring Service also supports events-based monitoring 
to detect fault events and recognize their type. Various techniques are used to achieve 
this. First, the Monitoring Service listens to fault messages returned by invoked ser-
vices as specified in their WSDL interface. Faults can also be identified based on 
management events coming from internal or external management systems, such as 
hardware or network failure faults. Also, the Web services Invoker component can 
use timers to raise timeout faults when the service does not respond within the set 
timeout interval.  

The monitoring policy uses XPath to reference variables defined in the header or 
the body of the WSDL contract of constituent services (e.g., the CustomerID of Pur-
chaseOrder message). During the evaluation of the monitoring assertions, the Moni-
toring Service might reference data from external sources to obtain data not available 
in the exchange messages. The source of such external data as specified as Web ser-
vice calls in the monitoring assertions, such as calling a QoS measurement service or 
querying the log of prior interactions to get some historical data.  

When an undesirable condition is detected, then the Monitoring service uses ECA 
rules to assign a meaningful fault type to the violation event, such as Service Unavail-
able Fault, SLA Violation Fault, Service Failure Fault and Timeout Fault. The fault is 
then passed to the Adaptation Manager along with all the data required for recovery 
(i.e., ProcessInstanceID of the process instance to be adapted, and a Context Collec-
tion that contains relevant data that could be needed during the adaptation.) 

3) Adaptation Manager decides and coordinates the execution of appropriate adap-
tation action(s) to restore the system to an acceptable state using adaptation policies 
configured at the VEP. Currently our adaptation policies use a rule-based approach to 
specify the necessary adaptations per fault type. Such a rule-based approach is more 
flexible as it can handle wider variety of faults whether coming from the infrastruc-
ture or from the partner services. Also the process specification is kept simple and 
uncluttered through the separation of the process logic and fault handling policies. 
The adaptation action could be simple or composite. It could be specified to be en-
acted either at the SOAP messaging layer (such as retry a service call) or at the proc-
ess orchestration layer (such as skip a process activity or add/remove activity) or 
sometimes at both layers. For example, before retrying invocation of a faulty service, 
the adaptation policy might stipulate that MASCAdaptationService should first sus-
pend the calling process instance (until the execution of the adaptation actions is 
completed) or increase its timeout interval to avoid the calling process timing out. To 
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be able to decide the process instance to be adapted, MASCAdaptationService trans-
parently adds the ProcessInstanceID of the calling process to outgoing SOAP mes-
sages (using the RelatesTo Message Addressing Header).  When multiple adaptation 
policies are specified per fault type, policy priorities are used to determine the order 
of execution of the adaptation actions. For example, a policy could stipulate that the 
VEP should first attempt n retries before failover to a known backup service. The 
policy decision manager passes an object representation of the adaptation actions to 
the relevant policy enforcement point(s) to execute the adaptation policy.  

4) Web services Selection service manages the dynamic mapping of abstract Web 
services defined in the composition to concrete Web services. This allows shielding 
the orchestration engine from changes to available services. Hence, adding, modifying 
and selecting among available services could be done without the need to complicate 
the process with the routing logic for deciding which concrete services to use. The 
selection of services among the equivalent services registered with a VEP is done 
using various selection policies. A VEP can be configured to choose between regis-
tered services in round-robin fashion, or to select the best performing service (based 
on the QoS metrics gathered from prior interactions or from other management enti-
ties), or to ‘broadcast’ the request message to multiple targets service providers con-
currently and consider the first one that respond, all pending invocations are then 
aborted and their responses are ignored. The concurrent invocation of equivalent ser-
vices is accomplished by making a copy of the message and modifying its route, then 
invoking multiple target services using concurrent invocation threads. This strategy is 
more suitable for data lookup services and freely available services such as Web 
search.  

5) Message Inspectors/Processing Modules implements common handlers for en-
forcing typical adaptation policies. These handlers can be configured as a pipeline to 
manipulate and pre/post-process both request and response messages as instructed by 
adaptation policies. Among the handlers provided by this component is a Message 
Logger to log the messages as they pass through the messaging layer. This is useful 
for debugging problems, meter usage for subsequent billing to users, or trace busi-
ness-level events, such as transaction over a certain amount. It can also be used for 
data inspection, or for service management. 

6) Message Adaptation Service is a Message Processing Module that handles data 
transformation and enrichment to resolve incompatibilities between services regis-
tered with a particular VEP (i.e., structural, value and encoding mismatches). Various 
transformation patterns are supported, such as transform a message payload from the 
one schema to another; attach additional data from external sources, such as Web ser-
vices calls or from database queries; split/merge messages; buffer multiple messages 
and aggregate them into a single one before sending them to the destination service. 
These transformation modules can be composed into a pipeline to transform and relay 
messages. 

3.2   wsBus Evaluation on the WS-I Supply Chain Management Case Study 

We conducted a series of benchmarking tests to assess effectiveness (i.e., impact on 
reliability) and efficiency (i.e., impact on performance) of wsBus in enhancing  
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Fig. 4. WS-I Supply Chain Management (SCM) application process (adapted from [17]) 

reliability of Web services interactions. Our secondary aim for these tests was to dis-
cover areas of the platform that need further improvement. We used an extended 
Java-based implementation of WS-I (Web Services Interoperability) Supply Chain 
Management (SCM) application [17]. The SCM scenarios, as shown in Figure 4, are 
designed as Web services based interactions that simulate business activity of an 
online supplier of electronic goods. First a Web client calls the Retailer service's get-
Catalog operation. When the user submits the order, the Web client calls the Retailer 
service's submitOrder operation. To fulfill orders, the Retailer Web service manages 
stock levels in three warehouses (WA, WB, and WC). If Warehouse A cannot fulfill 
an order, the Retailer checks Warehouse B; if Warehouse B cannot, the Retailer 
checks Warehouse C. When an item in a Warehouse stock falls below a certain 
threshold, the Warehouse must restock the item from the Manufacturer's inventory 
(MA, MB, and MC). Each use case includes a logging call to a Logging Service to 
monitor activities of the services. A customer can track orders by using the getEvents 
operation of the Logging Facility Web service. During the SCM process enactment, 
participating Web services can log events by calling the logEvent operation of the 
Logging Facility Web service. Optionally, there is a Configuration Web service that 
lists all implementations registered in the UDDI registry for each of the Web Services 
in the sample application.  

Our experimental setup consisted of 2 run-time configurations: 1) wsBus was not 
used and all invocations were direct (point-to-point) between the Web services, and 2) 
wsBus was placed at the client side and acted as an intermediary (broker, mediator). 
Both configurations used identical application logic implemented in Java. We simu-
lated multiple concurrent Web service clients, each of which invoked deployed  
services multiple times. We used Apache's JMeter 2.1.1, a load generator toolset, to 
generate the workload and to measure the observed performance. We deployed the 
SCM backend Web services (Retailers, Warehouses, and Manufacturers) at a P4 
2.8GHz, 1GB RAM server running Windows 2003, Tomcat 5.5 and Axis 2. JMeter 
stress tool (acting as the client) and wsBus were deployed at a Windows XP laptop 
with P4 2.8GHz and 500MB RAM. The machines were connected by a 100MB LAN.  

To estimate the impact on reliability and robustness of the wsBus solution in re-
sponse to QoS changes and service failures, we wrote test code that occasionally (at 
random times) injected exception events in the tested system. For service failures, we 
randomly picked some of available services and made them unavailable for a random 
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amount of time. For service QoS degradations, test code occasionally picked some 
service instances and changed their QoS values (e.g., introduced delays). We have 
defined monitoring policies and corrective adaptation policies for the experiments 
using wsBus. Monitoring policies configured messaging pipeline inspectors to inter-
cept faults (e.g., fault message returned from the service provider, timeout fault mes-
sage returned from the Web services invoker, QoS degradation event raised by the 
QoS constraints evaluator). When a fault was detected, the wsBus VEP used correc-
tive adaptation policies to decide the adaptation actions. For timeout faults, these 
policies configured the VEP for the Retailers to first retry the invocation of the faulty 
services three times with a delay between retry cycles of two seconds. After exhaust-
ing the maximum number of allowed retries, the policies configured the VEP to route 
the request message to a different Retailer based on the response time gathered from 
prior interactions. (In other experiments, we have defined policies that configured 
concurrent invocation of the four Retailer services and considered the results coming 
from the first responding service.) For the Logging service we have configured a skip 
policy since the functionality provided by the Logging service is not business critical.  

Table 1.  Reliability and availability of direct interactions vs. channeling through wsBus  

 Reliability Availability 
Only Retailer A used by 
the client 

105 failures per 
1000 requests 

0.952 

Only Retailer B used by 
the client 

81 failures per 
1000 requests 

0.992 

Only Retailer C used by 
the client 

17 failures per 
1000 requests 

0.998 

Direct Web services in-
vocations without wsBus 
mediation 
 

Only Retailer D used by 
the client 

91 failures per 
1000 requests 

0.983 

Web services invocations 
with wsBus mediation 

All 4 Retailer services 
exposed as 1 wsBus VEP 

6 failures per 
1000 requests 

0.998 

In a representative experiment, we compared reliability and availability of the get-
Catalog operation in cases when a client directly calls one of the Retailer Web ser-
vices (which have occasional random faults) and cases when the client calls Retailer 
Web services (with the same occasional random faults) through 1 VEP of the client-
side wsBus. Reliability was measured as a number of failures seen by the client per 
1000 requests. Availability was calculated as mean time between failures divided with 
the sum of mean time between failures and mean time to recover. The test results in 
Table 1 show that reliability and availability in cases when wsBus was used improved 
compared to cases when only direct interaction with individual Retailers was used. 
This is a simple experiment that enabled us to perform quantitative comparisons. 
Qualitative comparisons are more straightforward – when there are complex failures, 
wsBus adds useful corrective adaptation. How much useful and appropriate the adap-
tation is in particular circumstances, depends solely on the policies and their priorities 
– if a human defines an inappropriate policy, wsBus will try to enforce it.  
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Fig. 5. Round trip time (RTT) for direct interactions vs. channeling through wsBus 

To estimate the impact of introducing wsBus on performance of Web services 
compositions, we used the implemented SCM Web services composition to measure 
and examine 2 key performance metrics: round trip time and throughput. Round Trip 
Time (RTT) is defined as the period from the time a service consumer sends a request 
to the time when it successfully receives full reply from its service provider. It in-
cludes execution time of the service implementation, time consumed by the support-
ing provider-side software (e.g., application server, Web server, database server), 
queue waiting time (if any) inside wsBus, and network delays. Throughput is defined 
as the average number of successful requests processed in a sampling period.  

Figure 5 shows round trip time for getCatalogue and submitOrder requests with 
varying request sizes. Each data point represents the average latency value over three 
independent runs of up to 2000 requests each and performed measures at different 
load levels. The delay between requests is set to zero to increase the load on the 
server. These data show that channeling of SOAP through wsBus is slower (usually 
about 10%, which is not drastic) than direct SOAP-over-HTTP, due to the overheads 
introduces by the added QoS features in wsBus. Our analysis of the main reasons of 
delays introduced by wsBus points to the high number of threads created to serve the 
requests. When a message arrives at the Listener component, a thread is created to 
serve the request, and this does not scale well with high number of requests. This will 
be avoided in our new .NET reimplementation of wsBus. Another important source of 
wsBus delays is the need to import, parse, and process policies. In our .NET reimple-
mentation of wsBus we will minimize this overhead by working with object represen-
tation of policies, which is updated only when policies change.  

4   Related Work 

While Web services based business processes are gaining wider adoption, tools and 
middleware frameworks in this space do not yet provide adequate support for model-
ing and enacting dynamic process adaptations. Several ongoing academic and indus-
trial efforts recognize the need to extend Web services composition middleware with 
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mechanisms to provide dynamic adaptation. However, our work has unique character-
istics. We adopt a policy-based approach that builds on the established policy-based 
management principles [12], while decoupling between sensors that monitor and de-
tect adaptation triggers and effectors that react to and handle such triggers. Our mid-
dleware performs different types of adaptation and contains solutions at different Web 
services middleware layers. Also, our technological base is different (extensions of 
WS-Policy and Microsoft. NET 3.0 have not been previously studied in detail), which 
leads to different architectural solutions. Furthermore, the ultimate goal of our re-
search in this area is business-driven adaptation of Web services compositions, while 
related works aim at improvement of technical metrics. We briefly discuss next how 
our work differs from and complements the main recently published works.  

Probably the closest related work is the service monitoring approach presented in 
[1]. The authors proposed the Web Service Constraint Language (WS-CoL) for speci-
fying client-side monitoring policies, particularly those related to security. At de-
ployment time, WS-CoL constraints attached to a process are translated into BPEL 
invoke activities that call the Monitoring Manager, the  component in charge of run-
time evaluation of monitoring policies to detect anomalous conditions. This approach 
is similar to ours in that monitoring policies are specified externally rather than being 
embedded into the process specification. The proposed approach achieves the desired 
reusability and separation of concerns. However, it only provides support for monitor-
ing and focuses mainly on security. On the other hand, our approach is more focused 
on adaptation (rather than just monitoring) to customize the process to cater for spe-
cial cases or to handle faults and address anomalous situations.  

Another related work is [3], which suggested an aspect-oriented extension to BPEL 
to enable dynamic weaving of aspects into Web services compositions. In their work, 
a process runs inside a process container that provides middleware services to BPEL 
processes. However, we believe that some of the QoS aspects that they tried to ad-
dress, e.g. security and state persistence, can be addressed more naturally via intercep-
tion at lower-layer messaging middleware rather than augmenting a BPEL engine 
with the ability to call low-level middleware services.  We argue that a process should 
focus solely on the control flow and message routing between composed services.  On 
the other hand, enforcement of adaptation policies in our approach can be either dele-
gated to the underlying SOAP messaging middleware that mediates the Web services 
interactions or enacted by the process orchestration engine via dynamic adaptation of 
Web services composition instances. This operation at the SOAP messaging layer can 
shield the process orchestration layer from the need to provide fault management.  

In [8], the authors presented RobustBPEL as an approach to improve reliability of 
BPEL processes via automatic generation of exceptions handling BPEL constructs, as 
well as generation of a Web services proxy for each participating service to discover 
and bind to equivalent Web services that can substitute a faulty service. However, the 
proposed approach does not consider potential dependencies between Web service 
operations. Our approach is more general and controls adaptation using policies that 
can be checked for consistency.  

Significant progress (e.g., see [14]) has been achieved in the field of dynamic com-
position of Web services by leveraging artificial intelligence planning and semantic 
Web services to obtain new Web service compositions when the measured QoS violates 
a Service Level Agreement (SLA). However, such approaches incur considerable  
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overhead and their practical applicability to business problems is still to be proven. We 
argue that our approach is more practical and lightweight.  

Our MASC middleware can also be seen as a complement to Web services man-
agement (WSM) systems, such as the Web Service Offerings Infrastructure (WSOI) 
[16]. These systems provided mechanisms for measuring, evaluating, and managing 
Web services to ensure that QoS objectives are met. The central concept in such sys-
tems is often an XML-based contract that formally specifies QoS assurances (e.g., 
about response time, throughput, availability, and reliability). However, most of the 
proposed approaches focus on monitoring and/or QoS-based selection of individual 
Web services. Our work aims to go beyond the past approaches towards self-adaptive 
and more agile business processes implemented as Web services compositions.  

The work in [2]  proposed a general extension of the service oriented architecture 
to support autonomic behavior of Web services, but the proposed architecture does 
not address the requirements of adaptive business process execution.  

5   Conclusions and Future Work 

Dynamic adaptation of Web services compositions is an important step towards agile 
business processes that need to continually adapt to keep fulfilling the functional and 
QoS requirements of their dynamic business environment. In this paper, we presented 
MASC – a policy-based middleware for monitoring and adaptation of Web services 
compositions. The underlying design principle of our approach is the separation of 
concerns between the process definition and the monitoring and control, considerably 
simplifying Web services composition development and management. The benefits of 
the work presented in this paper are of twofold:  
(1) A novel language, WS-Policy4MASC, is used to declaratively specify monitoring 
policies for detection of adaptation needs (e.g., special cases and faults) and adapta-
tion policies that guide process reconfiguration (e.g., fault correction).  The externali-
zation and explicit definition of such policies helps in keeping the Web services  
composition simple and uncluttered. Further, these policies can evolve independently, 
while allowing potential reuse.  
(2) The new MASC middleware architecture has been designed and implemented to 
autonomously make and coordinate enforcement of runtime adaptation decisions 
across both the business process orchestration layer and the SOAP messaging layer. 
Currently, MASC supports both static and dynamic customization of Web services 
composition instances, as well as corrective adaptation at the messaging layer. 

The paper reports the progress on MASC middleware design and implementation 
and highlights how our previous work on the wsBus and adaptation strategies fits into 
the overall MASC architecture. To demonstrate feasibility and evaluate effectiveness 
of our adaptation techniques at the SOAP messaging layer, wsBus was deployed in a 
supply chain management Web services composition. The preliminary measurements 
confirmed improved availability and reliability at an acceptable increase in latency. 
Also, feasibility of our process-level static and dynamic customization was assessed 
using scenarios from the stock trading domain.  

Our ongoing work is on providing support for other types of adaptation, i.e., cor-
rective adaptation at the business process orchestration layer to handle process-level 
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faults, optimizing adaptation to improve extra-functional properties, and preventive 
adaptation to avoid future faults and/or QoS degradations before they occur. We are 
also extending our middleware to enable making and enacting adaptation decisions 
(e.g., optimal configuration of running Web services compositions) based on not only 
event-condition-action rules, but also more abstract utility/goal policies describing 
how to determine business benefits/costs and maximize business value by performing 
adaptations. These ambitious extensions aim to position MASC as a middleware for 
autonomic business-driven management of Web services compositions.  
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Abstract. Application-level nondeterminism can lead to inconsistent
state that defeats the purpose of replication as a fault-tolerance strat-
egy. We present Midas, a new approach for living with nondeterminism
in distributed, replicated, middleware applications. Midas exploits (i) the
static program analysis of the application’s source code prior to replica
deployment and (ii) the online compensation of replica divergence even
as replicas execute. We identify the sources of nondeterminism within the
application, discriminate between actual and superficial nondeterminism,
and track the propagation of actual nondeterminism. We evaluate our
techniques for the active replication of servers using micro-benchmarks
that contain various sources (multi-threading, system calls and propaga-
tion) of nondeterminism.

1 Motivation

Replication is a common technique used to build fault-tolerant, distributed sys-
tems. The idea behind replication is the creation and distribution of multiple,
identical copies (replicas) of a component across a system so that the failure of a
replica can be masked by the availability of the other replicas. Determinism is a
fundamental property required in order for replication to work. A component is
said to be deterministic if it contains no characteristics that could cause replicas
to become inconsistent with each other. In other words, identical replicas, when
started from the same initial state and supplied the same ordered sequence of
input messages, should reach the same final state and produce the same output.

A simplistic, but effective, strategy is to disallow the use of any nondetermin-
istic functionality within applications that are to be replicated – effectively, this
forbids the use of multithreading, shared memory, local I/O, system calls, ran-
dom numbers, timers, etc. This is, in fact, the approach adopted by industrial
standards, such as Fault-Tolerant CORBA [14].

Clearly, this approach is unrealistic for real-world applications that wish to
use all of these nondeterministic functions. Current approaches to handling non-
determinism, covered in Section 8, allow nondeterminism to exist within the
application, but handle it transparently. Transparency has its accompanying
benefits, but does not exploit application-level information that might facilitate
the handling of nondeterminism. In addition, architecture/application program-
mers often need to able to exercise control and “want to worry about replica
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configuration, intervene in failure detection or enabling explicit synchronization
between replicas” [21]. With this motivation, we have developed a program-
analysis approach to handling all forms of nondeterminism (including system
calls and multithreading) – this allows us to exploit application-level insight in
handling nondeterminism. Active replication is the predominant replication style
that falls prey to nondeterminism. Therefore, our techniques are focused on how
to handle nondeterminism in architectures using active replication. However, our
techniques are easily applicable to other replication styles as well.

Contributions of this paper: Our previous research [18] showed that program
analysis could assist in handling one specific form of nondeterminism, namely,
system calls, such as gettimeofday. In our enhanced approach, Midas, described
in this paper, we handle all forms of nondeterminism, including multithreading
and contaminated nondeterminism. More specifically, the contributions of this
paper include the following:
– Taxonomy and technique that distinguishes between nondeterminism that

is superficial (looks like a nondeterministic call, but its effects do not lead
to replica divergence) vs. actual (effects do lead to replica divergence) – this
allows us to be discriminating in that we only need to worry about addressing
the actual, and not the superficial, nondeterminism;

– Tracking the propagation (or “contamination”) of nondeterminism through
the application code – this allows us to capture the effects of nondeterministic
execution and variables on otherwise deterministic code;

– Design and empirical evaluation of various application-centric performance-
sensitive techniques that compensate for the nondeterminism that we detect
and track – these techniques range from re-executing the contaminated non-
determinism to transferring the entire application state.

2 Taxonomy of Nondeterminism

Program analysis allows us to identify the true causes in the divergence of repli-
cated state. Application state can be classified into one of three mutually exclu-
sive categories: pure nondeterminism, contaminated nondeterminism, and pure
determinism.

1. Pure nondeterminism: This covers any function that is the originating
source of nondeterminism and that affects the server’s state. Examples include
system calls such as gettimeofday or random, all inputs, and all read calls that
change the server’s state nondeterministically. An example is
for (int j = 0; j < 100; j++ ) foo[ j ] = random();

Shared state among threads also falls within this category. However, we treat
shared state in a special way – each access of shared state by a thread is consid-
ered to be a separate source of nondeterminism. For example, consider a single
shared variable between two threads; if each thread accesses this variable four
times, then, there exist eight separate instances of pure nondeterminism. It is
immaterial that these eight instances happen to involve the same variable. This
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view of shared state among threads frees us from having to worry about thread
interleaving or the actual point in time when the threads execute.

2. Contaminated nondeterminism: This covers state that has any depen-
dency, direct or indirect, on an instance of pure nondeterminism. Contaminated
state captures the effect of pure nondeterminism when it propagates to the rest
of the application. In other words, the pure nondeterministic state marks the be-
ginning of nondeterministic execution. Anything that the pure nondeterministic
state then touches is contaminated. If there was no pure nondeterminism, then,
there would be no contamination. An example is the contaminated variable bar
that depends on the purely nondeterministic variable foo:
for (int j = 0; j < 100; j++ ) {

foo[ j ] = random();
bar[ j + 100 ] = foo[ j ]; }

3. Pure determinism: This covers state that has no dependency whatsoever
on the identified pure nondeterminism. This category of state will always be con-
sistent across all server replicas. Assuming that the values in bar are initialized
to zero, an example is:
for (int j = 0; j < 100; j++ ) bar[ j ] = bar[ j ] + 10;

4. Superficial nondeterminism: This falls under the category of pure de-
terminism, but might be misclassified if a transparent approach to handling
nondeterminism were used. In this category, a nondeterministic call is executed,
but the end-result does not affect the application’s persistent state and does not
contaminate the rest of the application, either. An example is:
int a = random(); b = 5; return b;

Here, variable a is nondeterministic, but its value does not affect the server’s
state. More realistic examples of superficial nondeterminism are not shown here
due to lack of space. A significant source of superficial nondeterminism arises
in multithreaded applications where threads do not share any variables and do
not modify any persistent application state, or where the shared state is split up
across the threads such that each thread has its own distinct piece of state.

The value of this taxonomy, lies in its utility in compensating for nondeter-
minism. Only pure and contaminated nondeterminism need to be addressed for
replica consistency – the other categories (pure determinism and superficial non-
determinism) can be disregarded. Thus, the compensation overhead will depend
on the relative amounts of each category within an application.

3 Objectives

Our aim is to permit programmers to continue to create distributed applications
that are nondeterministic (e.g., containing performance features such as mul-
tithreading) and yet allow these applications to be made fault-tolerant. Midas
is independent of the target application and middleware and could be readily
applied to any distributed, nondeterministic application.
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In this paper, we exploit client-server middleware as the vehicle for exploring
the issues underlying nondeterminism. In particular, we target CORBA C++ ap-
plications for the application of Midas. MEAD [12], the fault-tolerant middleware
that we use, enables CORBA applications to be made fault-tolerant in multiple
ways, including active, or state-machine, replication [17]. With the active repli-
cation of a server, every server replica receives and processes each request; every
server replica also sends a response to the client, leading to duplicate responses
that need to be filtered. The MEAD infrastructure performs this filtering and de-
livers only one response to the client, thereby masking the server’s replication from
the client. Clearly, for active replication to work, the server replicas must receive
the same set of messages in the same order, which MEAD assures because it con-
veys messages over the underlying totally-ordered group communication system,
Spread [3]. Active replication traditionally requires the supported application to
be deterministic; however, we relax this requirement to allow MEAD to support
the active replication even of applications containing nondeterministic features.

Midas’ approach involves a synergistic combination of two aspects: compile-
time knowledge with run-time compensation. By exploiting program analysis to
isolate the possible places where nondeterminism can affect the system state or
behavior, we then perform code transformations (that do not violate application
semantics or expected functional behavior) to ensure consistent results across
all of the replicas. We offer the programmer various options to deal with nonde-
terminism. A side-benefit of our analysis lies in its software engineering aspect.
Because our program analysis tracks all live variables and their dependencies
on detected nondeterminism, we can assess to what extent nondeterminism per-
vades the application. This information can be beneficial to the application pro-
grammer in understanding the trade-offs and deciding between various choices
in compensating for nondeterminism.
Assumptions. Midas relies on having complete access to the application’s
source code, along with the ability to modify it prior to deployment. Specifi-
cally, we assume that we are allowed to modify the source code for the client,
the server, and the IDL interfaces of all objects. Both the client and server source
code must be available for analysis, although only the server is replicated. We
also assume that all of the application state can be determined statically – thus,
program analysis techniques that can handle dynamic state (e.g., dynamically
allocated variables whose size is unknown at compile time) are outside the scope
of this paper. Pointer-aliasing analysis is currently outside the scope of the tech-
niques highlighted in this paper; our most recent work does incorporate advanced
compiler techniques to handle dynamic memory and pointers.

For the purpose of this paper, and to describe how we handle application-
level nondeterminism, we assume the deterministic, reproducible behavior of the
operating system and the underlying middleware. While we make this simplifying
assumption in order to demonstrate our approach to handling nondeterminism,
we emphasize that Midas is general enough that we could apply it equally to
the middleware/OS source-code and address their inherent nondeterminism as
well, as describe in [19]. We also require homogeneous platforms, i.e., all of the
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Fig. 1. Midas’ program analysis framework for analyzing nondeterminism

replicas of the application must be hosted over identical hardware and operating
systems; future versions of our approach will be extended to cover heterogeneous
platforms. We assume an independent-failures model across distinct nodes and
replicas, and aim to tolerate crash and communication faults.

4 Program Analysis Framework

To perform program analysis, we needed to convert the C++ CORBA applica-
tion source-code into an intermediate format that is more suitable for program
analysis. We first transformed our target C++ applications into C code using
EDG [1], and then used the SUIF2 [2] compiler to transform the resulting C
code into the intermediate representation. Conversion from C++ to C allows
for easier analysis because it eliminates some complexities (e.g., object-oriented
issues) that C++ introduces. It also allows us to leverage current compiler tools
that expedite the transformation of C code into a workable, efficient intermediate
form (referred to as an annotated parse-tree henceforth).

As shown in Figure 1, Midas’ analyzer makes multiple passes through each
intermediate file, and highlights the sources of nondeterminism in the code. For
instance, a pass that discovers a nondeterministic call will annotate the return
value of that call and then track that variable as potential (contaminated) non-
determinism. For each source file, the analyzer creates a dependency file that
captures the nondeterministic behavior of the source code in that file. We then
modify the original application source-code to insert specific code-snippets for
the tracking and subsequent compensation of nondeterminism.

Enhancements to Analysis Framework. In our current program-analysis
framework, we use SUIF to generate the initial abstract syntax tree (AST). All
of the subsequent application analysis-passes are custom extensions to SUIF
because of our specific needs in analyzing nondeterminism. For instance, our
enhanced Midas framework supports thread analysis, as long as we can statically
determine the entry, exit, and launch of all threads. In addition, we perform a
complete dependency analysis to identify not only pure nondeterminism, but
also the contaminated state that depends on it.
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Some information is lost in the conversion from C++ to C, and we traverse the
C++ code to mark up the SUIF-generated AST tree to fill in this information.
The declaration of variables needs to be updated as scope is defined differently
in C and C++, and this can affect the dependency chain between variables. For
instance, in C++, the conditional block within an if, while, do-while, or for
is considered to be a new scope, unlike in C. Another example of lost information
relates to exception-handling code in try-catch blocks; try-catch blocks that
form the top-level statements of functions, constructors, or destructors must be
updated because they can affect the propagation of exceptions. Midas’ current
automated generation and insertion of code to handle our categorized nondeter-
minism includes:

– Tracking to assign unique identifiers to nondeterminism that is embedded
within specific elements of a non-scalar data structure (e.g., nondeterminism
that affects only one element of an entire array);

– Data structures to hold the variable-size state of the application;
– State-transfer operations (get state and set state) to copy state back and

forth from the application into the appropriate data structures for transfer
over the network;

– Execution that re-generates the contaminated state from the pure nondeter-
ministic state, only if the latter has been transferred.

Data-Flow Passes. We perform multiple passes over the annotated parse tree.
The first set of passes identifies all of the persistent state within the server code.
Ultimately, this represents the only state that might be affected by nondetermin-
ism and the state that we need to worry about for consistent server replication.
The second set of passes identifies the pure nondeterminism within the appli-
cation; these passes find and mark nondeterministic system calls, inputs, I/O,
etc. Shared state between threads is initially considered as potentially nondeter-
ministic, and another pass is made to discover all accesses to this shared state;
these accesses are then marked as pure nondeterminism. Subsequently, these ac-
cesses are treated as sources of nondeterminism in their own right, and effectively
constitute state. def-use chains (that determine where a specific variable is de-
fined, and where it is used or assigned to another variable) are then calculated
for all marked pure nondeterministic variables – this represents the first phase
of dependency-tracking.

Control-Flow Passes. The next phase involves evaluating all of the possible
execution paths that the server code might take. We determine the order of
variable assignments along a particular control path, and for every discovered
control path, we link together the def-use chains that we determined in the pre-
vious data-flow phase. This allows us to calculate dependencies of every variable
for every possible execution path. Carrying this argument forward, we can now
mark as contaminated nondeterminism all of the state that depends on the pure
nondeterministic state identified in the data-flow phase. This is recursive – as
we mark more contaminated state, we need make further passes to determine if
there are further dependencies on this newly discovered contaminated state. We
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Fig. 2. Underlying approach for Midas’ various compensation techniques. The tech-
niques differ in the nature/amount of the information passed back and forth between
the client and the server, and in the actual compensation work done on the server-side.

perform an exhaustive search of the server source-code to ensure that all such
contaminated state is found. All persistent state that remains unmarked at the
end of the control-flow phase can be considered as pure determinism.

5 Midas’ Compensation Approaches

During our compile-time phases, we insert the compensation and state-transfer
code snippets that will actually execute at runtime within the application. In
this section, we describe how and when these code-snippets accomplish the com-
pensation. For the remainder of the text, we assume that the server is actively
replicated.

In our approach, the client is an integral participant in the compensation of the
server’s nondeterminism. Consider any two consecutive requests from the client
to the replicated server, as shown in Figure 2. Each server replica piggybacks
the relevant information(this information is specific to the technique described
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below) about its nondeterminism to the client in its response to the first request.
Then, this information, piggybacked onto the second request, is echoed by the
client to all of the server replicas so that they can perform individual, local
compensation actions before they begin to process the second request. All of the
piggybacked nondeterministic information, as well as its associated transfer and
compensation code, is generated by our compile-time phase, without burdening
the application programmer.

We emphasize here that the server replicas do not need to be in lock-step syn-
chronization in order to do this – each replica proceeds asynchronously to service
its incoming, totally-ordered requests and to return responses. Thus, through
the runtime execution of our inserted compensation snippets, each replica is
rendered logically identical with its peers before it starts to process any new
request from the client; between requests, the server replicas (if each’s internal
state is inspected individually) might, in fact, be divergent in state. However,
this out-of-band divergence does no harm because it does not compromise the
fault-tolerance of the application. If a replica fails or is recovered, it will simply
be rendered consistent with the others at the start of the next new request. In
Section 7, we address how this divergence becomes an issue when multiple clients
are involved, with each controlling some part of the compensation.

All of our performance-sensitive compensation techniques undergo two rounds
of client-server interaction for compensation, as shown in Figure 2. However, they
differ in the amount and nature of compensation work done at the server replica
and the amount/kind of relevant information transferred back and forth between
the client and the server replicas. While all of our techniques are common in ex-
ploiting program analysis, the range of choices allow an application programmer
to make an application-centric, performance-sensitive choice in compensating for
nondeterminism. The techniques described below can be broadly classified as:

– Transfer of state, or the transfer-* techniques:
transfer-ckpt, transfer-diff-ckpt, transfer-contam and
transfer-contam-track;

– Re-execution of code, or the the reexec-* techniques:
reexec-contam and reexec-contam-track.

In Figure 3, we depict the decision process that an application/system devel-
oper would undergo in order to decide among the various techniques.

5.1 Full-Checkpoint Transfer (transfer-ckpt)

After processing each request, every replica marshals its entire state (checkpoint)
and passes this state, along with its response, to the client. The client accepts
the first response1, stores the identifier of the corresponding (selected) replica
1 The client always sees only one response from the entire set of replicas because

MEAD delivers the first-received response from the replicated server and suppresses
the other responses. The replica whose response makes it first to the client is called
the selected replicain the processing of the client’s next request. The selected replica
can vary from one request to the next, and is not dictated by the client or the server.
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Fig. 3. Decision tree for determining appropriate technique for handling
nondeterminism in an application. (1) Yes: Nondeterminism must be dealt with;
No: Either no nondeterminism or can live with potential replica divergence. (2) Yes:
Application code cannot be modified or designer prefers a transparent approach; No:
Application code can be modified. (3) Yes: Pure deterministic code can be highlighted
by program analysis, enabling a more efficient transparent technique that addresses
only actual, and not superficial, nondeterminism; No: Program analysis cannot be
performed on application source code, requiring a transparent approach that unnec-
essarily handles even superficial nondeterminism. (4) Yes: Communication overhead
is an issue and a more efficient technique must be found. Only the state that has
changed needs to be handled; No: Communication overhead is not a constraint and
transfer-ckpt technique can be used. (5) Yes: Communication overhead is still a con-
straint and further analysis is required; No: Communication overhead is within reason
and transfer-diff-ckpt can be used. (6) Yes: Communication overhead is a greater
constraint than processing overhead, and reexec-contam can be used; No: Processing
overhead is a greater constraint than communication overhead and transfer-contam

can be used.

and that replica’s state. On its next request to the server, the client piggybacks
this saved information (including the checkpoint of the selected replica).

Each receiving replica examines this information to see if it was the selected
replica, at the client-side, for the previous request. The selected replica does
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not need to compensate and can proceed with processing the current request; a
replica that was not selected by the client in the previous round must apply the
piggybacked checkpoint before proceeding to service the current request. Thus,
these checkpoints are passed back and forth between the client and the server
to ensure replica consistency. Effectively, the compensation is as if a new replica
was started and a fresh checkpoint was transferred to it, except that, in our case,
the checkpoint is funneled through the client in its next request.

5.2 Differential-Checkpoint Transfer (transfer-diff-ckpt)

We instrument the application code in all of the places where the processing of
a request might modify its state. Clearly, not all of these potential state-change
points might actually be executed when the server processes a request. At run-
time, only the actually executed change-points are captured and the associated
state (called a differential checkpoint) transferred to the client. The remainder
of the technique is similar to transfer-ckpt. Compared to transfer-ckpt, we
have increased static code growth due to the additional instrumentation. There
should be a slight increase in runtime server-side latency due to the additional
scaffolding code required to track variables. This technique performs best when
the scaffolding latency is outweighed by the benefit in communication latency
obtained with transferring the differential checkpoint vs. the full checkpoint.

5.3 Transfer Contaminated-Nondeterminism (transfer-contam)

The transfer-ckpt and transfer-diff-ckpt techniques do not discriminate
between actual and superficial nondeterminism. In the transfer-contam tech-
nique, each server replica piggybacks only its actual nondeterministic state (both
pure and contaminated) back to the client.

Based on the output of our data-flow and control-flow analyses, we create a
server-side struct that holds the pure and contaminated nondeterminism within
each replica. Because this struct needs to be marshaled over the standard mid-
dleware protocol, we need to augment the IDL interface specifications of the
server so that this nondeterministic struct contains (and serves as) the return
value of the server’s methods and is also an input parameter to the server’s
methods – this allows us to piggyback the nondeterministic struct onto mes-
sages passed back and forth between the client and the server. The remainder
of the algorithm is similar to the transfer-ckpt technique, except that the
client-side and the server-side extract, copy, and piggyback the nondeterministic
struct instead of a checkpoint.

5.4 Reexecute Contaminated-Nondeterminism (reexec-contam)

We insert prepared portions of code that can be executed to re-generate the
contaminated nondeterminism, if provided the pure nondeterminism (i.e., the
origin of the contamination) as an input. In reexec-contam, every receiving
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server replica extracts the piggybacked nondeterministic struct, as in
transfer-contam. As with all of the other techniques, the selected replica for one
request has no compensation work to do for the next request. On the other hand,
each of the remaining (non-selected) replicas for a request performs compensa-
tion, before processing the next request, by first setting the pure nondeterministic
part of its state to the received nondeterministic struct, and then re-executing
the inserted code-snippets to regenerate the corresponding contaminated non-
determinism. At the end of this compensation, each replica is consistent and is
ready to process the current request.

Compared to transfer-contam, the reexec-contam technique should incur
lower communication overheads due to the reduced amount of nondeterminis-
tic state being piggybacked back and forth; however, the tradeoff is that run-
time latency is increased by the reexecution of the compensation snippets at
the server side. Also, reexec-contam requires more compile-time analysis and
source-code modification to the server-side than transfer-contam. This is be-
cause additional control-flow passes are needed to isolate the code that encapsu-
lates the contaminated nondeterministic state. The client-side code is the same
as in transfer-contam.

Obviously, reexecution is justified when the compensation overhead is out-
weighed by the communication overhead of the transfer-* techniques.

5.5 Incorporating Tracking (transfer-contam-track,
reexec-contam-track)

The complexity of the data structures that constitute application state, along
with the way these structure are accessed or referenced, affects how we track
changes in that application’s state. The nondeterministic structs that we create
for compensation purposes must be flexible and able to hold a dynamic amount
of information, ranging from no state all the way to a full checkpoint. We use
the CORBA sequence type for this purpose because it can hold, and marshal
over the wire, a dynamic amount of information.

If state variables are all scalar types (e.g., int a), then, there is no need for
tracking. However, if data structures are more complex or non-scalar (e.g., int
a[10000]) , then, additional information might be needed to track which of the
member items of the non-scalar structure have changed.

To cover the worst possible case, we identify each piece of state with an ad-
ditional identifier. This identifier can be used to directly reference its associated
piece of state. For example, if int a[500] is a part of the state, then another
shadow array of the same size is created to hold the indexes of array a[]. If
only one value in the array a[] changes at runtime, the shadow array tracks
the change and allows us to know which index in a[] changed. The additional
compile-time work to support tracking is minimal because it involves creating se-
quences of longs to hold all the identification information to reference non-scalar
types.
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5.6 Additional Clarification

The above techniques encapsulate all of the nondeterminism that is present
in a distributed application. However, nondeterminism might be introduced if
different replicas of the same server talk to different external servers. In other
words, we assume that a replicates server receives the same messages in the same
order using totally ordered multicast. Therefore, consistency is maintained and
nondeterminism is handled properly in the above techniques.

Midas’ techniques will handle all nondeterminism that is present in an appli-
cation. This, however, can present a problem if the nondeterminism is built into
the application for a specific reason and, therefore, should not be compensated
for. In order to allow for nondeterminism to exist in the application without
being compensated for, it is possible for a programmer to mark parts of code or
variables that Midas would consider deterministic and, therefore, would not han-
dle by its compensation techniques. Additionally, we could allow the programmer
to specify when and/or what replicas responses would be used for the compen-
sation. This would allow for greater control for the application programmer and
for more flexibility in the architecture. However, this is outside the scope of this
paper, even though the implementation would be relatively straight-forward.

The main idea behind using program analysis to handle nondeterminism is to
target only the nondeterminism that actually causes replica divergence. Thus, it
should not result in higher overheads than other transparent approaches, such
as full-state transfer. While it is possible that an application will be strife with
nondeterminism and, therefore, will involve significant overhead on Midas’ part,
this overhead should not exceed that of a basic transparent approach.

6 Experimental Evaluation

Because our techniques are non-transparent, the overheads that we incur should
be directly proportional to the amount of actual nondeterminism that exists
within the application, e.g., if only 5% of the application is actually nondeter-
ministic, our compensation overheads should be incurred only for that portion
of the application. We also note that the runtime overheads and behavior of
MEAD will undoubtedly influence our runtime overheads. Where possible, we
distinguish between MEAD’s performance and our compensation performance.

We conducted our experiments using the Emulab distributed environment
[22], with a homogeneous test-bed of nodes that each run the RedHat 9 Linux,
2.4.18 kernel operating system on a 850MHz processor, 256KB cache, and 512MB
RAM over a 100 Mbps LAN. We use MEAD version 1.5 that uses Spread version
3.17.3 as its group communication protocol. In our experiments, we do not load
the nodes with any other running programs other than MEAD, Spread, our
micro-benchmarks, and the native OS utilities that typically run on each node.
Each replica runs on a separate node.

We evaluate a number of metrics (communication overhead, compensation
overhead, server-side processing time, and round-trip time) under fault-free
conditions.



Living with Nondeterminism in Replicated Middleware Applications 93

Table 1. Description of the various micro-benchmarks

Compensation
technique

no sha

micro-benchmark
sha

micro-benchmark

vanilla

(baseline)
Replicas are nondeterministic
and inconsistent; no compensa-
tion performed

Same as no sha, except that a
20-byte digest is computed and
stored at each replica at the
end of each request

transfer-ckpt Entire checkpoint piggybacked
on each server’s reply to the
client, compensation according
to Section 5.1

Same as no sha, with digest
considered part of the check-
point and piggybacked on each
server’s reply

transfer-contam Pure and contaminated nonde-
terminism piggybacked on each
server’s reply to the client,
compensation according to Sec-
tion 5.3

Same as no sha, with digest
considered part of the contam-
inated nondeterminism

transfer-contam

-track

Same as transfer-contam

above, but with tracking
enabled

Same as transfer-contam

above, but with tracking
enabled

reexec-contam Pure nondeterminism piggy-
backed on each server’s reply
to the client, contaminated
nondeterminism re-generated
through re-execution, compen-
sation according to Section 5.4

Same as no sha, with digest
needing to be re-computed as
a part of the re-execution

reexec-contam

-track

Same as reexec-contam above,
but with tracking enabled

Same as reexec-contam above,
but with tracking enabled

6.1 Micro-benchmarks

We have developed two micro-benchmarks to compare our various compensa-
tion techniques. The two micro-benchmarks are identical in many ways. They
both constitute a two-tier application, i.e., with a single client and a single repli-
cated server. Both micro-benchmarks use multi-threading with homogeneous
threads (to simplify experimentation), identical code at each of the server repli-
cas (except for the fact that each replica stores a unique, hard-coded server id
SID), and identical initial state to start out with. The difference is that the
sha micro-benchmark involves the computation of a 20-byte digest, and there-
fore, requires significantly more processing time at the server-side, as compared
with the no sha micro-benchmark. The two micro-benchmarks are compared in
Table 1. The sha version is used to give an example of an application that has
increased reexecution time.

Each micro-benchmark contains an array of 10,000 longs that represents its
state. Pure nondeterminism involves generating a random number and assigning
it to one of the elements in the array.Contaminated state is subsequently createdby
performing arithmetic on the random number and assigning the result to
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Fig. 4. Compensation approaches with varying amount of contaminated state for 10%
pure deterministic state for the two micro-benchmarks. The cross-over between the
transfer-contam and the reexec-contam is visible for both the tracking and the no-
tracking cases.

another element in the array.The server state is changed in 15 different ways: vary-
ing the pure nondeterminism to 10%, 30% and 50%. For each value of pure non-
determinism, we vary the amount of contaminated nondeterminism to 10%, 20%,
30%, 40% and 50%. For each of the 15 state combinations, we evaluate each of our
five techniques: transfer-ckpt, transfer-contam, transfer-contam-track,
reexec-contam and reexec-contam-track. Note that we can compare all of the
techniques for a given x% of nondeterminism. However, we cannot fairly compare
a single technique for x% vs. y% of nondeterminism because these represent two
entirely different applications (while the % of nondeterminism varies, the applica-
tion is, in fact, functionally different). The vanilla case simply serves as a baseline
for performance comparison.We also vary other parameters, such as the number of
replicas (1–4), amount of multithreading (2–6 threads), and amount of state (100,
1000 and 10,000 longs).

6.2 Empirical Observations

Varying amount of contamination. Graph 4(b) shows the effect on the round-
trip time of increasing the amount of contaminated nondeterminism within the
no sha micro-benchmark. The amount of pure nondeterminism for these results
is fixed at 10%, and 3 replicas are used. Because pure nondeterministic state is
handled identically across all of our various techniques, the graph demonstrates
how each technique handles an increase in contaminated state.

The transfer-ckpt technique shows a fairly constant round-trip time regard-
less of the amount of contaminated state. The processing time increases slightly
across all techniques because additional work is done due to the increased amount
of contaminated state. However, the processing time is relatively small compared
to the communication overhead of passing the entire state of back and forth.
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The transfer-contam-* techniques show a linear increase in round-trip time
with increased amount of contaminated state. This is because the communication
overhead is proportional to contaminated state. Note that transfer-contam-
track has the higher overheads of the two because more information is
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being passed by the replicas. Also, transfer-contam-track becomes worse than
transfer-ckpt when more than 50% of the state is nondeterministic.

There is very little change in the round-trip time of the reexec-contam-*
techniques with increased contaminated state because the communication over-
head dominates over re-execution time. Again, reexec-contam-track has the
higher overheads of the two. We observe that the reexec-contam-* techniques
are better than their transfer-contam-* counterparts.

Figure 4(a) shows the effect on the round-trip time of increasing the amount
of contaminated nondeterminism within the sha micro-benchmark. The amount
of pure nondeterminism for these results is fixed at 10%, and 3 replicas are used.
Note that the sha1 algorithm has a significant amount of processing time; this
is readily visible when comparing these results with their no sha counterparts.

The same trends are seen as in Figure 4(b). The most interesting observa-
tion here is due to the fact that communication overhead does not dominate
processing time. For instance, with 10% and 20% contamination, transfer-ckpt
appears to have lower overheads. Once contamination reaches 30% or more,
reexec-contam once again displays lower overheads. This is because the in-
creased processing time outweighs the communication overhead for lower
amounts of contaminated state.

Varying degree of replication. In Figures 6.2 and 5(a), the amount of pure
and contaminated nondeterminism is constant, but the number of replicas is var-
ied. Figure 6.2 shows the sha micro-benchmark for 10% pure nondeterminism
and 10% contaminated nondeterminism. Figure 5(a) shows the no sha micro-
benchmark for 50% pure nondeterminism and 30% contaminated nondetermin-
ism. Note that, for every additional replica, the communication load increases
because all of the replicas send their nondeterministic state, along with their
responses, to the client.

In Figure 6.2, all of the techniques. except for transfer-ckpt, demonstrate a
minimal increase in round-trip time with increased number of replicas. This is be-
cause, apart fromtransfer-ckpt, which sends the entire state over, the other tech-
niques only deal with 10% pure and 10% contaminated nondeterminism. Because
the communication overhead is relatively lower due to the small amount of non-
deterministic state, reexec-contamperforms worse than transfer-contam tech-
nique, except in the 4-replica case where the communication overhead overcomes
the re-execution time.Thus, thenumber of replicas,alongwith the amountof trans-
ferred state, can dictate which technique is appropriate for a given application.

Figure 5(a) demonstrates lower processing time with higher communication
overhead. As in the previous case, the tracking counterpart of a technique adds
more overhead than its corresponding no-tracking version. Here, reexec-contam
is always better regardless of the number of replicas. In fact, with an increased
number of replicas, the relative performance of the reexec-contam technique
becomes markedly better.

Trade-offs. Figure 6 shows the round-trip time for the sha micro-benchmark
with the amount of pure nondeterminism fixed at 30% for 3 replicas, and with
the amount of contaminated state varying from 10-50%. We focus only on the
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performance of the reexec-contam and the transfer-contam techniques. The
reexec-contam technique shows relatively no change as contaminated state
increases because of the overwhelming communication overhead and the low
processing time. The transfer-contam technique demonstrates a linear increase
in overhead with respect to the amount of contaminated state. This graph clearly
shows the cross-over between the two techniques, demonstrating that no tech-
nique works for all cases to provide the best performance. Many factors, including
the number of replicas, the amount of contaminated state, the communication
overhead, the processing overhead, etc., need to be weighed in deciding which
technique is appropriate. Figures 6.2 and 5(a)also support our insights about
the trade-offs between re-execution vs. the transfer of contaminated state, based
on the relative amount of communication overhead and processing time.

Code growth. Code growth is inevitable in our technique. The transfer-ckpt
technique will typically have the least code growth because it is perform sim-
ple checkpointing. The transfer-contam technique is next in code growth;
transfer-contam-trackwill have even larger code growth. The reexec-contam
will likely have the largest code growth of the all of techniques, because of the
inserted compensation snippets. However, we note that reexec-contamwill have
smaller code growth if the amount of contaminated state as large and the re-
execution snippets are small. Thus, while code growth matters and should be
considered, using it as a metric for comparison might be subjective since it de-
pends on the application’s functionality.

7 Future Work

We note that our current implementations of the transfer-* and reexec-*
techniques leave much room for optimization, but efficiency considerations form
a part of our ongoing investigation. Multi-tier applications and nested end-to-end
requests introduce increased complexity in handling nondeterminism, especially
with actively replicated tiers. The propagation of nondeterministic state is no
longer contained at the client or at any one tier. We need to handle any nonde-
terministic state or execution that propagates to other tiers. This is especially
evident when a failure occurs during an end-to-end request, resulting in some of
the replicas at every tier becoming inconsistent. Multiple clients can also compli-
cate the techniques described in this paper because each client is an active par-
ticipant in the back-and-forth compensation of nondeterminism, and we would
then require coordination across clients or some alternative way of ensuring con-
sistency across multiple clients. Both multi-tier and multi-client fault-tolerant
architectures are part of our ongoing research on the scalable compensation of
nondeterminism, but remain outside the scope of this paper.

8 Related Work

Gaifman [10] targets nondeterminism that arises in concurrent programs due
to environmental interaction. This technique involves backup replicas lagging
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behind the primary to ensure consistency. The technique is transparent to the
user, but the application is actually modified by transformations that han-
dle multithreading. The Multithreaded Deterministic Scheduling Algorithm [11]
aims to handle multithreading transparently by providing for internal and ex-
ternal queues that together enforce consistency. The external queue contains a
sequence of ordered messages received via multicast, while each internal queue fo-
cuses on thread dispatching, with an internal queue for each process that spawns
threads. Basile [5] addresses multithreading using a preemptive deterministic
scheduler for active replication. The approach uses mutexes between threads
and the execution is split into several rounds. Because the mutexes are known
at each round, a deterministic schedule can be created. This approach does not
require any communication between replicas.

Delta-4 XPA’s semi-active replication [4] addresses nondeterminism through
a hybrid replication style that employs primary-backup replication for all nonde-
terministic operations and active replication for all other operations. In SCEP-
TRE 2 [6], nondeterminism arises from preemptive scheduling. Semi-active repli-
cation is used, with deterministic behavior enforced through the transmission of
messages from a coordination entity to backup replicas for every nondeterminis-
tic decision of the primary’s. Similarly, Wolf’s piecewise deterministic approach
[23] handle nondeterminism by having a primary replica that actually executes
all nondeterministic events, with the results being propagated to the backups at
an observable, deterministic event.

The fault-tolerant real-time MARS system requires deterministic behavior
[16] in highly responsive automotive applications that are nondeterministic due
to time-triggered event activation and preemptive scheduling. Determinism is
enforced using a combination of timed messages and a communication protocol
for agreement on external events.

X-Ability [9] is based predominantly on the execution history resulting from
previous invocation. The approach is not necessarily transparent to the program-
mer because the proposed correctness criterion must be followed for consistency.
The advantage is that it is independent of the replication style. Slye et al. [20]
track and record the nondeterminism due to asynchronous events and multi-
threading. The nondeterministic executions are recorded so that they can be
replayed to restore replica consistency in the event of rollback.

The Transparent Fault Tolerance (TFT) system [7] enforces deterministic
computation on replicas at the level of the operating system interface. The ob-
ject code of the application binaries is edited to insert code that redirects all
nondeterministic system calls to a software layer that returns identical results at
all replicas. Hypervisor-based fault tolerance [8] involves a virtual machine that
ensures that all nondeterministic data is consistent across replicas. A simulator
executes all environmental instructions, and then requires system-wide lock-step
synchronization on this execution.

TCP tapping [15] captures and forwards nondeterministic execution informa-
tion from a primary to other replicas. The backup replicas gain information from
the primary after it has done the work. The approach is transparent, but involves



Living with Nondeterminism in Replicated Middleware Applications 99

setting up routing tables to snoop on the client-to-server TCP stream, with the
aim of extracting the primary’s nondeterministic output. Zagorodnov et al. [24]
target nondeterminism that is inherent to service protocols used by network
servers. The solution involves the interception of I/O streams of replicas, and
the appropriate handling of input and output streams.

9 Conclusions

We present Midas, a new approach, for living with nondeterminism in distrib-
uted, replicated applications by exploiting static program analysis on the ap-
plication’s source code, along with the runtime compensation of nondetermin-
ism. We identify the sources of nondeterminism within the application, discrim-
inate between actual and superficial nondeterminism, and track the propaga-
tion/contamination of nondeterminism within the application.

We describe two different techniques, one that involves the reexecution of
contaminated nondeterministic code and another that involves the transfer of
checkpoints or nondeterministic state. We can support even the active repli-
cation of nondeterministic applications in this manner. Our empirical evalua-
tion involves various performance-sensitive techniques for distributed middle-
ware micro-benchmarks that contain various sources (multi-threading, system
calls and contamination) of nondeterminism.
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Abstract. Many different overlays with different properties have been proposed.
Rather than using one overlay for all applications, it is likely that multiple over-
lapping overlays will be deployed on the same computing resources for different
purposes. We present an architecture, called ODIN-S, for mediating the resources
used by overlapping overlays. We can specify priorities for different overlays, and
then allow ODIN-S to allocate computation and bandwidth across the network to
respect priorities. The key features of ODIN-S include a common middleware
runtime supporting multiple overlay logics, and “filters” for throttling, ordering
and dropping messages in order to manage resources. We present experimental
results that demonstrate ODIN-S’s ability to manage resources between different
types of overlapping overlays.

1 Introduction

Middleware-level overlays have proven to be a useful abstraction for building scalable
distributed systems. Many different kinds of overlays have been designed and built; a
small sample includes [12,14,22,28,27,29,33,36]. Each of these overlays has strengths
and weaknesses, and each aims for different design goals, which means that different
kinds of overlays are useful for different applications. As a result it is unlikely that all
applications will be built on one, general purpose overlay. Instead, there are likely to
be many overlays using the same infrastructure resources, each deployed for a differ-
ent purpose. For example, an enterprise might deploy a Narada overlay for message
brokering, a super-peer overlay for information discovery, a Chord overlay for LDAP
directory services, and so on. A simple example of two such overlapping overlays is
shown in Figure 1. Several recently developed overlay toolkits have the ability to de-
ploy overlapping overlays, including P2 [23] and GridKit [18].

It is important to mediate resource usage between all these overlapping overlays. A
particularly resource intensive overlay should not starve other overlays that are not as
greedy. Moreover, in many cases we want to assign priorities to overlays, and to give
more resources to higher priority overlays (but again, without starving lower priority
overlays.) For example, an enterprise may give the highest priority to the messaging
overlay that is supporting its day-to-day operations, and less priority to an information
discovery overlay that merely supplements its internal document search apparatus.

How can we mediate resource usage between overlapping overlays? We must allocate
both bandwidth resources and processing resources in a fair but prioritized way between
overlays. Existing overlay toolkits lack the ability to trade off resources between mul-
tiple overlays, or do not enforce fine grained priorities over all of these resources. In

M. van Steen and M. Henning (Eds.): Middleware 2006, LNCS 4290, pp. 101–120, 2006.
c© IFIP International Federation for Information Processing 2006
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Fig. 1. Overlapping overlays. Solid lines represent a super-peer overlay; thick lines for connec-
tions between super-peers, and thin lines for connections to leaf-peers. Dashed lines represent a
flat mesh network, such as a Narada broker network or unstructured peer-to-peer overlay.

this paper, we present a middleware system we have built, called Overlay Dynamic In-
formation Networks - Shared (ODIN-S), that manages this resource mediation. The key
architectural aspects of ODIN-S are (1) a common middleware runtime that supports the
logic for multiple overlay clients on a single host, and (2) filters that manage the sending
and processing of messages by these clients to enforce fairness and resource quotas.

Filters are the primary mechanism in ODIN-S for trading off resources between over-
lays. Filters can be used to throttle, schedule and drop messages to enforce quotas and
overlay priorities. As such, filters must be used both to filter incoming messages and
outgoing messages sent by a peer. We describe how to construct filters to manage the
processing load, upload bandwidth and download bandwidth for a peer.

The primary contribution of this work is an architecture that integrates and adapts
multiple techniques from other domains for the purpose of mediating resource usage
among overlapping overlays. For example, we apply a weighted fair queuing disci-
pline [17,16], typically used in network routers, to the problem of scheduling messages
that are delivered and sent by the middleware. We develop an adaptive algorithm, in-
spired by a similar algorithm used in database replication [26], to allocate download
bandwidth among multiple upstream peers. We use the concept of ingress and egress
filters, typically used at network boundaries (for example, to detect and defeat denial
of service attacks) to manage message flows between individual peers. In this paper,
we describe how to combine and extend all of these techniques into a comprehensive
middleware system for managing the resource usage of multiple overlays.

The remainder of this paper is organized as follows. In Section 2, we place ODIN-S
in context with related work. Section 3 describes the overall architecture of ODIN-S,
focusing on the support for overlapping overlays. In Section 4 we demonstrate how to
use filters for a variety of resource management goals. Section 5 presents experimental
results, and we conclude in Section 6.

2 Related Work

General scheduling of resources for data flows is a well known problem. Queuing
disciplines for scheduling packets have been studied in depth in the networking do-
main [16,17,6]. Scheduling of flowing data has been studied both in operating systems
research [9] and database research [3]. We view the traffic on an overlay as a data flow,
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and then adopt and extend techniques from different domains to manage the resources
used by this traffic. Queuing of traffic from a single overlay is used in data stream sys-
tems such as Borealis [13] and overlay toolkits such as P2 [23]. We generalize this
approach to queue messages from multiple overlays to enforce priorities across general
overlay types. Some recent work has been done on scheduling for overlays, such as
operator scheduling for distributed data stream processing [32,27,13], or load-based re-
arrangement of query streams in peer-to-peer overlays [25]. Our work generalizes these
approaches for arbitrary, and overlapping, overlays.

In addition to throttling and scheduling, ODIN-S’s filters can be used for load shed-
ding, dropping messages when buffer resources are saturated. This approach is used to
drop packets at overloaded routers [19], and tuples in overloaded data stream proces-
sors [15]. Our current implementation provides only simple tail drop of messages, but
other policies could be easily added just by implementing a new filter. Moreover, it may
be desirable to implement application-level endpoint congestion control (such as the
congestion control schemes used in TCP) in addition to the in-network filters; we have
not yet explored this approach.

Our upstream/downstream filter sets distribute a fair queuing algorithm among multi-
ple upstream filters. A similar approach is taken in Core Stateless Fair Queuing (CSFQ)
[34], where packets entering a core network are labeled by multiple upstream edge
nodes to achieve approximate fair queuing behavior inside the core. Unlike the “core-
stateless” approach where the core has no fair queues, ODIN-S can place filters at all
overlay peers, ensuring per-link fair queuing and finer-grained control over resource us-
age. Other approaches to network QoS include Integrated Services (IntServ), in which
flows must reserve resources that will be needed [10], and Differentiated Services (Diff-
Serv), in which classes of flows (say, from the same ISP) are provided service based on
a service level agreement [8]. Our techniques borrow the notion of using control mes-
sages to configure resource management from these approaches. Furthermore, we inte-
grate aspects of each approach: our per-peer filters are similar to the per-router states
maintained in IntServ, while our approach to managing the traffic of an entire overlay
(as opposed to the flow of a single request) is similar to the classes of flows in DiffServ.

Packet and message filters are used in a variety of systems for different purposes.
Examples include security filters at network boundaries, message filters in Web mid-
dleware such as mod perl, content filters in publish/subscribe middleware [5], and so
on. We apply the concept of filters to provide pluggable middleware components for
managing resources in overlapping overlays.

Orthogonal to our approach to overlapping overlays is to have distinct overlays in-
teroperate, as in PPPP [4]. In this approach, the overlays are using different hardware
resources, and thus resource mediation is not as important.

3 Architectural Support for Overlapping Overlays

In this section, we describe the architecture of ODIN-S, focusing particularly on the
features that support overlapping overlays. ODIN-S is a middleware toolkit designed to
support various types of overlays, including unstructured peer-to-peer overlays [25,36],
structured overlays [33,28,31], message and event dissemination overlays [14], data
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stream transport and processing overlays [27], and so on. In each of these overlay types,
many distributed “peers” or “nodes” are connected by middleware-level, logically per-
sistent communication “links.” For clarity in the rest of our discussion, we will refer to
“peers” to mean either “peers” or “nodes.”

The architecture of an ODIN-S peer is shown in Figure 2. We now describe each of
the components of the architecture. As a running example, we will use both a super-
peer network and a completely unstructured overlay (e.g. as in the original Gnutella
protocol). There are many other types of overlays, but these relatively simple overlays
are used to clarify the discussion. In a super-peer network, “leaf-peers” send a summary
of their content to “super-peers.” Super-peers, which typically are high capacity nodes,
handle all of the searching, both looking for matches in the summaries of their leaf
peers and forwarding messages to other super-peers. Leaf-peers are thus unloaded. An
unstructured network has only one type of peer, and each peer connects to some number
of neighbors. Each peer processes searches over its local content, and forwards the
search to some or all of its neighbors. The peer can “flood” the search (as in the original
Gnutella) by sending it to all of its neighbors, or may choose a more efficient routing
strategy [1,24,35,21,11].

3.1 Peer Logic

A peer logic handles the routing and topology management for a single overlay. A peer
that is participating in multiple overlays will have multiple peer logics, one per overlay.
In order to join a new overlay, the peer creates and starts a new peer logic. Similarly, to
leave an overlay, the peer stops and destroys a peer logic.

A peer logic in ODIN-S is comprised of two sub-components: the routing logic and
the topology manager. The routing logic receives messages from other peers, processes
them, and decides which neighbors (if any) to forward the messages. For example, a
routing logic for a super-peer will receive search messages from leaf-peers and other
super-peers, look for matching content in its indexes, return result messages if any con-
tent is found, and forward the search messages to other super-peers. In contrast, a topol-
ogy manager manages the set of neighbors that the peer has in the overlay, by making
and breaking connections to other neighbors based on the overlay’s neighbor policy.
For example, a topology manager for a super-peer will always try to have at least N
super-peer neighbors, making connections to new neighbors if existing neighbors leave
the overlay. Similarly, the super-peer topology manager will accept connections from
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leaf-peers, possibly enforcing some upper limit on the number of connected leaf-peers.
By separating the peer logic into routing and topology components, we can easily
mix and match different routing and topology algorithms in different overlays. These
reusable components makes it easier to extend ODIN-S to support different overlays.

Peer logics in ODIN-S also provide some key functionality available in other overlay
toolkits [23,30]. For example, peer logics can set and respond to timers, and pass events
to and from the application (such as a GUI or other application logic.)

3.2 Communication Manager

The communication manager handles the setting up/tearing down of connections, and
the sending/receiving of messages, for all peer logics residing at a peer. The commu-
nication manager API allows peer logics to create connections to other peers and send
messages, abstracting away the details of the underlying transport layer. Thus, the same
unmodified peer logic could be used over a variety of underlying transports, including
raw TCP sockets, SOAP calls, JXTA connections, and so on. Our system currently uses
TCP sockets.

The communication layer also provides multiplexing and demultiplexing of mes-
sages from different peer logics over the same underlying transport. Each overlay is
identified by an integer overlay ID that is a constant value across the entire overlay.
This overlay ID is included in the header of each message sent, so that the receiving
communication manager can dispatch it to the appropriate peer logic.

In this way, the overlay ID “names” the overlay. For example, we could have differ-
ent but overlapping super-peer networks if each super-peer network was identified by a
different overlay ID. Creating a new overlay involves choosing a new overlay ID, start-
ing a peer logic for that overlay ID at some peer, and publicizing the overlay ID so that
other peers can join (for example, by advertising it on a registry). The only requirement
is that logically different overlays have different IDs (no overlay ID collisions). If the
overlays exists within a single organization, the organization’s IT department can hand
out overlay IDs. On the Internet, the problem of avoiding ID collisions is somewhat
more complex. There might be an ICANN-style service for handing out overlay IDs, or
IDs may be cryptographic hashes of some meaningful description string. If we choose
a large enough ID space (e.g., 256 bits), then we can even choose overlay IDs randomly
and have minimal chance of collisions.

3.3 Runtime

The runtime provides the base functionality for each peer. The runtime creates and de-
stroys peer logics, schedules timers, dispatches events between the application layer
and the peer logics, provides a logging facility, and provides other services. Creating a
peer means starting the runtime. The runtime will then construct a communication man-
ager. The runtime will also accept “create peer logic” events, and create the appropriate
peer logic according to a set of properties embedded in the event. The runtime is thus
like a simplified application server that creates and destroys individual components as
needed.
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3.4 Filters

The resource mediation capability in ODIN-S is provided by filters. In particular, filters
manage messages according to resource quotas and policies. Filters provide:

– Throttling of message rates to enforce quotas,
– Ordering of message sending and delivery to enforce priorities, and
– Dropping of messages to shed load when necessary.

For example, a filter might enqueue (and hence delay) messages to perform throttling,
prioritize the queue to reorder messages, and drop new messages if the queue of existing
messages reaches a pre-defined limit.

Two types of filters can be created. An ingress filter filters incoming messages be-
fore they are delivered to the appropriate peer logic. An egress filter filters outgoing
messages that are generated by a peer logic, before they are actually handed over to the
transport layer for sending. Both ingress and egress filters are installed in the commu-
nication manager and shared across peer logics, so that one filter can manage resources
shared across overlays. For example, an ingress filter can enforce a quota per minute
on the overall number of messages processed by the peer for any overlay; any incom-
ing messages over the quota in a given minute would be enqueued, regardless of which
peer logic they were destined for. At the same time, filters can be used to enforce poli-
cies for a particular overlay, passing through (without filtering) any message on other
overlays.

Filters are pluggable components, so that multiple ingress and egress filters can be
installed at a peer. For example, one egress filter might enforce an overall quota on the
upload bandwidth used, while another egress filter might be used to throttle the message
rate of a particular overlay. Filters process messages in the order they were installed,
and only if all filters approve a message will the message be delivered/sent (respec-
tively, for ingress/egress filters). If a filter delays a message, when it is eventually ap-
proved by that filter it will be passed to the next filter in the list before delivery/sending.
Filters can also be created dynamically, as needed. For example, when a peer in one
overlay joins a second overlay, it might dynamically create a filter to manage the two
overlays.

Filters do not have to be passive components, responding only to incoming or out-
going messages. Filters can also set timers, and be notified when the timer expires. In
addition, filters send messages to communicate with filters on other peers. In this case,
the filter receiving the message should install itself as an ingress filter so it can receive
the message and avoid its dispatch to any peer logic. (Because the same filter object
instance can be installed as an ingress and egress filter, this mechanism allows even
egress filters to communicate with each other.)

The generality of our filtering architecture means that filters can also be used to per-
form other functionality for overlays, such as gathering statistics about traffic, filtering
out ill-formatted messages, or logging messages for recovery purposes. Such function-
ality is outside of the scope of this paper, and we focus on using filters for resource
mediation here. We examine specific examples of using filters to mediate resources
among overlapping overlays in the next section.
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4 Mediating Resources Using Filters

We now illustrate how filters in ODIN-S can be used to mediate different types of
resources shared among overlays. We focus on techniques for mediating processing
load, upload bandwidth and download bandwidth. A typical peer will want to manage
its overall load, and thus will likely install filters simultaneously for all three goals. The
techniques presented here are representative examples; filters are a general architectural
feature that can be used to implement a wide range of load and resource management
techniques. Experiments in Section 5 demonstrate that the filters described here are
effective at trading off resources between overlapping overlays.

4.1 Processing Load – Priority-Based Ingress Filter

A machine hosting multiple overlays can experience CPU overload as it processes all of
the messages arriving on all of the overlays. Therefore, it is important to be able to limit
the amount of CPU used by the ODIN-S middleware. This limit can be enforced by
operating system mechanisms, such as UNIX “nice.” Another approach is to create an
ingress filter that enforces a limit on the messages processed per unit time. One advan-
tage of the ingress filter-based approach is that the limit can be expressed in high-level
terms (e.g., “process no more than 10 search messages per second”). A disadvantage
of enforcing an absolute quota using a filter is that if the machine is otherwise idle, the
spare CPU cycles will not be used by ODIN-S. Most likely, combining OS priority and
filter-based quotas will be useful.

In either case, ODIN-S will be given a limited amount of processing capacity in
which to handle messages. This capacity must be allocated to different peer logics in
accordance with the priority of their overlay. For example, if a machine is participating
in a high priority super-peer overlay and a low priority unstructured overlay, then pro-
portionally more processing capacity should be given to the messages from the super-
peer overlay (without starving the unstructured overlay.) We assume that each overlay is
assigned a global priority, for example by the enterprise using the overlays. If different
peers have different notions of priority for different overlays, then they can use ODIN-S
filters to enforce those priorities locally. However, in this case, there will be no global
enforcement of priority, which is appropriate given that there is no global agreement on
overlay priority.

A filter that implements queuing can enforce both an absolute quota on messages
processed (e.g., throttling) as well as enforcing priority (e.g., message ordering.) Ar-
riving messages are automatically enqueued. Messages are dequeued and delivered to
the appropriate peer logic in an order determined by priority. If the filter is enforcing
a quota, then messages are only delivered periodically. For example, if the quota is 10
messages per second, then a new message will be taken off the queue and delivered
every 100 milliseconds. If the filter is only enforcing priority (and not a quota), then
a new message is taken off the queue as soon as the previous message has been pro-
cessed. The filter can also enforce a maximum queue size, and drop messages according
to some drop policy when the queue is full.
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Priority-Based Ordering of Messages. An important consideration is the order in
which we dequeue messages. A simple approach is to always dequeue the message from
the highest priority overlay. However, as is well known from experience with network
routing and operating systems scheduling, such an approach can lead to starvation for
lower priority processes. Another possible approach is to divide the quota among over-
lays according to priority, for example giving 1/3 to the low priority overlay and 2/3
to the high priority overlay. However, this approach is not work-conserving: when the
super-peer network is not using all of its quota, the unused portion is wasted, when it
should be given the unstructured overlay. Instead, we need a fair and work-conserving
algorithm for dequeuing messages.

These properties are provided by a class of weighted fair queuing (WFQ) algorithms,
traditionally used to schedule packets in network routing. WFQ allocates an overloaded
network channel to a flow in proportion to the flow’s relative priority. Thus, if the sum
of flow priorities is P , and a particular flow has priority pi, that flow should receive
pi/P of the channel bandwidth. WFQ is work conserving because it schedules packets
eagerly: if there are no queued packets for some other flow j, then WFQ schedules more
of flow i’s packets, beyond i’s guaranteed bandwidth proportion of pi/P . We adapt the
WFQ approach to CPU scheduling in ODIN-S: if an overlay i has priority pi, and the
sum of priorities over all the overlays the peer participates in is P , then the overlay i
should receive pi/P of the CPU (or of the CPU quota, if one is enforced.) Practically,
this means that if we dequeue P total messages in a time period, pi of those should
be from overlay i. If some overlay is not using its full allocation, the unused portion is
fairly divided among the remaining overlays, again respecting priority.

WFQ was proposed originally in [16]. We actually use a follow-on proposal called
start-time fair queuing (SFQ) [17] in ODIN-S. SFQ has two key advantages over the
original WFQ algorithm: 1. SFQ has less computational complexity than WFQ, and 2.
SFQ is more fair when the sender’s rate is not constant. SFQ also has advantages over
other queuing disciplines; these advantages are outlined by Goyal, Vin and Cheng [17].
Other queuing disciplines can be enforced by implementing an appropriate filter.

Briefly, SFQ operates as follows. (For more details, see [17]). Each message m that
is enqueued is given a start tag Sm and a finish tag Fm, and messages are dequeued and
serviced in order of increasing Sm (with ties broken randomly). The start tag Sm is set
equal to either the start tag of the message that was being sent when m arrived, or the
finish tag of the previous message enqueued for m’s overlay, whichever is greater. The
finish tag Fm is set equal to Sm + cm/pm, where cm is the cost of sending the message,
and pm is the priority of m’s overlay. The cm value can be the length of the message
in bytes, the estimated processing time, or some constant (if all messages are roughly
equally expensive to process.) In this way, successive messages on the same overlay
are given progressively higher finish (and hence start) tags, while messages on different
overlays are given finish (and hence start) tags that are interleaved proportionally to their
cm/pm ratio, resulting in proportionally more service for higher priority messages.

4.2 Upload Bandwidth – Priority-Based Egress Filter

Another resource used by the peer is upload bandwidth (link capacity used for send-
ing messages). With asymmetric connections (such as residential DSL), the upload
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Fig. 3. Upstream/downstream filter set

bandwidth may be different than the download bandwidth. Thus, we often have to man-
age the upload bandwidth separately from download bandwidth. Even with symmetric
connections (e.g. a machine connected to a LAN via Ethernet), it is important to manage
the number of messages sent in order to mediate the usage of the link bandwidth.

Upload bandwidth is managed by an egress filter. When any peer logic attempts to
send a message, the message is automatically enqueued. The filter takes messages off
the queue for actual sending according to the overlay priority. The filter can also enforce
a quota on the upload bandwidth used by sending (dequeuing) no more than N bytes in
any time unit. In fact, the same priority based filter described in Section 4.1 can be used,
except that the filter is installed as an egress filter instead of an ingress filter. Therefore,
we can use SFQ (or any desired queuing discipline) here as well.

4.3 Download Bandwidth – Upstream/Downstream Filter Set

Download bandwidth is more difficult to manage than upload bandwidth, which can
be managed by installing a single egress filter. In contrast, a peer cannot manage its
download bandwidth by installing a single ingress filter; by the time the ingress filter
touches the arriving message, the download bandwidth has already been used. Instead,
a peer needs to cooperate with its neighbors in order to manage its download band-
width. Consider a peer i that wishes to cap the amount of download bandwidth used for
overlay messages. Peer i can contact each of its neighbors, regardless of which overlays
they participate in, and ask them to throttle their message sending rate so that the total
bandwidth used is no more than the cap.

Figure 3 shows an upstream/downstream filter set that implements the cooperative
management of download bandwidth. The upstream filter is installed at each of peer i’s
neighbors, while the downstream filter is installed at peer i itself. The downstream filter
determines how much bandwidth can be used by each upstream neighbor, and sends
control messages to the upstream filters to ask them not to use more bandwidth. Both
the upstream and downstream filters are ingress filters so that they can receive control
messages. However, the upstream ingress filter creates egress filters on the upstream
peer to enforce the downstream peer’s bandwidth limitation requests. For example, if
peer i asks peer j to send no more than 10 Kbps, then peer j will install an egress filter
with a quota of 10 Kbps. This egress filter will apply only to peer i, so messages sent
by peer j to peers other than i will be passed through the filter without delay. In fact,
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peer j may create multiple egress filters, one per downstream neighbor that requests a
cap. However, peer j would only have a single instance of an upstream ingress filter to
respond to control messages and manage all of the egress filters.

Note that since connections in an overlay can be symmetric, j may be downstream
of i as well as upstream. In this case, j will also have a downstream filter and i will
have an upstream filter, and i will install egress filters at j’s request (just as j installs
them at i’s request.) Then, the total complement of filters at both i and j would include:
a upstream ingress filter, a downstream ingress filter, and quota-enforcing egress filters.

If two peers are neighbors in multiple overlays, then the upstream egress filter must
enforce overlay priority as well as a download quota when determining which messages
to send to the downstream peer. To do this, the egress filter created by the upstream filter
can be the same filter as described in Section 4.2: the priority-based egress filter, perhaps
based on SFQ.

Allocating Bandwidth Quotas to Upstream Neighbors. Consider a peer i that wants
to enforce a total quota of D bytes per second on its download bandwidth. Peer i must
ask its upstream peers to throttle their message sending so that the total bandwidth is no
more than D for all messages sent by i’s neighbors. The simplest way to do this is for
i to divide the quota equally among all of its neighbors: if i has n neighbors, then each
neighbor is given a quota of D/n. However, this simple approach may waste quota,
since the same quota is given to each neighbor regardless of the number of overlays the
neighbor wants to send traffic on. Neighbors that want to send traffic on one or only a
few overlays will have a larger quota than is necessary. Similarly, it makes no allowance
for the fact that some neighbors may only be members of low priority overlays, and thus
should not get an equal allocation of the quota as neighbors who are members of higher
priority overlays.

We now describe how to allocate the quota D to upstream neighbors according to the
priority of overlays those neighbors are participating in. Our algorithm divides the total
quota proportionally based on the priority of overlays, and then further divides these
fractional quotas evenly among the neighbors that wish to send traffic on a particular
overlay. The algorithm operates as follows. Peer y tracks which upstream neighbors
want to send traffic on each overlay, either by tracking received messages or by having
upstream peers send control messages listing the overlays on which they want to send
messages. Periodically, peer y adjusts the quota assigned to each upstream neighbor as
follows. First, it divides the total quota into per-overlay fractional quotas, proportional
to the relative priority of each overlay: each overlay i is given quota di = D × pi

P .
These fractional quotas are then evenly divided among the neighbors that wish to send
traffic: if there are ci neighbors sending traffic on overlay i, each neighbor receives a
slice of the fractional quota equal to D

ci
× pi

P . The total quota given to an upstream peer
is the sum of the slices for that peer. That is, define ti,j as 1 if neighbor xj wants to
send traffic on overlay i, and 0 otherwise, and m as the number of overlays. The quota
assigned to an upstream neighbor xj is

∑m
i=1 ti,j × D

ci
× pi

P . Each upstream neighbor
manages its quota using an egress (SFQ) filter.

As an example, consider a peer Y , with a download quota of 9 messages/second, and
its three upstream neighbors A, B and C. A and B both want to send traffic on overlay
1. C wants to send traffic on both overlay 1 and overlay 2. Assume that overlay 2 has
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twice the priority of overlay 1. Then, the total quota on messages delivered to Y from
any peer should be divided into one-third for overlay 1 and two-thirds for overlay 2.
The quota for overlay 1 (3 messages/second) will be divided evenly among A, B and C
(each receiving 1 message/second). The entire quota for overlay 2 (6 messages/second)
will be given to C. The total quota given to C will be 7 messages/second.

It is also possible to extend this algorithm to give more quota to upstream neighbors
that wish to send more traffic on a given overlay. Then, instead of dividing the frac-
tional quotas into equally sized slices, we would divide the fractional quota based on
the observed traffic rate from each neighbor. However, experiments in Section 5 demon-
strate that in practice, this approach does not work as well as the equal division in the
algorithm detailed above.

5 Experimental Results

We have conducted experiments to determine how effective the ODIN-S architecture
is at fairly managing resources between overlapping overlays. Our experiments utilize
ODIN-S components both in a discrete event simulation, and as actual peers. Our simu-
lator allowed us to quickly examine many overlay combinations and parameter settings,
while the prototype allowed us to examine the real system in action. It is important to
note that the peer logic and filter implementations were the same in the simulator and
prototype; in other words, in the simulations each peer was processing and sending ac-
tual messages. This philosophy of simultaneously implementing a simulator and peer
client software using the same components was proposed in [30,20]. For the exper-
iments in this paper, we used the peer implementation to calibrate and validate our
simulations. Here, we report simulation results.

The primary metric we have considered is throughput, measured in terms of mes-
sages processed by the overlay per second. Although we are examining different over-
lays providing different functionality, this throughput metric allows us to examine a
common performance measure across all overlays.

5.1 Experimental Setup

We experimented with three types of overlays: an unstructured peer-to-peer overlay,
with searches routed via optimized random walks [1,24], a super-peer overlay, with
searches flooded between super-peers [36], and a multicast tree overlay, with a single
source multicasting updates to multiple clients. The multicast overlay is modeled on the
end-system multicast trees provided by the Narada system [14], although we have only
implemented the multicast tree construction and not yet the topology-aware optimiza-
tions that Narada provides.

In most of our experiments, there were 1,000 total peers participating in multiple
overlays. Each peer remained alive during the entire experiment. This scale and lack of
peer “churn” represents enterprise-scale overlays. A typical Internet peer-to-peer over-
lay would likely have more peers and more churn. Given the priority-based nature of
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our techniques, and the need to use a common runtime, we expect enterprises or other
similar organizations to be the most immediate target of our techniques. However, we
also examined the scalability of our techniques to larger networks: due to space re-
strictions, we do not report the results, which were consistent with the results for 1,000
peers. We also examine the effectiveness of our techniques in the presence of peer churn
(in Section 5.5).

For the unstructured and super-peer overlays, we downloaded HTML data from real
web sites, and each peer provided full-text keyword search over the data from one web-
site (using standard IR techniques: scored using a normalized cosine distance of TF/IDF
weighted queries and documents, and a document match had score > 0.1). If a peer par-
ticipated in multiple overlays, each peer logic searched documents from a different site.
We used real keyword searches from the search.com search engine. In the super-peer
network, only high capacity peers (capacity greater than the average) chose to become
super-peers, with a probability 0.1. In the multicast overlay, a single source generated
small (< 100 bytes) updates, and propagated the updates along the multicast tree. Each
multicast peer had up to five children in the tree.

Each peer was given a quota, measured in messages/second, that it could receive,
process, and transmit. Alternatively, the quota could have been measured in message
size, time to process, etc. We chose number of messages both because it generalizes
across bandwidth and CPU time (which would otherwise be measured in different
units), and different types of overlays (which would have different processing costs,
message sizes, and so on). To determine appropriate quotas for peers, we measured
the maximum throughput achievable with our current prototype. We started an unstruc-
tured overlay using real ODIN-S peers, each on separate, otherwise unloaded machines
connected by gigabit Ethernet. Each machine had dual 3.0 GHz Pentium4 Xeon CPUs
and 4 GB RAM. The maximum throughput measured was 135.5 messages per second.
We expect this type of machine to be in the mid to high range for overlay peers; some
machines (e.g. servers) will be more powerful while many will be less powerful (both
in terms of CPU and bandwidth.) Therefore, in our experiments, our simulation mod-
els machines as having capacity randomly chosen in the range 20-200 messages per
second. Of course, machines that are conducting other work besides hosting an overlay
node may decide to set a quota less than their maximum capacity. In such a situation, the
absolute values of the quotas would be less but the range (e.g., an order of magnitude)
would likely be similar.

5.2 Overlapping Unstructured Overlays

Our first set of experiments measured the throughput provided by ODIN-S for overlap-
ping unstructured overlays. We started with unstructured overlays because they are the
most traffic-intensive of the three overlay types we implemented, and thus they give a
sense of how the system performs under heavy load. Other overlay types are considered
in the next section. The experiments here examine two overlapping overlays; in other
results (not shown here) we have increased the number of overlapping unstructured
overlays and observed similar results.
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Ingress Filters for Managing Processing Load. We created two overlapping unstruc-
tured overlays: a low priority overlay, and a high priority overlay, with priority equal
to twice that of the low priority overlay. Each peer participated in both overlays. We
ran the system for 100 simulated seconds, generating a total of 25,000 search requests
per overlay during this time. In simulations of peers with unlimited capacity, this setup
results in an average of 99,000 messages per overlay per second (across the whole over-
lay). However, the limited capacity of peers sharply reduces the actual throughput.

Figure 4 shows the average throughput for no ingress filtering, ingress filtering using
a simple priority scheme (always prefer higher priority messages), and ingress filtering
using SFQ. As the figure shows, in each case the total throughput over both overlays
is about 44,000 messages per second. However, without filters, that throughput is allo-
cated unfairly: the low and high priority overlays receive the same service. The through-
put is also unfairly balanced with simple priority filters, as the low priority overlay is
starved (7,500 messages/second) compared to the high priority overlay (35,000 mes-
sages/second). In contrast, the SFQ ingress filters result in service that more properly
reflects the overlay priorities: the high priority overlay receives 60 percent of the to-
tal throughput. This result is not exactly the 2:1 ratio of high/low priority, and reflects
overlay-wide queuing effects that disproportionately affect the high priority overlay. In
particular, since more high priority messages are approved by filters at some nodes,
there are disproportionately long queues of high priority messages at other nodes, and
these queuing delays reduce throughput of the high priority overlay somewhat. Despite
this issue, the ingress filter using SFQ queuing most effectively preserves the overlay
priority. We also ran experiments with larger and smaller rates of search requests, and
observed similar effects.

Varying Priorities. In the next experiment, we used the same overlays and traffic as
in the previous experiments, but varied the priority ratio between the two overlays from
1:10 to 10:1 (each different ratio represents a different experimental run). As Figure 5
shows, the changing relative priority results in changing relative throughput. In the mid-
dle of the figure (for ratios near 1:1), the ratio of throughput nearly exactly reflects the
ratio of priorities. For larger ratios (on the left and right of the figure), the throughput of
the high priority overlay flattens, while the lower priority overlay receives less through-
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put. In all cases, the high priority overlay properly receives more service. The flattening
results from an increasing number of “bottleneck” peers as more high priority messages
are sent. Bottleneck peers are low capacity peers that have long queues and effectively
throttle the throughput of the entire overlay. Thus, even as more priority is allocated to
the overlay, the network simply cannot provide it more service. (This effect is the reason
the SFQ filter provides only a 60/40 throughput allocation in the previous section.)

Varying Traffic Rates. So far, both the high and low priority overlays have had the
same, constant rate of traffic to send. We also experimented with cases where the traffic
rates varied between overlays and over time.

First, we ran an experiment where the low priority overlay had twice the query rate of
the high priority overlay. Figure 6 shows the results. Without filtering, the low priority
overlay receives significantly more service than the high priority overlay. ODIN-S filters
properly preserve priority; even though the low priority overlay has more traffic to send,
it still receives less service than the high priority overlay.

Next, we ran an experiment where both overlays had the same query rate, except
that the low priority overlay experienced a load spike, doubling its traffic for 20 sec-
onds (starting at 50 seconds.) The results (not shown) indicate that the high priority
overlay is not affected, and continues to receive higher service than the low priority
overlay.

Third, we ran an experiment where both overlays had the same query rate, but the
high priority overlay was created halfway through the simulation. This models a sce-
nario where an overlay exists, and then another overlay is started using the same ma-
chines. As Figure 7 shows, initially the low priority overlay is receiving high service,
because it is the only overlay. In the no-filtering case, the low priority overlay continues
to receive the most throughput even after the high priority overlay begins to transmit
traffic. In contrast, with ODIN-S filters, when the high priority overlay starts, it quickly
achieves higher throughput than the low priority overlay.

These results all show that ODIN-S filters can effectively trade off resources between
overlays, even when the traffic rates change.
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5.3 Upstream/Downstream Filter Sets for Managing Link Bandwidth

Next, we examined the effect of our adaptive algorithm for allocating quota to upstream
egress filters. We used the same overlapping unstructured overlays and message load as
in the previous section. We compared three methods of allocating upstream quota:

– simple round-robin: the quota was divided evenly among upstream neighbors.
– adaptive, neighbor count: our algorithm from Section 4.3 was used to adjust up-

stream quota based on which overlays at neighbors participate in.
– adaptive, traffic-proportional: we extended our adaptive algorithm to adjust up-

stream quota based on the traffic rates at upstream neighbors.

The traffic-proportional algorithm gives more quota to neighbors that wish to send more
traffic. In this case, the upstream neighbor measures its traffic rate and sends updates
to the downstream neighbor. The total quota is divided proportionally based on overlay
priority into fractional quotas, and then further divided proportionally to the amount
of traffic that the upstream neighbors of each overlay want to send. In all cases, the
dynamically created upstream egress filters were SFQ filters.

Figure 8 shows the results. As the figure shows, in the simple round-robin method,
the throughput experienced by both overlays is roughly equal. In contrast, both adap-
tive algorithms allocate total throughput according to priority, such that the high prior-
ity overlay receives more throughput than the low priority overlay (again, split 60/40).
Another key difference between the three techniques is that the adaptive algorithms
provide greater total bandwidth over both overlays than the simple round robin. In fact,
the adaptive, neighbor count algorithm results in the highest total throughput, with 9
percent more total throughput than the traffic-proportional algorithm, and 11 percent
more total throughput than the round-robin approach. Round-robin wastes quota by al-
locating the same amount to neighbors that host only one overlay as to those that host
multiple overlays. The traffic-proportional approach would seem to effectively allocate
quota based on traffic rates (and in fact was our first approach.) However, our experi-
ments show that this approach also wastes quota when traffic is bursty. A burst causes a
large quota window to open on one neighbor, consequently reducing the quota on other
neighbors. When the burst is over, another burst typically arrives at another neighbor,
who now has a small quota. The result is that the large quota on the formerly bursty
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neighbor is wasted until the adaptive algorithm reallocates quota. The neighbor count
approach provides more stable quotas, but does so in recognition of the actual overlays
of neighbors, resulting in both fairness and larger total throughput.

5.4 Other Overlay Types

In addition to unstructured overlays, we also examined super-peer and multicast over-
lays. First, we present results where the overlapping overlays are of the same type, and
then we present results where the overlays are different.

Overlapping Overlays of the Same Type. We examined a network with two over-
lapping super-peer overlays. In this case, super-peers handle almost all of the overlay
messages, since search messages are never sent to leaf peers. Therefore, there is only
contention for resources when the same peer hosts super-peers for both overlays. We
again generated 25,000 searches per overlay. The results (not shown) demonstrate that
at the nodes where there is resource contention, the higher priority overlay receives
higher throughput, consistent with the relative priorities between the two overlays.

Next, we ran an experiment with two overlapping multicast trees. Each multicast
source generated 25,000 events. The high priority tree had twice the priority of the
low priority tree. Figure 9 shows the resulting throughput. As the figure shows, the
effect of filtering is less prominent. Although filtering results in the high priority overlay
receiving more throughput, the allocation is not as fair: the high priority overlay only
receives 57 percent of the throughput. In an application-level multicast tree, the total
throughput is heavily dependent on the capacity of the root peer and peers near the
root, since they are the bottlenecks for dissemination to the rest of the tree. If a peer
is a bottleneck node in both multicast overlays, then ODIN-S filters can mediate the
resources at the bottleneck; otherwise, the filters have only a minor effect. The result is
that ODIN-S filters allocates total throughput more effectively than in the no filtering
case, but not as well as for other types of overlays.

Because performance of the multicast overlay depends so heavily on the topology
and nature of the bottleneck nodes, to ensure an apples-to-apples comparison we had to
hardwire our system to construct the same overlay topology in both the filtering and no
filtering scenario. We do the same for multicast tree experiments in the next section.

Overlapping Overlays of Different Types. We examined four combinations of het-
erogeneous overlapping overlays: (1) unstructured + super-peer, (2) flooding-based un-
structured + random-walk based unstructured, (3) super-peer + multicast, and (4) un-
structured + multicast. These experiments are just a subset of all of the possible com-
binations of overlays. However, they allow us to examine how well ODIN-S trades off
resources between overlapping overlays of different types.

First, we ran an experiment where an unstructured overlay overlapped with a super-
peer overlay. We assigned the super-peer overlay twice the priority of the unstructured
overlay. In this case, the super-peer overlay’s resource requirements are concentrated
at super-peers (approximately 5 percent of the total nodes), which have high traffic
volumes. As shown in Figure 10, without priority filtering, the super-peers become a
bottleneck for both overlays, effectively starving the unstructured overlay. In contrast,



Trading Off Resources Between Overlapping Overlays 117

No filtering ODIN−S filters
0

0.5

1

1.5

2

2.5
x 10

4

A
ve

ra
ge

 th
ro

ug
hp

ut
 (

m
es

sa
ge

s/
se

co
nd

) Low−priority overlay (unstructured)
High−priority overlay (super−peers)

Fig. 10. An unstructured overlay over-
lapping with a super-peer overlay
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Fig. 11. An unstructured overlay over-
lapping with a multicast overlay

with ODIN-S filtering, the unstructured overlay is given its fair share of priority at
the super-peers, reducing the bottleneck effect and resulting in more than a factor of
five increased throughput. This demonstrates how ODIN-S can prevent the topology
features and hotspots of one overlay from impeding the throughput of the other overlay.
Note that the super-peer overlay, which is high priority, sends relatively few messages,
since it is more efficient than the unstructured overlay. However, at peers hosting a
super-peer, the super-peer overlay is receiving twice the service of the unstructured
overlay, without starving the unstructured overlay.

Next, we examined two different types of unstructured overlays: a flooding-based
unstructured overlay (as in the original Gnutella) and a random-walk based overlay.
Flooding, which is not scalable for Internet overlays, might be used in enterprise-scale
overlays because it offers low result latency. For this reason, some domain-specific tools
use a flooding-based overlay [2]. Our results (not shown) indicate that despite the dif-
ference in routing method, ODIN-S filters result in both overlays receiving throughput
in proportion to their priority. Without filtering, both overlays receive approximately
the same throughput, despite their priority difference.

We also examined a super-peer overlay overlapping with a multicast overlay. The re-
sults (not shown) are similar to the case of the two overlapping multicast trees
(Section 5.4): filtering improves the fairness of the allocation of throughput, but the ef-
fect is not as dramatic as in the other overlay types. Again, the unique topology features
of the multicast tree (bottleneck nodes are near the root) means that unless a bottleneck
node and super-peer are hosted on the same peer, ODIN-S filters have limited effect.

Finally, we examined an unstructured high priority overlay overlapping with a low
priority multicast tree. The results are shown in Figure 11. As the figure shows, ODIN-
S has a large effect on the throughput, effectively allocating more throughput to the
high priority overlay, while no filtering allows the low priority multicast tree to grab
most of the service. In this case, the bottleneck nodes of the multicast tree are always
overlapping with a traffic-bearing node in the unstructured network (since all peers
in unstructured network forward traffic.) Then, ODIN-S can effectively allocate the
throughput at the bottleneck nodes between the two overlays, resulting in an overall fair
allocation of throughput.
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5.5 Dynamic Scenario

We examined a scenario in which overlay peers joined and left frequently, as frequently
occurs in many Internet peer-to-peer overlays. Although we primarily envision our sys-
tem being used for more stable networks where priority can be effectively assigned to
overlays (such as in enterprise networks), we wanted to see how a large amount of churn
affected the throughput. We used a real trace of peer joins and leaves from the Overnet
system [7], and extracted the first 1,000 peers from the trace (representing roughly the
first 14 hours of the trace.) This trace is highly dynamic: the average peer is alive for
only 5 hours, while the shortest lived peers are alive for 20 minutes. Figure 12 shows a
histogram for the distribution of peer lifetimes. Each peer participated in two overlap-
ping unstructured overlays. Since Internet peers are not usually dedicated but instead
used for multiple tasks besides the overlay, peers allocated 10 percent of their capacity
to the overlay; hence the capacity range was 2-20 messages/second.

Figure 13 shows the results. As the figure shows, even in the presence of high churn
the system performs as before: without filtering, both overlays receive the same service,
but with ODIN-S filters, the higher priority overlay receives an appropriately higher
level of service.

5.6 Summary of Results

We can draw the following conclusions from our results:

– ODIN-S is effective at enforcing fair allocation of resources between overlapping
overlays, respecting priority but avoiding starvation.

– Using the SFQ filter as an ingress filter is effective across different priority ratios,
traffic patterns, and overlay types. It is least effective for overlapping multicast
overlays, where the topology characteristics often outweigh what the filtering can
achieve. Even in this case, however, filtering is more fair than no filtering.

– The adaptive, neighbor-count algorithm for allocating quota to an upstream neigh-
bor is more fair, and results in better overall throughput, than a simple round robin
scheme (allocate equal quota to all neighbors), or a scheme where quota is allocated
proportionally to the traffic each neighbor wants to send.
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– Heterogeneous overlapping overlays can have complex interactions as hotspots in
one overlay impact the throughput of another. ODIN-S filters can effectively miti-
gate the impact one overlay has on another.

– Our architecture is effective both for overlays with little or no churn, as well as for
overlays with a high amount of churn.

6 Conclusion

We have presented ODIN-S, a middleware system for trading off resources between
overlapping overlays. Our architecture can be used to mediate the resource demands
of different overlays deployed to provide different functionality on the same hardware.
The system demonstrates how to integrate and extend techniques from multiple domains
into a comprehensive middleware toolkit for deploying and managing multiple overlays.
ODIN-S provides a common runtime that supports multiple peer logics, one per overlay.
Our system also provides a flexible and extensible filtering mechanism. Filters can be
used for a variety of tasks, and we focus on their use for allocating resources to different
overlays based on priority. We describe ingress, egress and upstream/downstream filters
to manage CPU usage, upload and download bandwidth (respectively). Experiments
demonstrate the effectiveness of ODIN-S at enforcing fair, priority-based sharing of
resources among overlapping overlays.
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Abstract. Efficient subsumption checking, deciding whether a subscription or
publication is covered by a set of previously defined subscriptions, is of
paramount importance for publish/subscribe systems. It provides the core system
functionality—matching of publications to subscriber needs expressed as sub-
scriptions—and additionally, reduces the overall system load and generated traffic
since the covered subscriptions are not propagated in distributed environments.
As the subsumption problem was shown previously to be co-NP complete and
existing solutions typically apply pairwise comparisons to detect the subsump-
tion relationship, we propose a ‘Monte Carlo type’ probabilistic algorithm for the
general subsumption problem. It determines whether a publication/subscription
is covered by a disjunction of subscriptions in O(k m d), where k is the number
of subscriptions, m is the number of distinct attributes in subscriptions, and d
is the number of tests performed to answer a subsumption question. The prob-
ability of error is problem-specific and typically very small, and sets an upper
bound on d. Our experimental results show significant gains in term of subscrip-
tion set reduction which has favorable impact on the overall system performance
as it reduces the total computational costs and networking traffic. Furthermore,
the expected theoretical bounds underestimate algorithm performance because it
performs much better in practice due to introduced optimizations, and is adequate
for fast forwarding of subscriptions in case of high subscription rate.

1 Introduction

Content-based publish/subscribe systems are receiving growing interest with a large
number of relevant applications such as stock tickers, RSS news feeds, network mon-
itoring, traffic monitoring, and electronic commerce requiring selective information
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dissemination. Traditional content-based publish/subscribe systems usually employ high-
performance servers to handle high rates of publications and serve millions of sub-
scribers in static environments. They have been optimized for fast matching of publica-
tions to subscriptions [1,2,3,4] and typically maintain a special subscription index that
does not frequently change as the rate of subscription changes is negligible compared
to the publication rate.

Distributed content-based publish/subscribe systems traditionally assume static envi-
ronments and use a network of brokers to divide the publication and subscription load.
Brokers implement routing protocols to provide a consistent service with the goal of
reducing networking costs generated by publications and subscriptions [5,6]: Subscrip-
tions are typically routed through the network toward publishers to enable filtering of
publications close to their sources. Subscription traffic, on the other hand, is reduced
by not propagating covered subscriptions, as they are redundant, or by subscription
merging [7,8].

Although the importance of subscription set reduction for content-based publish/sub-
scribe systems has been stressed, e.g. in [8], existing deterministic algorithms [9,6,7]
focus either on efficient matching of publications to subscriptions only or rely on basic
heuristics for subscription set reduction such as pairwise subscription comparison or
subscription merging. In this paper we take a more fundamental approach to subscrip-
tion set reduction for (distributed) content-based publish/subscribe systems. In partic-
ular we show that when using general subsumption checking, where the covering of
subscriptions by multiple other subscriptions is exploited, important performance im-
provements can be achieved. However, efficient general subsumption checking is non-
trivial. Publications and subscriptions are typically modeled as logical expressions–
conjunctions of predicates–where each predicate defines a simple constraint on an at-
tribute. Geometrically, subscriptions can be viewed as convex polyhedra. Therefore,
the general subsumption checking problem corresponds to the problem of checking
whether a disjunction of subscriptions covers a subscription/publication, which can ge-
ometrically be interpreted as checking whether a convex polyhedron is contained within
a finite union of convex polyhedra. This problem was proven to be co-NP complete
in [10].

Since the general subsumption problem is practically unfeasible, for solving it, we
introduce a probabilistic ‘Monte Carlo type’ algorithm. This is the first probabilistic
approach to test the subscription coverage by a union of subscriptions. The algorithm
solves the subsumption problem in O(k ·m ·d), where k is the number of subscriptions,
m is the number of distinct attributes in subscriptions and d is the number of tests
performed to answer the subscription coverage question. The value of parameter d is
dependent on an acceptable predefined probability of error which is problem specific
and can be computed in polynomial time a-priori. Using this algorithm a subscription
set can be efficiently reduced to a minimized subscription set matching the same set
of publications. Experiments show that in practice our algorithmic approach performs
much better than the theoretical bound O(k · m · d). The same algorithm can also
be used to efficiently match publications from imprecise data sources, by representing
publications also as convex polyhedra, as it is advocated in recent publish/subscribe
models with approximate matching [11].
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The importance of subscription set reduction is highly significant in distributed
content-based publish/subscribe system for the following reasons:

– The publish/subscribe systems architecture is increasingly used in environments
with highly variable subscriptions, such as MANETs and sensor networks, where
the assumption of both network [12] and subscription stability no longer holds.
The rate of subscription changes may drastically increase as a consequence of both
changing interests and context changes, and also may substantially exceed the pub-
lication rate if rare events are monitored; therefore, novel indexing techniques have
been investigated that trade-off precision to performance [13], however they do not
solve the essential problem of subscription set reduction.

– As publish/subscribe systems mainly target usage scenarios where a subscription
space is moderately populated and subscriptions typically overlap due to similar but
not equal interest, there is a higher probability of a subscription being covered by a
set of subscriptions rather than a single one. Covered subscriptions are redundant.
Therefore, they are not propagated further which reduces the total number of sub-
scriptions in the system saving memory and reducing traffic. This in turn reduces
computational costs for matching publications to subscriptions and new subscrip-
tions to existing subscriptions as the set of subscriptions is reduced.

– As publish/subscribe systems are growing in scale to very large networks of bro-
kers, the benefit of any reduction in the number of subscriptions forwarded locally
by a broker, is amplified exponentially in the network diameter while broadcast-
ing subscriptions in the broker network. Thus even modest local reductions lead to
substantial global reductions in network traffic during subscription propagation.

Due to the probabilistic nature of the algorithm a concern about lost publications
(false negatives) may be raised. However, many recent applications are tolerant to lost
publications, because e.g. the data sources are already unreliable themselves, as in sen-
sor networks. Furthermore, the error probability can be controlled and adapted to appli-
cation needs, trading off computational cost for precision. Therefore, we expect that for
a wide range of important applications the probabilistic nature of the approach is fully
acceptable.

To summarize, the algorithm has the potential to significantly decrease costs in terms
of computation, memory, and bandwidth consumption in content-based and distributed
publish/subscribe systems by fully exploiting the potential subscription set reduction
and achieving computational efficiency through a probabilistic approach. In our exper-
imental evaluations we verify both the performance gain with respect to subscription
set reduction by comparing to the standard technique of pairwise reduction and the
performance characteristics of the algorithm as compared to the pessimistic theoretical
bounds.

The remainder of the paper is structured in the following way. We review the basic
principles of content-based publish/subscribe communication model in Section 2. To
motivate the presentation, Section 3 sketches a usage scenario and formally defines the
subsumption problem. Section 4 presents our novel probabilistic algorithm with specific
optimizations, and we investigate it’s properties in a distributed setting in Section 5.
Section 6 presents an evaluation of the algorithm using extensive experimentation, and
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in Section 7 we compare it to the related work in the field. We complete the paper with
our conclusions in Section 8.

2 Distributed Publish/Subscribe Communication

The publish/subscribe interaction model enables asynchronous communication between
information publishers and subscribers. Subscribers express interest in receiving pub-
lications that comply to specific criteria by defining subscriptions that change the set of
active subscriptions maintained by the publish/subscribe system. When a publisher de-
fines a new publication, it is compared against all active subscriptions, and the system
notifies subscribers with a matching subscription about the published content. Thus, the
publish/subscribe service performs content filtering and enables push-style group com-
munication, where group members are determined dynamically per each publication.

In a distributed system a set of publishers Pi, 1 ≤ i ≤ n and a set of subscribers
Sj , 1 ≤ j ≤ m interact over a set of nodes, brokers, Bk, 1 ≤ k ≤ N . Brokers are re-
sponsible for matching publications to subscriptions and for disseminating publications
to neighboring brokers with subscribers interested in the published content. A publica-
tion matches a subscription if all publication attributes satisfy constraints defined by the
subscription. The simplest approach to route publications in a broker network is publi-
cation flooding, where end brokers perform publication filtering prior to final delivery
to local subscribers. This approach is an obvious solution for scenarios with a densely
covered subscription space where most brokers have interested subscribers for all pub-
lications; however, it wastes a lot of bandwidth in cases with few or no subscribers
interested in a large fraction of publications.

To decrease the publication traffic, subscriptions are disseminated through the net-
work close to publishers to enable publication filtering ’at the source’. Upon receiving a
new subscription, a broker will forward it to its neighbors that are potential publishers of
content matching the defined subscription. A commonly used technique for subscription
dissemination is flooding: A subscription is sent to all neighbors except to the one from
which it was received. Note that brokers maintain a routing table with a set of active
subscriptions per each neighboring broker, and consider this neighbor to be a subscriber
without knowing the ’real’ end subscribers. Upon receiving a publication, a broker Bi

forwards it to its neighboring broker Bj only if it matches any of Bj’s subscriptions. In
other words, publications follow the reverse direction of subscriptions. The technique
originates from IP muticast and is commonly known as reverse path forwarding [5,6].

To reduce the subscription traffic, subscription covering and merging is applied. In-
formally, a subscription s1 covers subscription s2 if all publications matching s2 will
also match s1, but the opposite does not hold. Since a covered subscription does not
influence the propagation of publications, there is no need to forward it to neighboring
brokers. Therefore, when a broker Bi receives s2 which is covered by s1, it will not
forward s2 to Bj if Bi has previously forwarded s1 to Bj . Nevertheless, s2 has to be
stored in the passive set of subscriptions (s1 would be an element of the active set), be-
cause it must be activated in case s1 expires, i.e. a subscriber unsubscribes from s2. The
process of merging proposes a single merged subscription for similar subscriptions, but
will not be discussed in detail as it is beyond the scope of this paper.
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3 Problem Statement

Scenario. To motivate the need for an efficient subsumption checking mechanism, we
introduce a usage scenario potentially generating a large number of subscriptions. Re-
source discovery in Grids assigns computation requests (jobs) to available services.
Current systems use server-based solutions and recently P2P-based solutions have been
investigated [14] to deal with the scalability problem caused by a large number of
jobs and services. Let us discuss the problem of resource discovery in terms of pub-
lish/subscribe. Services offering computational resources may announce their capabil-
ities and availability through subscriptions to enable efficient matching and scheduling
of jobs searching for available services. Jobs define their requirements from the ser-
vices using publications. An example subscription with two publications are presented
in Table 1.

Table 1. Subscription and publication examples

CPUcycles disk memory service time

s1 [3000, 3500] [40, 50kB] 1GB a.service.org [2006-03-31T16:00:00,
2006-03-31T20:00:00]

p1 3500 45kB 1GB *.service.org 2006-03-31T16:00:00
p2 1035 45kB 0.5GB *.*.org 2006-03-31T12:23:05

The basic characteristic of the presented usage scenario is the potentially large num-
ber of services and jobs that generate huge amounts of both subscriptions and publica-
tions. Dynamic changes of subscriptions are significant because as the context changes,
i.e. services get allocated to new jobs, subscriptions will consequently change. There-
fore, this scenario exemplifies a setting where context changes induce higher subscrip-
tion rate, as it can also be observed in mobile environments. Next, the subscription space
may have high dimensionality: Even in our simple example without detailed job and re-
source descriptions, 5 different attributes have been defined. Thus, we propose a method
for reducing the total number of active subscriptions in the system by means of group
coverage. Due to large numbers and inherently distributed characteristics of Grid ser-
vices, the publish/subscribe service for resource discovery would be distributed. As in
this paper we are focusing on the subsumption process performed within a single node,
we are not assuming neither an underlying network topology nor stability of the broker
network. It can be applied with various routing protocols, and our goal is to point out
potential impact of the proposed algorithm on the performance of a distributed system
regardless of its topology and applied routing strategy.

Let us consider the following example of subscription coverage in a 2-dimensional
subscription space. Table 2 defines two existing subscriptions, s1 and s2, and new sub-
scription s. We want to determine whether s1 and s2 jointly cover s. As it is visible from
the graphical representation of subscriptions in Figure 1, the subsumption relationship
indeed exists. Even though neither s1 nor s2 cover s, their union entirely covers s.
Note that constraints in this example define ranges to simplify the presentation, and can
straightforwardly be extended to finite sets [15].

Table 3 lists the notation used in the paper.
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Table 2. Subsumption example: s � (s1 ∨ s2)

Subscription s
[x1 ≥ 830 ∧ x1 ≤ 870∧
x2 ≥ 1003 ∧ x2 ≤ 1006]

Subscription s1

[x1 ≥ 820 ∧ x1 ≤ 850∧
x2 ≥ 1001 ∧ x2 ≤ 1007]

Subscription s2

[x1 ≥ 840 ∧ x1 ≤ 880∧
x2 ≥ 1002 ∧ x2 ≤ 1009]

800 820 840 860 880 900
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Fig. 1. Graphical representation of subscriptions
in Table 2

Table 3. Notations

Symbol Meaning

s New subscription
p Publication
S Disjunction of existing subscriptions si, 1 ≤ i ≤ k

k |S|
si Existing subscription si ∈ S

sj
i jth predicate in si

xj Attribute j

m number of distinct attributes in S

T Conflict table
T j

i Value in row i, column j of T

ti Number of defined elements in row i of T

fci Number of conflict-free elements in row i of T

δ Error probability
ρw Probability of guessing a point witness

Definition 1. Subscription si is a conjunction of predicates si = s1
i ∧s2

i ∧. . .∧sri

i where
each sj

i is a simple predicate, and ri ≥ 1, where ri is the number of simple predicates
forming subscription si. Let us define m, as the number of distinct attributes in the set
of k subscriptions si, 1 ≤ i ≤ k.

Without restricting the applicability of the algorithm and to simplify the analysis, we
consider that each simple predicate defines a constraint on an attribute xj , 1 ≤ j ≤ m,
where each xj has a lower (xj ≥ lowj) and upper limit (xj ≤ highj). Each attribute
is therefore defined as a range. Furthermore, we assume that all subscriptions define
constraints for the same number of attributes m1 = m2 = . . . = mk = m, and since
there is a lower and upper bound on each xj , r = 2 ·m. In fact, this is not a restriction as
the bounds (−∞, +∞) mean the attribute is not significant for a particular subscription,
and remains undefined.
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The general subsumption problem tests whether a subscription s is covered by a
disjunction of subscriptions, s 	 (s1 ∨ s2 ∨ . . . ∨ sk), where k is the total number of
existing subscriptions.

Definition 2. A conflict table T is a k × (2 · m) table relating a subscription s to all
simple predicates defined by S = {s1 ∨ s2 ∨ . . . ∨ sk}. An element in table T , T j

i is
¬sj

i if s ∧ ¬sj
i is satisfiable or is otherwise undefined.

A conflict table points out conflicting and not covered intervals between a tested sub-
scription and a set of subscriptions. To construct the conflict table, we process each
subscription si ∈ S to verify the satisfiability of the negation of each simple predicate
sj

i against subscription s. If the condition is true, T j
i is assigned the value ¬sj

i , oth-
erwise it is assigned the undefined value. Thus, the decision whether a specific T j

i is
defined is done in O(1) and the construction of the table requires O(m · k).

For the example in Table 2, s∧¬s1
1 is not satisfiable, because the intersection between

s and ¬s1
1 = {x1 < 820} is empty, while s∧¬s2

1 is satisfiable because the intersection
between s and ¬s2

1 = {x1 > 850} is non-empty. Both s ∧ ¬s3
1 and s ∧ ¬s4

1 are not
satisfiable and thus the corresponding table cells are undefined. The same procedure
is performed to compare s to s2.

Table 4. Conflict table for the example in Figure 1

si x1 < low1
i x1 > high1

i x2 < low2
i x2 > high2

i

s1 undefined x1 > 850 undefined undefined

s2 x1 < 840 undefined undefined undefined

The conflict table relating subscription s from Table 2 to the set of subscriptions
s1 and s2 is given in Table 4. The first row represents a template for the content of
the actual conflict table relating s to s1 and s2. The first line corresponding to s1 has
only one defined element, ¬s2

1 = {x1 > 850} because, as it is visible in the graphical
representation, s1 does not cover s for x1 > 850. Analogously, the only defined element
in the second line corresponding to s2 is ¬s1

2 = {x1 < 840}.

Definition 3. A polyhedron witness to non-cover is a set of elements from a conflict

table T ,
{
T j1

1 , . . . , T jk

k

}
, such that s∧¬sj1

1 ∧. . .∧¬sjk

k is satisfiable, defining a convex

polyhedron. In other words, a polyhedron witness is a convex polyhedron contained in
s, but not in S.

Let us consider the example graphically represented in Figure 2, defining two sub-
scriptions s1 and s2 that do not cover subscription s. The polyhedron witness to non-
cover is a rectangle in this case, and is defined by the intersection of s and the element
¬s2

2 = {x1 > 870}. This rectangle is contained in s, but not in s1 nor s2.

Definition 4. A point witness to non-cover is a point that satisfies s, but does not satisfy
S. A point witness is inside a polyhedron witness, but not inside S.
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Table 5. Non cover example: subscriptions

Subscription s
[x1 ≤ 890 ∧ x1 ≥ 830∧
x2 ≤ 1006 ∧ x2 ≥ 1003]

Subscription s1

[x1 ≤ 850 ∧ x1 ≥ 820∧
x2 ≤ 1009 ∧ x2 ≥ 1002]

Subscription s2

[x1 ≤ 870 ∧ x1 ≥ 840∧
x2 ≤ 1007 ∧ x2 ≥ 1001]

800 820 840 860 880 900
1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

P

x
1

x 2
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s
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polyhedron witness
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Fig. 2. Non-cover example: graphical presenta-
tion of a polyhedron witness and point witness

In the previous example, any point inside the polyhedron witness rectangle defined by
s∧¬s2

2 is a point witness. The following 2 corollaries are based on the properties of the
conflict table, polyhedron witness and point witness.

Corollary 1. If all T j
i for 1 ≤ j ≤ r are undefined, then s is covered by si.

Proof. If all T 1
i , . . . , T r

i are undefined, then (s∧¬s1
i , . . . , s∧¬sr

i ) are all not satisfiable,
and thus (s 	 s1

i ) ∧ . . . ∧ (s 	 sr
i ), or alternatively, s 	 (s1

i ∧ . . . ∧ sr
i ). In effect s is

covered by si. Thus, as a side-effect, the use of the conflict table provides a sufficient
condition, tested in O(m · k), to check whether s is covered by any of the subscriptions
individually. �

Corollary 2. If all T j
i for 1 ≤ j ≤ r are defined, then s covers si.

Proof sketch. If all T 1
i , . . . , T r

i are defined, then (s∧¬s1
i , . . . , s∧¬sr

i ) are all satisfiable,
and thus s includes si on all attributes. �

Corollary 3. Let ti1 , ti2 . . . tik
be the list resulting from sorting t1, t2 . . . tk in ascending

order, where ti represents the number of defined entries in row i of the conflict table T .
If all tij ≥ j for 1 ≤ ij ≤ k, then s is not covered by S.

Proof sketch. If tij ≥ j for 1 ≤ ij ≤ k, then a polyhedron witness exists. It can be

constructed in the following way: Choose any element s
ji1
i1

to be part of a polyhedron
witness, and then eliminate any conflicting entries from other rows. Since each row will
have a maximum of one conflicting element with s

ji1
i1

, then at most one element in each
row will be eliminated. If this step is repeated k times a polyhedron witness will be
derived. Thus, s is not covered by S. �

4 Probabilistic Cover Algorithm

In this section we describe the probabilistic cover algorithm to solve the defined sub-
sumption problem. This algorithm has direct implications on the effectiveness of rout-
ing both publications and subscriptions in a distributed environment, and the efficiency
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to discover matching publications. The probabilistic core of the algorithm is the ‘Monte
Carlo type’ Random Simple Predicates Cover part. It runs in a fixed number of itera-
tions, but may produce an incorrect result with a certain pre-determined probability of
error. The probability of error is problem specific, and we show that an upper bound on
this error is derived in polynomial time prior to the execution of the algorithm. Thus, the
performance of the algorithm can be decided in advance based on particular application
requirements. The Random Simple Predicates Cover can be executed independently or
in conjunction with the minimized cover set algorithm which reduces the original set
of subscriptions S to a non-reducible set against which a new subscription s has to be
checked. We also introduce a number of optimizations used for making fast decisions
under specific conditions that can be detected from the conflict table.

4.1 Random Simple Predicates Cover

The Random Simple Predicates Cover (RSPC) algorithm exploits the property of point
witnesses. If the algorithm guesses a point in s that is a point witness to non-cover for
the set of subscriptions S, then the subsumption problem is solved with a definite NO,
i.e. s �	 S. On the other hand, in case a subsumption relationship exists, the algorithm
would try in vain to find such a witness. To prevent this situation, we define a threshold
d for the number of guesses, and the algorithm may output a probabilistic YES, i.e.
s 	 S with a predefined probability of error.

Algorithm 1. Random-Simple-Predicates-Cover
1: /* Decide whether a subscription s is covered by the existing subscriptions set S */
2: for i = 1 to d do
3: GUESS a point P inside s
4: if P does not satisfy subscriptions set S then
5: RETURN false
6: end if
7: end for
8: RETURN true

Algorithm 1 defines the RSPC algorithm which executes a number of iterations d
to randomly generate a point satisfying subscription s and checks whether it is a point
witness. To generate a point within s costs O(m), and verifying whether it lies inside
any of s1, s2, . . . sk can be done in O(m · k) steps. Overall, the algorithmic complexity
of RSPC is d(m + m · k), or O(d ·m · k). However, our experiments in Section 6 show
that this upper bound is a pessimistic estimate, since at any iteration, RSPC can output
a definite NO if the guessed point is indeed a point witness. In addition, the complexity
can be greatly reduced using the optimizations presented in Sections 4.2 and 4.3.

Proposition 1. RSPC returns NO when s is definitely not covered by S. It returns YES
with a probability error δ upper bounded by

δ = (1 − ρw)d, (1)

where ρw is the probability that a randomly generated point P inside s is a point witness.
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Proof. If RSPC returns NO then a point witness was found, and thus s is definitely
not subsumed by S. Therefore, the answer is correct. If s is not subsumed then RSPC
returns YES only if none of the guessed points is a point witness. For each trial this
happens with probability less than 1 − ρw, therefore for d trials the probability RSPC
returns YES is less than (1 − ρw)d, since d trials are randomly generated and are thus
assumed to be independent. �

In problems with specific probability of error δ, we can compute the necessary number
of trials, d, to answer the subsumption question with the required δ, using Equation 1
beforehand in polynomial time. The number of trials increases with a decrease of the
error probability. The value of ρw depends on the number of existing point witnesses
for the particular subscription s related to the set of subscriptions S, and the ‘size’
(number of integral solutions) of subscription s. Since the probabilistic algorithm may
produce a wrong answer only if s is not subsumed by S, the worst situation is to as-
sume that s is indeed not subsumed by the set. To compute the upper bound on d,
we need to determine the lower bound on ρw, set by the smallest possible polyhedron
witness.

Algorithm sketch for computing d. In order to compute d, the algorithm needs the
value of ρw, which must be approximated, because knowing an exact value is equiv-
alent to solving the subsumption problem. We approximate the lower bound on ρw as
the product of the minimum distances for each attribute between the new subscription
bounds and the bounds of each subscription in the set (possible minimum non-covered
ranges). Then, the upper bound on d is extracted from Eq. 1, using the computed value
for ρw and the given δ.

4.2 Minimized Cover Set of Subscriptions

To further reduce the number of subscriptions against which s needs to be checked, we
introduce another algorithm, the minimized cover set algorithm (MCS). From the set
of subscriptions S, MCS constructs a non-reducible set of subscriptions, by ignoring
those that are redundant for the covering detection problem and filters out duplicate
subscriptions (those covering the same parts of s), and subscriptions that do not intersect
with s. The remaining subscriptions form the non-reducible set S′ (which may not be
the minimal covering set) against which s is subsequently checked by RSPC.

Definition 5. Two defined entries in the table, T
ji1
i1

and T
ji2
i2

are said to be conflicting

if i1 �= i2, and s ∧ T
ji1
i1

∧ T
ji2
i2

is not satisfiable. A defined entry T
ji1
i1

is said to be

conflict-free if it does not conflict with any other defined element T
ji2
i2

, where i1 �= i2.

Conflict free entries are determined by comparing entries from the conflict table related
to the same attribute, for different subscriptions. If a constraint conflicts with any other
constraint defined by another subscription, the entry is conflicting. It is conflict free
otherwise.

Figure 3 visualizes the set of 3 subscriptions, s1, s2 and s3, as well as subscription
s defined in Table 6, and Table 7 shows the corresponding conflict table. We can observe
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Table 6. Conflict-free example: subscriptions

Subscription s
[x1 ≤ 870 ∧ x1 ≥ 830∧
x2 ≤ 1006 ∧ x2 ≥ 1003]

Subscription s1

[x1 ≤ 850 ∧ x1 ≥ 820∧
x2 ≤ 1007 ∧ x2 ≥ 1001]

Subscription s2

[x1 ≤ 880 ∧ x1 ≥ 840∧
x2 ≤ 1009 ∧ x2 ≥ 1002]

Subscription s3

[x1 ≤ 890 ∧ x1 ≥ 810∧
x2 ≤ 1005 ∧ x2 ≥ 1004]

800 820 840 860 880 900
1000
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1003

1004
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1009

1010
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x 2
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Fig. 3. An example with conflict free entries

Table 7. Conflict table for the example in Figure 3

si x1 < low1
i x1 > high1

i x2 < low2
i x2 > high2

i

s1 undefined x1 > 850 undefined undefined

s2 x1 < 840 undefined undefined undefined

s3 undefined undefined x2 < 1004 x2 > 1005

that the defined entries for s3 are conflict free: they are not conflicting with the entries
from s1 and s2. On the other hand, s1 and s2 have conflicting entries because x1 cannot
simultaneously satisfy both conditions, x1 > 850 and x1 < 840.

Proposition 3. If the number of conflict-free elements in the i-th row of T , fci , is
greater than or equal to 1, or the number of defined elements in row i, ti ≥ k, then si is
redundant. Proof is given in [15].

The MCS algorithm consists of two main steps, as defined in Algorithm 2. First, starting
from the conflict table T , it counts the number of defined elements for each subscription
si in the corresponding row, ti and computes the number of conflict free elements,
fci . Then, it removes from the set all subscriptions for which ti is equal to or greater
than the current number of subscriptions in the set. It also removes subscriptions that
have at least one conflict free element in the corresponding row of the conflict table.
These two steps are repeated until there are no more subscriptions that fulfill any of the
two conditions. The remaining subscriptions form the non-reducible cover set S′ for
answering the union covering problem.

Considering the conflict table from Table 7, in the first step none of the subscrip-
tions has more defined entries than the total number of subscriptions (t1 = t2 = 1 and
t3 = 2 which is smaller than 3), while only s3 has conflict free entries. Based on the
elimination conditions (in this case, fc3 = 2 > 0), MCS can remove subscription s3

in the first iteration. In the second iteration, still no subscription has more defined entries



132 A.M. Ouksel et al.

Algorithm 2. Minimized Cover Set
1: /* Find the minimized set of subscriptions S′ relevant for subsumption detection */
2: /* Construct and use the conflict table T */
3: repeat
4: S′ = S
5: for every row i in T do
6: compute fci /* number of conflict-free elements in row i in T */
7: compute ti /* number of defined entries in row i in T */
8: if fci ≥ 0 or ti ≥ k then
9: remove row i from T

10: remove subscription si from S′

11: k = k − 1
12: end if
13: end for
14: until no si can be removed
15: RETURN S′

than the total number of subscriptions (t1 = t2 = 1 < 2) and there are no conflict free
entries, thus the algorithm stops. The minimized cover set is S′ = {s1, s2}.

Determining if a table entry is conflict free is O(m · k). Therefore computing each
fci costs O(m2 k), and in turn steps 1 and 2 in each iteration of the MCS algorithm cost
O(m2 k2). Steps 1 and 2 may be repeated k times since each time step 2 is performed
at least one si is filtered out. As a result, the overall cost of the algorithm reduction is
O(m2 k3) in the worst case.

4.3 Fast Decisions Based on Sufficient Conditions

To summarize, in order to answer the subsumption problem, the algorithm first con-
structs the conflict table, runs the MCS algorithm to reduce the subscription set, and
then applies the probabilistic RSPC algorithm which produces either a definite NO or a
probabilistic YES. Nevertheless, for some specific cases, the algorithm can efficiently
give a deterministic answer. Here we briefly present three specific cases.

1. Pairwise subsumption: As stated in Corollary 1, it is possible to detect if a sub-
scription s is entirely covered by another subscription and produce a definite YES
by analyzing the conflict table. If the row in the conflict table corresponding to sub-
scription si contains only undefined values, then si covers the new subscription.

2. The outcome of the MCS algorithm can be an empty set, which means that there
are no candidate subscriptions that could jointly cover s, and the algorithm will
produce a definite NO.

3. Polyhedron witness: Detecting the existence of a polyhedron witness suffices to
detect a non-cover relationship and output a definite NO as stated in Corollary 3.
Based on the definitions of the polyhedron witness and conflict free entries, we can
detect the presence of such a witness, depending on the number of defined entries
in the conflict table without using either RSPC or MCS.
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5 Subscription Propagation in a Distributed System

As in a distributed system subscription propagation affects the overall system perfor-
mance, here we analyze the implications of incorrectly declaring a subscription as cov-
ered. Equation 1 gives the upper bound for the probability of error in incorrectly with-
holding the forwarding of a subscription, and therefore, it represents the likelihood of
not finding a matching publication if it is available at the next broker. In a distributed
publish/subscribe system, data is routed throughout the system, and we need to analyze
the influence of our probabilistic algorithm on subscription propagation. We consider
in Figure 4 a simple and illustrative case, where the new subscription s should be prop-
agated along a chain of brokers B1, B2, . . . , Bn.

s: Subscription s

B1 B2 B3 Bn

s

p p p p

Publication pp:

Bi Broker i

The probability p 
arrives at Bi

:

Fig. 4. New subscription propagation

We assume that the new subscription s is issued at broker B1, while subscriptions
s1, s2, . . . , sk have already been propagated down the path to all brokers. Let ρ be
the probability that a matching publication p (matches s but no si) is issued at any of
the brokers Bi. The overall performance of the probabilistic algorithm is given by the
probability of finding the matching publication, wherever it resides.

Proposition 4. The probability of finding the matching publication p under the con-
dition that s is erroneously found to be covered by S, where s1, s2, . . . , sk have been
propagated to all brokers along the path, and all brokers have equal probability of ρ of
receiving publication p is:

n∑
i=1

ρ[(1 − ρ)(1 − (1 − ρw)d)]i−1, (2)

where ρ is determined by the network density and the communication distance of two
neighboring brokers, and n is the total number of brokers in the path.

Equation 2 gives the lower bound for the overall algorithm performance. However, as
we will show in the next chapter, the actual performance is much better in practice, even
for loose error probabilities. On the other hand, the reduction in the global subscription
traffic is more important for longer broker paths, reflecting the local reduction at each
broker, exponentially amplified in the network diameter.

Note that we do not present in this paper the mechanism for dealing with subscrip-
tions cancelation. This issue can be tackled by explicit forwarding of unsubscriptions



134 A.M. Ouksel et al.

between brokers or by associating an expiration time with each new subscription. Ac-
cording to our approach, the canceled subscription can either be covered, and then can-
celation has only the effect of removing it from the passive set, either be present in the
(active) subscription set, and then its covered subscription must be promoted to this set,
to replace it.

6 Experimental Evaluation

In this section, we evaluate the performance of the proposed probabilistic approach in
terms of efficiency and effectiveness using a number of subscription generation sce-
narios. Efficiency is measured as the number of actual algorithmic steps performed to
answer the subsumption question, and effectiveness as the ratio of recognized redun-
dant subscriptions to the total number of redundant subscriptions. Especially, we are
interested in potential gains and costs when using the MCS algorithm in specific sub-
scription generation scenarios. Next, we analyze the number of false decisions declaring
a subsumption relationship when there was no subsumption. Finally, we compare our
approach with the existing one for pair-wise coverage detection.

There are two main categories of subscription settings:

(1) Covering: s is covered by the set of subscriptions (with some of si ∈ S being
redundant).

(2) Non-cover: s is not covered by the set S (as such, all subscriptions are redundant).

In particular, we have considered the following subscription generation scenarios:

(1.a) Pairwise covering scenario; s is entirely covered by at least one subscription from
the set of existing subscriptions.

(1.b) Redundant covering scenario; s is not covered by any single subscription, but is
covered by the set, with a lot of subscriptions being redundant.

(2.a) No intersection scenario; s does not intersect with any existing subscription.
(2.b) Non-cover scenario; s is not covered by the set S, but overlaps with existing

subscriptions over many attributes.
(2.c) Extreme non-cover scenario; similar to (2.b), but s has only a very small non

covered gap.
(1-2) Comparison scenario; generate incoming subscriptions randomly.

Scenario (1.a) is straightforward as the covering relationship is determined efficiently
by applying Corollary 1 after the construction of the conflict table, therefore the cost of
detecting pairwise coverage is O(m · k). Scenario (2.a) is also straightforward because
MCS determines non subsumption after the first iteration by removing all subscriptions
from the set S′ because all si ∈ S have conflict-free elements in the conflict table. Sce-
narios (1.b), (2.b), and (2.c) are difficult settings for checking the covering relationship,
as there are no pair-wise subsumptions which could help to reduce the set S′. We inves-
tigated these scenarios using the following subscription generation principle: Existing
subscriptions overlap with a new subscription and each other for many attributes, but
there are no pair-wise subsumptions. The last scenario (1-2) simulates a realistic setting
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Table 8. Parameters used in simulations

(1.b) (2.b) (2.c) (1-2)

no. of subscriptions k 10-310 (30) 10-310 (30) 50 1 to 5000
no. of attributes m 10, 15, 20 10, 15, 20 5 10, 15, 20

error δ 10−10 10−10 10−3, 10−6, 10−10 10−6

no. of trial runs 1000 1000 3000 1
gap size 0 random 0.5-4.5% (0.5%) NA

assuming that user interests are similar, and that the popularity of attributes appearing
in subscriptions is Zipfian.

The parameters used in simulations are listed in Table 8. For the redundant covering
and non-cover scenarios, the setting is similar, while the extreme non-cover scenario
investigates different error probabilities. The comparison scenario is performed in a
single run by generating a sequence of subscriptions. In the figures, each plotted point
is the average of the values obtained over the number of trial runs.

6.1 Redundant Covering Scenario

This simulation scenario investigates algorithm performance when the subscription set
S subsumes s. A high rate of redundant subscriptions is introduced to test the influence
of the MCS algorithm on the overall performance: s is covered by 20% of the generated
subscriptions and the remaining 80% are redundant and partly cover s.
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Fig. 6. Theoretical number of iterations for the
redundant covering scenario

Figure 5 shows the effectiveness of the MCS algorithm: It successfully removed be-
tween 80% and 100% of redundant subscriptions. The performance increases for higher
number of attributes because when increasing m, the probability of group coverage in-
creases due to the specific subscription generation scenario.
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Figure 6 shows the theoretically predicted number of iterations d needed to answer
the subsumption question. The log(d) plot is shown as a function of k, calculated using
Equation 1. The plot is given for the initial set of subscriptions S, and the reduced
set S′ after running MCS. Due to the tight error probability, d is extremely high when
using only the RSPC algorithm. However, MCS significantly reduces the number of
needed iterations and becomes practically feasible: d < 105 for 100 subscriptions with
10 attributes, and decreases significantly for larger number of attributes. Further more,
as the results obtained for non-cover show, we could reduce the number of trials further.

6.2 Non-cover Scenario

For the non-cover scenario, the experiment is constructed by forcing the non-covering
of s by leaving a small range over x1 uncovered. The values over the other attributes
are generated randomly. The whole set of subscriptions S is actually redundant as s
is not covered. In this scenario, the algorithm has always detected the non-coverage
relationship due to optimizations and a low probability of error.

0 50 100 150 200 250 300

0.88

0.9

0.92

0.94

0.96

0.98

1

Existing subscriptions

R
ed

un
da

nt
 s

ub
sc

rip
tio

ns
 r

ed
uc

tio
n

 

 

m=10
m=15
m=20

Fig. 7. Reduction for the non cover scenario

0 50 100 150 200 250 300

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Existing subscriptions

A
ct

ua
l i

te
ra

tio
ns

 

 
m=10
m=15
m=20
m=10;MCS
m=15;MCS
m=20;MCS

Fig. 8. Actual iterations for non cover

Figure 7 shows the effectiveness of the MCS algorithm which performs even better
than for the redundant covering scenario because most of the subscriptions are removed
quickly due to the non covering relationship.

Since non-cover can be detected prior to performing all d theoretical iterations, Fig-
ure 8 shows the actual number of iterations performed to discover a witness point. The
average number of performed iterations is extremely low (< 0.5), due to the fact that
in most of the cases, after running MCS, the reduced set is empty, thus d = 0. There
are some evident fluctuations for this scenario caused by the probabilistic nature of the
algorithm.

6.3 Extreme Non-cover Scenario

The extremeness of this scenario consists of covering the new subscription entirely, ex-
cept for a narrow slice over one attribute, where we enforce a gap. We investigate the
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Fig. 10. Number of false negatives

total number of false decisions that result in non forwarding of a non covered subscrip-
tion and the average number of performed trials.

Figure 9 shows that the average number of guesses is similar for all probabilities of
error, even though the theoretical number of guesses increases for tighter error proba-
bilities. This behavior is expected, as the chances of guessing a point witness depend on
the ratio between the gap size and the total range size of the non covered attribute, but
it does not depend on the error probability. This result suggests that we can also reduce
the number of trials after which a subscription is declared covered.

In Figure 10 we can see the total number of false decisions increases with the error
probability and decreases with larger gap sizes. In fact, for probabilities of error lower
than 10−6 and gap sizes of more than 1%, the algorithm always takes the right decision.
Even for a looser probability of error (10−3), the number of false negatives remains
quite low, if the gap is at least 2%. This shows that an error probability of 10−6 is
sufficient for detecting non-coverage in most application scenarios because it has a low
number of false decisions in case of a small non-covered subscription space while at
the same time reducing the theoretical number of iterations d.

6.4 Comparison

Due to the lack of real-world subscription set, we have simulated a setting using power
law distributions that are considered as good approximations of popularity both for
the selection of attributes and attribute ranges. From the set of m attributes popular
ones were chosen using a Zipf distribution (skew = 2.0). Attributes are generated in the
following way: The center of a range is generated with a Pareto distribution (skew = 1.0)
to simulate similar interests, while range sizes are generated with a normal distribution.

The experiment compares the growth of subscription set sizes in case of the pair-
wise ([7,8]) and group subsumption (our approach) reductions.

Figure 11 shows the growth of the total number of active subscriptions when in-
creasing the number of incoming subscriptions. It is interesting to observe the power
of subscription set reduction using subscription coverage both for pair-wise and group
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coverage in case of partly covered subscription space. The group coverage shows
greater reduction compared to the pair-wise algorithm for all values of m. For m = 10
and m = 15 group coverage has reduced the original set of 5000 subscriptions to less
than 10%, and pair-wise coverage to approx. 15% of the entire set, while for m = 20
the reduction is still significant (around 33% for group and less than 50% for pair-wise
coverage). The set reduction is very important for subscriptions with a large number
of attributes which increases complexity because of the absolute subscription set size,
e.g. some brokers have limited resources and may not handle more than 1000 active
subscriptions. When increasing m, the actual number of active subscriptions is also
larger, and this is due to the fact that the probability of subsumption generally decreases
in the applied subscription generation scenario when increasing subscription space di-
mensionality.

Figure 12 quantifies the actual gain of group coverage compared to the pair-wise
coverage by showing the ratio between the subscription set sizes obtained with the
2 reduction mechanisms . The obtained results show the extreme reduction potential
when increasing the number of incoming subscriptions. In case of 1000 received sub-
scriptions, the ratio is between 70 and 80%, and keeps decreasing with new incoming
subscriptions showing a stabilization tendency after 5000 subscriptions. The ratio is
larger for large m, but still significant, and is almost similar for 15 and 20 attributes be-
cause the actual number of defined attributes does not significantly differ. Of course, the
obtained results are highly dependent on subscription generation, but since our distribu-
tions follow a realistic popularity-based setting, it can be concluded that group coverage
can greatly reduce the subscription set compared to the pair-wise approach.

To conclude, the reduction algorithm is both efficient and effective: It can signif-
icantly reduce the size of the subscription set with acceptable error probability and
computational costs. RSPC should be used in combination with MCS because it dra-
matically reduced the number of performed trials. Finally, the comparison shows the
supremacy of the group coverage algorithm over the classical pair-wise approach that
will in general largely decrease the number of subscriptions in different distributed pub-
lish/subscribe systems.



Efficient Probabilistic Subsumption Checking 139

7 Related Work

Most of the research efforts in publish/subscribe systems have so far focused on the
problem of efficient matching and forwarding of publications [9,7]. Pairwise covering
and merging of subscriptions are typically used to reduce the set of active subscriptions,
and all algorithms rely on some version of the counting algorithm, originally defined
in [16]. The importance of reducing the number of subscriptions in a distributed en-
vironment is stressed in [8]. The authors are dealing with a complementary problem—
merging a set of subscriptions to reduce their number. In [7], modified binary decision
diagrams are employed, to achieve pairwise covering and merging of subscriptions. The
trade-off with merging is that the new subscription might contain parts of the subscrip-
tion space not covered originally by the set, which leads to false positives, delivery of
unrequested publications. A recently proposed solution relies on clustering of subscrip-
tions based on a proximity metric in subscription space [17], and would greatly benefit
from global subscription set reduction for both the total number of subscriptions and
the generated traffic. None of these techniques supports group subsumption, and can
filter out fewer subscriptions than the proposed probabilistic algorithm.

8 Conclusion

The paper presents a novel probabilistic algorithm for determining whether a sub-
scription is covered by a set of subscriptions. Theoretically it solves the problem in
O(k · m · d). The probability of error is problem specific and very small, and an up-
per bound on the threshold d is determined in polynomial time prior to the execution
of the algorithm. Our experiments have shown that the algorithm performs much bet-
ter in practice when combing the probabilistic algorithm with the reduction algorithm
that removes redundant subscriptions against which a new subscription needs to be
checked. Even more, in case of the non covering relationship, it is possible to give a de-
terministic answer without applying the probabilistic tests. Therefore, we can conclude
that the proposed algorithms can efficiently decide whether a subscription is covered
by a group of subscriptions which is important for fast subscription forwarding and
network congestion control in distributed publish/subscribe systems. The experimental
results show that the algorithm performs much better than the pessimistic theoretical
bounds even for settings where group coverage is difficult to detect. Finally, compared
to the reduction based on the classical pair-wise coverage, the subscription set reduction
achieved with our approach is significantly better, which, correlated with its good effi-
ciency and the very tight achievable error probabilities, recommends it for distributed
publish/subscribe systems.
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Abstract. Distributed content-based publish/subscribe systems to date
suffer from performance degradation and poor scalability caused by un-
even load distributions typical in real-world applications. The reason for
this shortcoming is due to the lack of a load balancing solution, which
have rarely been studied in the context of publish/subscribe. This paper
proposes a load balancing solution specific to distributed content-based
publish/subscribe systems that is distributed, dynamic, adaptive, trans-
parent, and accommodates heterogeneity. The solution consists of three
key contributions: a load balancing framework, a novel load estimation
algorithm, and three offload strategies. Experimental results show that
the proposed load balancing solution is efficient with less than 1.5% over-
head, effective with at least 91% load estimation accuracy, and capable
of distributing all of the system’s load originating from an edge point of
the network.

Keywords: Publish/subscribe, load distribution, content-based rout-
ing, load balancing, load estimation, subscriber migration, offloading
algorithm.

1 Introduction

Brokers in a distributed publish/subscribe system located at different geograph-
ical areas may suffer from uneven load distribution due to different population
densities, interests, and usage patterns of end-users. A broker in a hotspot area
where there is high message traffic resulting from a large number of publish-
ers and subscribers may get overloaded in two ways. First, a broker can be
overloaded if the incoming message rate into the broker exceeds the process-
ing/matching rate supported by the matching engine. This effect is exacerbated
if the number of subscribers is large because the matching rate is inversely pro-
portional to the number of subscriptions in the matching engine [9]. Second,
overload can also occur if the output transmission rate exceeds the total avail-
able output bandwidth. In both cases, queues accumulate with increasingly more
messages waiting to be processed, resulting in increasingly higher processing and
delivery delays. Worse yet, a broker may crash when it runs out of memory from
queueing too many messages.

M. van Steen and M. Henning (Eds.): Middleware 2006, LNCS 4290, pp. 141–161, 2006.
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Since the matching rate and both the incoming and outgoing message rates
determine the load of a broker, and these factors depend on the number and
nature of subscriptions that the broker services, load balancing is possible by of-
floading specific subscribers from higher loaded to lesser loaded brokers. Hence,
we develop a load balancing algorithm that distributes load by offloading sub-
scribers from heavily loaded brokers to less loaded brokers. Our contributions to
support this idea include (1) a load balancing framework described in Section 3
that isolates subscribers to the edge brokers in the network and organizes load
balancing activities into sessions between two brokers at a time; (2) a novel load
estimation algorithm presented in Section 4 that profiles subscription load using
bit vectors; (3) offload algorithms proposed in Section 5 to load balance on each
performance metric of the broker by selecting the appropriate subscribers to of-
fload based on their profiled load characteristics; and (4) experimental results
shown in Section 6 that demonstrates the behavior and performance of our load
balancing solution.

2 Background and Related Work

Content-based Publish/Subscribe is widely used in large-scale distributed
applications because it allows processes to communicate asynchronously in a
loosely-coupled manner. Publish/subscribe middleware can be readily found in
online games [3], decentralized workflow execution [11], real-time monitoring sys-
tems [15], and the Enterprise Service Bus (ESB) of Service Oriented Architec-
ture (SOA) infrastructures. In this communication paradigm, clients that send
publication messages into the system are referred to as publishers, while those
that only receive messages are called subscribers. Publishers issue publications
in the form of attribute key-value pairs. Subscribers issue subscriptions to their
nearest broker to specify the type of publications they want to receive. For the
remainder of our discussion, we will assume that a subscription maps to a single
subscriber. Subscriptions consist of predicates made up of attribute key-operator-
value tuples to specify the filtering conditions on each attribute. A set of brokers
connected together in an overlay network forms the publish/subscribe routing
infrastructure (see Figure 3). In essence, brokers forward publication messages
from the publishers to matching subscribers based on the routing paths estab-
lished by subscriptions. Optimizations such as subscription aggregation [5], sub-
scription merging [13], rendezvous nodes [14], and epidemic algorithms [7] may
be employed to make the system more scalable or robust. However, hotspots can
still arise because there is no load balancing mechanism.

The space of interest defined by a subscription’s filtering conditions is called
subscription space. A broker’s covering subscription set (CSS) refers to the set
of most general subscriptions whose subscription space is not covered by any
other subscription. For example, a broker with the set of subscriptions shown in
Figure 1a has a CSS identified by the subscriptions marked with an asterisk. For
more efficient retrieval of a broker’s CSS, the partially-ordered set (poset) [4]
is used to maintain subscription relationships. The poset is a directed acyclic
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(a) Subscriptions (b) Poset

Fig. 1. Example of the poset data structure

graph where each unique subscription is represented as a node in the graph as
shown in Figure 1b. Nodes can have parent and children nodes where parent
nodes have a subscription space that is a superset of its children nodes, while
subscriptions with intersection or empty relationships will appear as siblings. As
shown, the CSS is readily available as the immediate children nodes under the
imaginary ROOT node.

Load Balancing has been a widely explored research topic for the past
two decades since the introduction of parallel and distributed computing. Load
balancing solutions can be found in the network layer [8], operating system
layer [12], middleware layer [1], and application layer [2]. However, all of the
above approaches cannot estimate the load of a subscription nor account for
subscription spaces. These limitations prevent them from balancing load effec-
tively in a heterogeneous content-based publish/subscribe system.

Load Balancing in Content-based Publish/Subscribe was never di-
rectly addressed in the past although distributed content-based publish/
subscribe systems have been widely studied. Hence, the proposed solution in
this paper is to the best of our knowledge the first dynamic load balancing
algorithm for broker-based publish/subscribe systems to date.

Meghdoot [10] is a peer-to-peer content-based publish/subscribe system based
on a distributed hash table that distributes load by replicating or splitting the
locally heaviest loaded peer in half to share the responsibility of subscription
management or event propagation. In general, their load sharing algorithm is
only invoked upon new peers joining the system and peers are assumed to be
homogeneous. Chen et al. [6] proposed a dynamic overlay reconstruction algo-
rithm called Opportunistic Overlay that reduces end-to-end delivery delay and
also performs load distribution on the CPU utilization as a secondary require-
ment. Load balancing is triggered only when a client finds another broker that is
closer than its home broker. It is possible that subscriber migrations may over-
load a non-overloaded broker if the load requirements of the migrated subscrip-
tion exceed the load-accepting broker’s processing capacity. Our work differs
from Meghdoot and Opportunistic Overlay by proposing a dynamic load bal-
ancing algorithm for non-DHT-based publish/subscribe systems that accounts
for heterogeneous brokers and subscribers, and distributes load evenly onto all
resources in the system without requiring new entities to join the federation.
We also present a detailed subscriber migration protocol that enforces end-user
transparency and best-effort delivery to minimize message loss.
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Fig. 2. Components of the load balancer

3 Load Balancing Framework

The components that make up the load balancing solution are shown in
Figure 2. The solution consists of the detector, mediator, load estimation tools,
and offload algorithms that determine which subscribers to offload. The detector
detects and initiates a trigger when an overload or load imbalance occurs. The
trigger from the detector tells the mediator to establish a load balancing ses-
sion between the two entities, namely offloading broker (broker with the higher
load doing the offloading) and the load-accepting broker (broker accepting load
from the offloading broker). Depending on which performance metric is to be
balanced, one of the offload algorithms is invoked on the offloading broker to
determine the set of subscribers to delegate to the load-accepting broker based
on estimating how much load is reduced and increased at each broker using the
load estimation algorithms. Finally, the mediator is invoked to coordinate the
migration of subscribers and ends the load balancing session between the two
brokers. The following sections will describe the load balancing framework and
the operations of each component in greater detail.

3.1 Underlying Publish/Subscribe Architecture

The Padres1 Efficient Event Routing (PEER) architecture organizes brokers into
a hierarchical structure as shown in Figure 3. Brokers with more than one neigh-
boring broker are referred to as cluster-head brokers, while brokers with only one
neighbor are referred to as edge brokers. A cluster-head broker with its connected
set of edge brokers, if any, forms a cluster. Brokers within a cluster are assumed
to be closer to each other in network proximity than brokers in other clusters.
Publishers are serviced by cluster-head brokers, while subscribers are serviced
by edge brokers.

PEER is designed with five goals in mind. First, PEER allows the load balanc-
ing scheme to move subscribers to control load in the edge brokers because they
1 Our work is built onto the Padres [11] system.
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Fig. 3. PEER architecture

have no broker-to-broker through-traffic to route. Second, higher dissemination
efficiency is achieved by having cluster-heads forward publication messages to all
matching clusters almost simultaneously because cluster-heads have negligible
processing delays since they do not service any subscribers. Third, cluster-head
brokers may be load balanced by moving publishers and inter-broker subscrip-
tions, as will be the focus of future work. Fourth, PEER’s organization of brokers
into clusters allows for two levels of load balancing: local-level (referred to as local
load balancing) where edge brokers within the same cluster load balance with
each other; and global-level (referred to as global load balancing) where edge bro-
kers from two different clusters load balance with each other. Edge brokers only
need to exchange load information with edge brokers in the same cluster, and
neighboring clusters can exchange aggregated load information about their own
edge brokers. Fifth, local load balancing preserves subscriber locality by keeping
subscribers within their original cluster, assuming that subscribers connect to
the closest broker in the first place. On the other hand, global load balancing
trades off locality for a better balanced system by migrating subscribers between
edge brokers in neighboring clusters.

3.2 Load Detection Framework

In order for brokers to know when and which brokers are available for load
balancing, they have to exchange load information with each other. With this
data, a detection algorithm can then trigger load balancing whenever it detects
an overload or a wide load difference with another broker.

Protocol for Exchanging Load Information. Padres Information Exchange
(PIE) is a distributed hierarchical protocol for exchanging load information be-
tween brokers using publish/subscribe primitives. Brokers publish PIE messages
intermittently to let other brokers in the federation know of their existence
and availability for load balancing. PIE, as well as other load balancing con-
trol messages described in later sections, has a higher routing priority than
normal publish/subscribe traffic so that their delivery is not affected by the
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(a) Local load balancing (b) Global load balancing

Fig. 4. State transition diagrams for an (a) edge broker and (b) cluster-head

brokers’ load. A PIE message contains five attributes: (1) the broker’s three
performance metrics, specifically input utilization ratio, output utilization ratio,
and average matching delay per message; (2) load balancing states, which can
be one of OK, BUSY, N/A, or STABILIZING; (3) the set of edge brokers it
is currently balanced with (more on this in Section 3.3); (4) the identifier of
the cluster to which the broker belongs; and (5) the broker’s unique identifier.
Input utilization ratio (Ir) captures the broker’s processing utilization as de-
fined by the formula: Ir = RateOfIncomingMessages/MaximumMatchRate.
Maximum match rate is obtained by taking the inverse of the average matching
delay per message. Matching delay is defined as the time spent by the matching
engine between taking a message as input and producing zero or more messages
as output. Output utilization ratio (Or) captures the broker’s output bandwidth
utilization as: Or = OutputBandwidthUsed/TotalOutputBandwidth.

PEER’s bi-level structuring allows for local and global-level PIE messages.
Local PIE messages are published and subscribed by edge brokers within the
same cluster to enable local load balancing. Global PIE messages are published
and subscribed by cluster-head brokers to enable global load balancing. They
only propagate one cluster-hop away and contain averaged load information from
their cluster’s local PIE messages. Cluster-head brokers without any edge brokers
simply forward global PIE messages one extra hop to all of their neighbors.

Detection Algorithm. Detection allows a broker/cluster to monitor its current
resource usage and also compare it with neighboring brokers/clusters so that a
broker/cluster can invoke load balancing if necessary. Detection runs periodically
at a broker/cluster only if it has a status of OK, N/A, and STABILIZING. An
OK status means that the broker is available for load balancing, N/A means
that it is overloaded, STABILIZING means that it is waiting for load to stabilize
after load is exchanged, and BUSY means that it is currently in a load balancing
session with another broker/cluster. A diagram showing the transition conditions
between the local and global load balancing states are shown in Figures 4a
and 4b, respectively.
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The local detection algorithm running on an edge broker is composed of two
steps. The first step identifies whether the broker itself is overloaded by examin-
ing four utilization ratios, namely input, output, CPU, and memory utilization
ratio. The parameter lower overload threshold is introduced that prevents the
broker from accepting further load by updating the broker’s status to N/A when
one of its utilization ratios exceeds 0.9. If a utilization ratio exceeds the higher
overload threshold at 0.95, then load balancing is invoked immediately. In be-
tween the two thresholds is an inert period where the broker neither accepts
nor invokes load balancing. All utilization ratios can be associated with different
overload threshold values.

If the first step of the detection algorithm cannot find any overloaded resource,
then the second step is to check if any one of the input utilization ratio, out-
put utilization ratio, or matching delay differs from a neighbor by more than a
threshold. Recall, load information about neighoring brokers is gathered through
PIE. The threshold for utilization ratios is called the local ratio triggering thresh-
old, and for matching delay is local delay trigger threshold. Both are set to 0.1 by
default. The difference for utilization ratio is just the magnitude of the difference,
while for matching delay, the following formula is used:

d%Diff =

∣∣∣∣d1 − d2

Nf

∣∣∣∣ (1)

d1 and d2 are the two delay values used in the comparison. Nf represents the nor-
malization factor and is set to 0.1 by default so that delay differences much less
than 0.1s do not yield high percentage differences and trigger unwanted load bal-
ancing. Then, a broker-action list of <load-accepting broker, performance
metric/offload action> is generated that is sorted in descending order of
highest performance metric difference. The list is passed to the local mediator
to establish a load balancing session with an available load-accepting broker.

After a broker just finishes a load balancing session, its load information
may mislead the broker into making an incorrect load balancing decision. For
example, brokers accepting load may not experience an increase in utilization
immediately. This may cause the broker to accept more load balancing sessions,
which may cause its resource consumption to overshoot. To prevent this from
occurring, both the offloading and load-accepting broker should inherit a status
of STABILIZING for stabilize duration period (default is 30s) before setting
its status back to OK (see Figure 4a). After this time, all performance metrics
should not fluctuate more than the stabilize percentage (default is 0.05) between
subsequent detection runs. When a broker has a STABILIZING status, it cannot
accept load balancing requests nor invoke load balancing unless the broker is
overloaded.

Alternatively, in place of their utilization ratio counterparts, it is also possible
for the load balancer to use input queuing delay and output queuing delay as
performance metrics. However, using queuing delay measurements do not accu-
rately indicate the load of a broker at the instant the metric is measured because
it is obtained after the message gets dequeued. Therefore, the measurement is
lagging by the delay measured.
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In the global detection algorithm, a cluster-head uses a subset of the status
indicators in local load balancing (see Figure 4b) to indicate its cluster’s load
balancing status. The only difference here is that a cluster is N/A if one or more
edge brokers are N/A. This allows the overloaded brokers to offload subscribers
to brokers within the same cluster first to promote locality. The global detection
algorithm is almost the same as the local detection algorithm, except that the
global detector uses different threshold values (namely, global ratio triggering
threshold and global delay triggering threshold, both default to 0.15) and it works
with aggregated performance metric values.

3.3 Mediation Protocols

All load balancing activities are coordinated by exchanging messages using the
underlying publish/subscribe infrastructure for simplicity and efficiency. Specifi-
cally, request-reply and one-way protocols are implemented in publish/subscribe
to coordinate broker and subscriber activities.

Mediating Load Balancing Sessions. Once the local detection algorithm
composes the broker-action list of candidate brokers for load balancing, the local
mediator sends a load balancing request sequentially to brokers in the sorted list.
When a load-accepting broker gets this request, its local mediator replies back
with its current status. If the status is OK, the request is accepted and both
brokers update their status to BUSY. In the OK case, the load-accepting broker
also appends its load information in the reply so that the requesting broker can
use this information for its load estimation and offload algorithms to compute
which subscribers are suitable for offload. For all other states, the load-accepting
broker rejects the load balancing request. In general, two or more load balancing
sessions between a pair of brokers can occur concurrently, but a broker cannot
participate in multiple load balancing sessions at the same time.

The global mediator running at the cluster-head broker uses the same protocol
as the local mediator to set up global load balancing. The difference here is that
after a successful handshake, both cluster-heads have to tell all edge brokers in
their own clusters to subscribe to the other cluster’s local PIE messages. This
allows edge brokers from one cluster to load balance with edge brokers in the
other cluster. Global load balancing ends when all edge brokers are balanced
with each other as indicated by the balanced set field in local PIE messages.
Local PIE subscriptions of the other cluster are undone by unsubscribing when
global load balancing ends.

Mediating Subscriber Migration. Once the offloading algorithm is done
with its computation, it returns back to the mediator a list of subscribers to of-
fload. The mediator has to migrate the indicated subscribers to the new broker
in the most efficient and timely manner with minimal delivery loss. First, the
mediator sends a control publication message to each subscriber in the offload
list telling them to issue their subscription to the new load-accepting broker.
Subscribers issue a subscription to the load-accepting broker containing the ID
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of the load balancing session and the total number of migrating subscribers.
These two pieces of information allow the load-accepting broker to know when it
has received all migrating subscribers in the current load balancing session. For
efficiency and best-effort guarantee of minimal delivery loss, the receiving broker
waits for N× migration timeout seconds for all migrating subscribers to connect,
where N is the total number of migrating subscribers. Meanwhile, subscribers
need to detect and drop duplicate publications (by using a short message history)
because they are subscribing to the same subscription at two brokers simultane-
ously. When all subscribers have connected to the load-accepting broker, or when
the timeout occurs, the receiving broker sends a DONE control publication mes-
sage back to the offloading broker to terminate the load balancing session. This
message ensures that the publication paths for all migrated subscribers have been
set up to flow to the load-accepting broker. When the offloading broker receives
the DONE message, it tells the migrating subscribers to wait for all the messages
currently in its input queue to be matched and delivered from the output queues
before sending an unsubscribe message. This waiting period corresponds to the
offloading broker’s current input queuing delay, plus the matching delay, plus
the output queuing delay. Once the migrating subscribers unsubscribe from the
offloading broker, the migration process is complete. Note that all control and
duplicate messages are handled transparently by a thin software layer on the
client side that hides the intricate details of load balancing from the end-user
application.

4 Load Estimation Algorithms

Load estimation is used by the offload algorithms to estimate a subscription’s
load contribution in the form of additional input and output publication rate on
the load-accepting broker as well as the load reduced at the offloading broker.

4.1 Estimating Load Requirements of Subscriptions

Padres Real-time Event-to-Subscription Spectrum2 (PRESS) is a space and time-
efficient technique for estimating the bandwidth requirements and common pub-
lication set of two or more subscriptions based on current events. It uses bit
vectors to record the matching pattern of subscriptions, hence the term event-
to-subscription. It does not require the publish/subscribe system to use adver-
tisements, nor does it assume that publications are in any sort of distribution.
The operation of PRESS is best explained as part of the local load balancing al-
gorithm after the mediation step where two brokers have agreed to load balance
with each other.

First, the offloading broker locally subscribes to the CSS of the load-accepting
broker (as supplied in the OK reply message from the replying broker). Locally
subscribe means that subscriptions are sent to the matching engine, but never get
forwarded to neighboring brokers. This is sufficient because the offloading broker
2 Real-time refers to sampling using live incoming publications to the broker.
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Table 1. Bit vector example (. . .⇒ [class,=,‘STOCK’])

(a) Candidate subscriptions to offload

Candidate Subscriptions Bit Vector

[class,=,‘STOCK’] 110111

...,[volume,>,15] 110100

...,[volume,>,150] 100000

[class,=,‘SPORTS’] 001000

(b) Load-accepting broker’s CSS

Load-Accepting Broker’s CSS Bit Vector

...,[volume,>,50] 110000

...,[volume,<,5] 000001

[class,=,‘MOVIES’] 000000

CSS bit vector 110001

only wants to know which publications it currently sinks are also received by the
load-accepting broker. Next, all client subscriptions in the matching engine are
allocated a bit vector of length N initialized to 0, where N represents the number
of samples. Sampling starts immediately after getting the load-accepting broker’s
OK reply message and ends after N publications have been received or a timeout
T is met, whichever comes first. Both N and T are configurable parameters
which default to 50 and 30s, respectively. The algorithm starts at the right-most
position of the bit vector for all subscriptions. A ‘1’ is set if the subscription
matched the incoming publication, ‘0’ otherwise, before moving onto the next
bit on the left. During the sampling period, the total incoming publication rate
is measured. Tables 1a and 1b show an example of the bit vectors measured at
the offloading broker with N = 6 for subscriptions at the offloading broker and
load-accepting broker, respectively, given the following publication arrival order:

1. [class,‘STOCK’],[volume,0] 4. [class,‘SPORTS’],[type,‘racing’]

2. [class,‘STOCK’],[volume,10] 5. [class,‘STOCK’],[volume,100]

3. [class,‘STOCK’],[volume,20] 6. [class,‘STOCK’],[volume,500]

Equation 2 shows the formula to calculate the publication rate matching a
particular subscription represented by sPR, where ir represents the total input
publication rate of the offloading broker, nBS represents the number of bits set
in the subscription’s bit vector, and N represents the number of samples taken
in PRESS.

sPR = ir · nBS

N
(2)

For example, if the total input publication rate ir at the offloading broker is as-
sumed to be 3msg/s, then for the subscription [class,=,‘STOCK’] having 5 out
of the 6 bits set, its publication rate comes out to 2.5msg/s. Moreover, the addi-
tional incoming publication rate for each subscription can be calculated by using
Equation 2 with the bit count obtained from the ANDNOT bit operation of the
candidate subscription’s bit vector with the aggregated load-accepting broker’s
CSS bit vector. Take the subscription [class,=,‘STOCK’] as an example. After
the ANDNOT bit operation, the bit vector for [class,=,‘STOCK’] is:

110111 ANDNOT 110001 = 000110 (3)

With a bit count of 2 in 000110, and reusing 3msg/s for ir, the additional incom-
ing publication rate on the load-accepting broker for this subscription is 1msg/s.
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In some cases, offloading a subscription may alter the CSS of the load-accepting
broker. With PRESS, it is not necessary to resample all subscriptions again be-
cause the aggregated CSS bit vector can be updated by merging it with the
offloaded subscription’s bit vector using the OR bit operator. For example, if
[class,=,‘STOCK’] was chosen for offloading, then the load-accepting broker’s
CSS is updated to 110111.

Regarding the space and time efficiencies of PRESS: if there are 10,000 sub-
scribers with N set to 100, PRESS only uses 1Mb of memory. Given that
the load-accepting broker’s CSS is usually small (it is just one in the case of
[class,=,*]), an increase in the matching delay is negligible.

4.2 Estimation of Performance Metrics

Matching delay is estimated by the linear formula [9]:

d′
m =

(
n + Δn

n

)
· dm (4)

where d′m is the new matching delay, dm is the current matching delay, n is the
number of subscriptions in the matching engine, and Δn is the change in the
number of subscriptions. Estimating the input and output utilization ratios can
be done simply by using their original equations but with new estimated values
for incoming message rate and output bandwidth consumption using PRESS,
respectively.

5 Offload Algorithms

After profiling all subscriptions using PRESS, the offloading broker will use the
profiled data along with the load-accepting broker’s load information to feed into
the offload algorithm to compute the set of subscribers to offload. The offload
algorithm to choose depends on what performance metric to balance, which is
decided initially by the detector in the broker-action list as mentioned in Sec-
tion 3.2. Table 2 summarizes the key properties of the three offload algorithms.

5.1 Input Offload Algorithm

This algorithm is invoked by the offloading broker when the input utilization
ratio needs load balancing. The aim here is to reduce the offloading broker’s
input utilization ratio and increase the same metric on the load-accepting broker
with minimal effect on the other performance metrics. There are two strategies
to reduce the input utilization ratio: increase the rate at which messages are
matched, or reduce the rate of incoming publication messages. Increasing the rate
of matching is achieved by reducing the number of subscriptions in the matching
engine. However, this action conflicts with the match offload algorithm that is
trying to balance the matching delay and therefore is not applied here. Hence,
the incoming publication rate can only be reduced by offloading subscriptions
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Table 2. Properties of all offload algorithms

Offload Performance Metric Methodology Side Effects
Algorithm Being Balanced

Input Input utilization ratio
Offload subscriptions

Output utilization ratio

in the CSS

is also decreased at
offloading broker and
increased at load-
accepting broker

Match

Matching delay

Offload subscriptions
None

Overloaded CPU

with least traffic
utilization ratio

Overloaded memory
utilization ratio

Output Output utilization ratio

Offload subscriptions
Nonewith highest traffic

in Phase-I
Offload subscriptions

Increases input
with highest traffic

utilization ratio of
and minimal side-

load-accepting broker
effects in Phase-II

in the CSS because their subscription space is a superset of all subscriptions
not in the CSS. With the poset [4], CSS lookup will take O(1) time. Once the
subscriptions in the CSS are identified, a report card is calculated for each of
them. A report card consists of the following fields:

1. Number of subscribers of this subscription to offload.
2. Resulting load percentage difference between the two brokers by offload-

ing this subscription, where a negative value indicates that the offloading
broker will become less loaded than the load-accepting broker. This value is
calculated using the estimated input utilization ratios of the two brokers in
the input offload algorithm, matching delays in the match offload algorithm,
and output utilization ratios in the output offload algorithm.

3. Boolean value indicating if this subscription is covered by the load-
accepting broker’s CSS.

4. Publication rate reduced at the offloading broker estimated using
PRESS.

5. Output bandwidth required per subscriber estimated using PRESS.

The number of subscribers to offload per unique subscription is restrained by
two conditions. First, the offload should not overload any of the load-accepting
broker’s resources. Second, the performance metric of interest of the two brokers
should be balanced within the balanced threshold, which is 0.005 by default; or
bring the offloading broker’s metric below the load-accepting broker’s. The per-
formance metric of interest for the input, match, and output offload algorithms are
the input utilization ratio, matching delay, and output utilization ratio,
respectively.
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After calculating the report cards to determine the number of subscribers to
offload for each subscription in the CSS, the subscription that results in the two
brokers’ input utilization ratio difference closest to zero is chosen for offloading.
This selection scheme ensures that subscriptions with the highest input publica-
tion rate are chosen first, which helps to reduce the number of subscriptions of-
floaded, and in so doing, reduces the impact on the load-accepting broker’s match-
ing delay. If all subscriptions will result in a higher load difference than before, then
the selection process terminates. This guarantees that all load balancing actions
will always converge to a state where the brokers have smaller load differences.

Subscriptions chosen to be offloaded are removed from the poset to prevent
future consideration for offloading. Load information about both brokers (the one
obtained in the mediation process) is updated with estimated values according
to the offloaded subscription’s report card. Updated load information about both
brokers are used on the next iteration of the subscription selection algorithm. The
selection process ends when no more subscriptions are available for offloading,
the offloading broker’s input utilization ratio is below that of the load-accepting
broker, or the absolute difference between the two brokers’ input utilization
ratios fall within the balance threshold.

5.2 Match Offload Algorithm

Although the input utilization ratio varies directly with the matching delay,
balancing the input utilization ratio does not balance the matching delay. The
objective of this offload algorithm is to balance the matching delays without
affecting the input and output utilization ratios of the two brokers. Intuitively,
subscriptions with the lowest publication traffic are most suited to this crite-
rion. Furthermore, subscriptions that introduce less incoming traffic into the
load-accepting broker are more favorable. In this algorithm, report cards are
computed for all subscriptions in the offloading broker, then they are sorted
by ascending output bandwidth. The number of subscribers to offload for each
unique subscription is almost identical to the algorithm outlined in the input
offload algorithm section. The only difference is that input utilization ratios are
replaced by matching delays.

If the match offload algorithm is invoked because the broker is overloaded
and wants to reduce its CPU utilization ratio, input utilization ratio, or memory
utilization ratio, then subscriptions should continue to be offloaded until the
CPU utilization ratio, input utilization ratio, and memory utilization ratio drops
below the lower overload threshold. After a subscription is chosen to be offloaded,
load information about both brokers are updated. The same criterion used in the
input offload algorithm applies here for terminating the match offload process.

5.3 Output Offload Algorithm

This algorithm attempts to balance the output utilization ratios of two brokers
by manipulating the amount of output bandwidth used at each broker. Prioritiz-
ing subscriptions for the offload process is divided into two phases. In Phase-I,
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subscriptions that are covered by or equal to the load-accepting broker’s CSS are
considered. These subscriptions are further classified into three types by using
the fields computed for every subscription’s report card. Offloading Type-I sub-
scriptions will reduce the input publication rate of the offloading broker. These
should be offloaded first because they reduce the overall input load of the system.
Type-II subscriptions are similar to Type-I, except that they do not reduce the in-
put publication rate because all subscribers for a subscription cannot be offloaded
to produce a more balanced state. Type-III subscriptions are considered last in
Phase-I because they do not reduce the input publication rate of the offloading
broker even if all subscribers for that particular subscription are offloaded. The
algorithm for calculating the number of subscribers to offload for each unique sub-
scription is similar to the input offload algorithm shown previously, except that
input utilization ratios are now replaced by output utilization ratios.

After a subscription is chosen to be offloaded, load information about both
brokers is updated. If both brokers are balanced, then the algorithm stops and
forwards the subscriber migration list to the mediator. Otherwise, Phase-II is
invoked to further balance the output utilization ratio with some side-effects.
All subscriptions considered in Phase-II are not contained in the CSS of the
load-accepting broker. Therefore, these subscriptions may have the side-effect
of significantly increasing the incoming publication rate of the load-accepting
broker. What may happen is that there will be an oscillation between the in-
put offload algorithm trying to balance the input utilization ratio disrupted by
Phase-II of the output offload algorithm, and Phase-II of the output offload al-
gorithm trying to balance the output utilization ratio disrupted by the input
offload algorithm. To prevent this unstable situation from happening, Phase-II
terminates when the input utilization ratios of both brokers are balanced, even if
the output utilization ratios are not. An exception applies if the offloading bro-
ker is output overloaded, in which case the offloading broker will stop offloading
once its output utilization ratio is below the lower overload threshold. With this
exception, no oscillation occurs because the offloading broker cannot take back
any subscriptions since it has a status of N/A at the lower overload threshold.

The sorting and selection scheme in Phase-II is exactly the same as in the input
offload algorithm with the use of load differences. If the subscription offloaded
in Phase-II covers other local subscriptions, then Phase-I is invoked to offload
those covered subscriptions because they are now covered by the load-accepting
broker’s CSS. Otherwise, if the subscription offloaded in Phase-II does not cover
any other subscriptions, then Phase-II continues to run.

6 Experiments

6.1 Experimental Setup

The proposed load balancing solution is implemented with 20,000 lines of Java
code in Padres [11], a distributed content-based publish/subscribe system devel-
oped by the Middleware Systems Research Group (MSRG) from the University
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(a) Integration with Padres broker (b) Experiment specs

Fig. 5. Evaluation scheme

of Toronto. The load balancer diagram previously shown in Figure 2 is inte-
grated into the Padres broker as the Load Balancer component illustrated in
Figure 5a. Our experiments are run with Padres brokers under a simulated envi-
ronment that accounts for all processing delays such as matching, queuing, and
bandwidth delays. Default values for the load balancing parameters are used
unless otherwise specified. Publishers on creation are assigned to publish stock
quote publications of a particular company at a defined rate. Publishers can be
configured to change publication rates at any point in time in the experiment.
Stock quote publications are real world values obtained from Yahoo! Finance
containing a stock’s daily closing prices. A typical publication looks like this:

[class,’STOCK’],[symbol,’YHOO’],[open,25.25],[high,43.00],[low,24.50],

[close,33.00],[volume,17030000],[date,’12-Apr-96’]

Subscribers are assigned to a fixed subscription based on one of the templates
with the probabilities shown below. SUB SYMBOL is randomly chosen out of the
known stock symbols, with SUB HIGH, SUB LOW, and SUB VOLUME replaced by a
randomly chosen value of the same attribute from the stock’s publication set.

20% [class,=,‘STOCK’],[symbol,=,‘SUB_SYMBOL’],[high,>,SUB_HIGH]

20% [class,=,‘STOCK’],[symbol,=,‘SUB_SYMBOL’],[low,<,SUB_LOW]

20% [class,=,‘STOCK’],[symbol,=,‘SUB_SYMBOL’],[volume,>,SUB_VOLUME]

34% [class,=,‘STOCK’],[symbol,=,‘SUB_SYMBOL’]

5% [class,=,‘STOCK’],[volume,>,SUB_VOLUME]

1% [class,=,‘STOCK’]

6.2 Local Load Balancing Experiments

The setup used for the local load balancing experiment involves four hetero-
geneous edge brokers connected to one cluster-head, labeled as B0, to form a
star topology. B0 has CPU speed of 2.0GHz with 256MB memory and 10Mbps
bandwidth. B1 has CPU speed of 100MHz with 64MB memory and 0.6Mbps.
B2 has twice the respective performance of B1, and B3 has twice that of B2. B4
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has 10 times the respective performance of B1. On experiment startup, brokers
B0, B1, B2, B3, and B4 are instantiated in order within the first 0.5s. After 5s
into the experiment, 40 unique publishers with a randomly chosen publication
rate between 0 and 60msg/min start publishing to broker B0. 2000 subscribers
join broker B1 at a time chosen randomly between 10s and 1010s using a uni-
form random distribution. Of all subscribers, 25% have zero traffic, which means
their subscriptions do not match any publications in the system. After 3000s,
50% of the publishers are randomly chosen to have their publication rates in-
creased by 100%. This shows the dynamic behavior of the load balancer under
changing load conditions. For the experiment on edge broker scalability shown
in Figure 6g, all edge brokers have 500MHz CPU, 128MB memory, and 3Mbps
bandwidth. All edge brokers are added to the same cluster.

Broker Load Distribution. Referring to Figures 6a, 6b, and 6c, broker B1
becomes overloaded as all the subscribers attempt to connect to it as their first
broker while B1 attempts to offload them to other edge brokers simultaneously.
At 1400s, B1 ’s utilization ratios drop to zero because it offloaded all subscrip-
tions to counter the 100% CPU utilization ratio before that. Finally at 1800s,
load balancing converges and all of the brokers’ performance metrics are within
the local triggering threshold, which was set to 0.1. The imbalance at 3000s
is neutralized automatically by the load balancing algorithm and arrives at a
balanced state at 3400s in the experiment. Although not shown here, by load
balancing on the input and output utilization ratios, the input and output queu-
ing delays are also balanced, respectively.

Client Perceived Delivery Delay. Figure 6d shows that an overloaded broker
(B1 in this case) can significantly increase the end-to-end delivery delay. In
this experiment, the delivery delay is increased by 750 times. By having a load
balancing algorithm in place, this overload period is dramatically reduced and
high delay periods are minimized.

Subscriber Distribution Among Brokers. Figure 6e shows that the load
balancing algorithm can account for heterogeneous brokers by assigning more
subscribers to more powerful brokers. For instance, B2 services twice as many
subscribers as B1 because B2 is twice as powerful as B1. The same pattern is
also observed for brokers B3 and B4 relative to B1.

Load Balancing Message Overhead. Figure 6f shows that the message over-
head is 1.5% in the presence of load balancing from 1000s to 2000s, and 0.2% after
load balancing has converged. Large spikes in this graph denote large batches of
subscribers migrating at that instance in time. The decrease in overhead ratio
in the first 2000s is because of the increase in publication traffic routed to new
incoming subscribers.

Edge Broker Scalability. Figure 6g shows that by increasing the number of
edge brokers in a cluster, the delivery delay is reduced because the load balancing
algorithm evenly distributes load onto all available resources in the system.
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Effect of Detection Threshold on Load Distribution. The input utiliza-
tion ratio difference between all edge brokers is always kept well below the de-
tection threshold as shown in Figure 6h. However, that is not the case for the
output utilization ratio because of the stability constraint in the output load
balancing algorithm.

Load Estimation Accuracy. Figure 7a shows the accuracy of the input uti-
lization ratio estimation. Graphs for the matching delay and output utilization
ratio estimation are not shown here because they have the same trends and ex-
ception cases as Figure 7a. Dots on the y = x line denote 100% accuracy. Looking
at the “offloading broker” and “load-accepting broker” data points, the
input utilization ratio accuracy is the lowest of all three performance metrics
with an average of 91%, including standard deviation. We expect the accuracy
for input utilization ratio estimation to be lowest because PRESS’ load estima-
tion of the future is based on present data. Estimation points taken from B1 in
the face of incoming subscribers are plotted using different point styles labeled
as “B1 itelf” and “B1’s load-accepting broker”. These points are under-
estimated because load estimation does not account for the load imposed by
newly incoming subscribers into the system that occurrs between 10s and 1010s.
Figure 7b shows that the estimated input utilization ratio reaches closer to 0%
error with less deviation as the number of publications sampled increases from
1 to 10. However, beyond 50 samples, the accuracy drops with higher deviations
because publications sampled in the early stages no longer accurately portray
the matching publication pattern of a subscription when sampling is done.

6.3 Global Load Balancing

The setup used for the global load balancing experiment involves 12 brokers
organized into 4 clusters, with 2 edge brokers per cluster. Brokers B11 and
B12 connect to their cluster-head B10, B21 and B22 connect to B20 as their
cluster-head, and so forth for B3x and B4x clusters. Cluster-heads Bx0 connect
to each other sequentially in a chain topology. All clusters have a cluster-head
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Fig. 8. Global load balancing results

broker with 3000MHz CPU, 1GB RAM, and 10Mbps bandwidth. The CPU
speed, memory size, and bandwidth of the edge brokers are given in Figure 5b.
At the start of the experiment, all brokers join the federation. After 5s, 40 unique
publishers with a randomly chosen publication rate between 0 and 60msg/min
start publishing to broker B10. After 10s, 2000 subscribers join broker B11. Of
the 2000 subscribers, 20% or 400 of them have zero traffic. At 8000s, 50% of
the publishers are randomly chosen to have their publication rates increased by
100%. For the experiment on cluster scalability as shown in Figure 8d, each clus-
ter has one cluster-head with 2GHz CPU, 512MB memory, and 10Mbps band-
width; and two edge brokers with 500MHz CPU, 128MB memory, and 3Mbps
bandwidth.

Cluster Load Distribution. The average load at each cluster is shown in
Figures 8a, 8b, and 8c. Whenever a cluster performs global load balancing with
another cluster, the two clusters’ loads are merged on the graph because both
clusters see the same set of edge brokers. Global load balancing takes longer
to converge because the clusters are arranged in a chain topology which lim-
its parallelizing load balancing sessions. For example, cluster B1x ’s load re-
mains unchanged from 1000s to 3000s when B2x load balances with B3x as
shown in Figure 8a. After 4500s, global load balancing converges, ending up
with clusters further away from B1x having lesser load. The imbalance at 8000s
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results in a more balanced state for the input utilization ratios while the out-
put utilization ratios diverges slightly to promote stability of the load balancing
algorithm.

Cluster Scalability. When clusters are organized in a chain-like topology, there
is a load diminishing effect on clusters further away from the source of load,
namely cluster B1x. Figure 8d shows that with a global detection threshold of
0.15, clusters more than 3 cluster-hops away from cluster B1x no longer reduce
the overall delivery delay. This is consistent with the idea of preserving subscriber
locality at the expense of a fully evenly loaded system.

7 Conclusions

In this paper, we presented a load balancing solution with three main contribu-
tions: a load balancing framework, load estimation methodologies, and three
offload algorithms. The load balancing framework consists of the PEER ar-
chitecture, a distributed load exchange protocol called PIE, and detection and
mediation mechanisms at the local and global load balancing levels. The core
of the load estimation is PRESS, which uses an efficient bit vector approach
to estimate the input and output publication loads of a subscription. Each of
the three offload algorithms are designed to load balance on a particular per-
formance metric with minimal side-effects and proven stability. Both the load
estimation and offload algorithms are independent of the load balancing frame-
work. Our solution inherits all of the most desirable properties that make a load
balancing algorithm flexible. PIE contributes to the distributed and dynamic
nature of our load balancing solution by allowing each broker to invoke load
balancing whenever necessary. Adaptiveness is provided by the three offload al-
gorithms that load balance on a unique performance metric. The local mediator
promotes transparency to the subscribers throughout the offload process. Fi-
nally, load estimation with PRESS allows the offload algorithms to account for
broker and subscription heterogeneity. Experimental results show that our load
balancing solution is well-controlled and effective at reducing high processing de-
lays resulting from overload conditions while at the same time imposes minimal
overhead.

In the near future, we plan on expanding our load balancing scheme onto
cluster-head brokers, develop optimizations to our offload algorithms, and ex-
plore the possibilities of publisher migration in relation to load balancing.
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Abstract. We describe a method to order messages across groups in
a publish/subscribe system without centralized control or large vector
timestamps. We show that our scheme is practical—little state is re-
quired; that it is scalable—the maximum message load is limited by re-
ceivers; and that it performs well—the paths messages traverse to be
ordered are not made much longer than necessary. Our insight is that
only messages to groups that overlap in membership can be observed to
arrive out of order: sequencing messages to these groups is sufficient to
provide a consistent order, and when publishers subscribe to the groups
to which they send, this message order is a causal order.

1 Introduction

Publish/subscribe (commonly, “pub/sub”) is a useful design approach for large-
scale distributed information dissemination applications. Pub/sub systems sup-
port loosely-coupled asynchronous communication between information produc-
ers and consumers. Producers (publishers) inject messages into the system, which
routes messages to consumers (subscribers) that register interest in certain mes-
sages using subscriptions. In this paper, we present a protocol for providing an
ordered view of messages sent in a pub/sub system. The order we provide is
maintained across groups and users.

System Model. Subscribers join groups that represent interests. The pub/sub
system provides an API for nodes to join and leave groups, send messages to
any group, and receive messages. Although it is reasonably easy to order mes-
sages to individual groups—simply elect a node to give each message a sequence
number—ordering messages across groups is more challenging. Our ordering pro-
tocol enforces that the receive operation delivers messages in a consistent order
across groups. More precisely, messages to groups that share subscribers are or-
dered so that the subscribers deliver messages to those shared groups in the
same order.

1.1 Applications of Ordering

In the following applications, a centralized coordinator could order events. How-
ever, a single ordering authority limits feasible system size and introduces a single
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point of failure or compromise. We assert that a distributed protocol, such as
the one we present, enables large deployment.

Network Games
Consider a multiplayer online game deployed using the publish/subscribe model
[1], in which, for scalability, the virtual (game) world is divided into regions.
Each player subscribes to the groups that represent nearby regions that it can
affect or where events that can affect the player may occur [2,3]. If multiple
players have overlapping areas of interest, they must see the common events in
the same order to maintain consistency.

Ordered message delivery provides game consistency. Consider three players
that are near enough to each other that every event published by one player will
be received by the other two players. If one player shoots and hits another, all
should see the events in order, else physical rules are violated. Causal ordering
is essential for game correctness. However, unrelated events in distinct regions
need not be ordered.

Stock Tickers
Consider an application in which messages correspond to stock market trades.
Consumers at different brokerage firms may be interested in messages that sat-
isfy different filters—by company size, geography, or industry, for example. The
consumers will be members of groups based on their subscriptions, with every
group receiving the same set of messages. An ordering protocol ensures that up-
date operations that change state result in consistent states across the receivers
that apply those updates in the same order.

Messaging
Internet messaging applications loosely follow the publish/subscribe model. For
example, a user may choose to publish whether he is online or offline. Other users
may subscribe to be notified of when a friend comes on-line by adding the user to
their buddy list. A user may also join chat rooms (conferences) to converse with
other users in the same rooms. Although ordering is not critical for “correctness”
in messaging, enforcing that all messages appear in the same, likely causal, order
should make such a system easier to use. For example, responses should always
follow the messages to which they respond.

1.2 Overview of Our Ordering Protocol

We distribute the task of ordering messages across sequencing atoms. Sequencing
atoms assign sequence numbers to messages addressed to groups that share sub-
scribers. Our approach is scalable because sequencing atoms order no more mes-
sages than the most active receiver in the network—sequencing atoms exist to or-
der the intersections of group memberships, so do not order more messages than
receivers. We separate the task of sequencing across as many sequencing atoms
as possible for flexibility in distributing load, then rely on placing related atoms
on the same or nearby machines (sequencing nodes) to recover performance.
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The insight that makes this possible is that the only destinations that can
observe ambiguous order are those that subscribe to the same pairs of groups.
Only messages to groups with at least two members in common must be ordered.
By ordering those messages in the sequencing network and allowing unrelated
messages to be ordered by end stations, we remove the requirement of central-
ized sequencing or long vector timestamps. The sequence numbers provided by
sequencing atoms even allow events to be “committed” without ambiguity: re-
ceivers can tell when no prior messages are delayed.

For causal ordering, senders must subscribe to the groups to which they
send. This requirement is simple and reasonable because receiving sent messages
through the system also serves as an end-to-end reliability check. Our ordering
is not total across all the users in the system: messages to unrelated groups
may be delivered in any (perhaps globally inconsistent) order. Our distributed
approach enables performance optimizations such as placing sequencers close to
senders and receivers and trading message processing load against network load
by combining sequencing atoms on the same node.

Our primary contribution is a method to order messages across groups of sub-
scribers in a publish/subscribe system without centralized control. We present
theoretical analysis to establish the correctness of our method and simulation
results to verify its efficiency. Our broader goal is to develop primitives that
improve the publish/subscribe model, that are scalable because they require no
centralized servers or state, and that are practical by avoiding guarantees that
applications do not need.

This paper is organized as follows. We survey related work in Section 2. We
then describe the goals, assumptions, and procedures of our protocol in Sec-
tion 3. We use simulations to measure performance in Section 4. We conclude in
Section 5.

2 Related Work

The problem of ordered message delivery has been widely studied in distributed
systems. Défago et al. [4] present an extensive survey, which we summarize here.
Défago et al. organize algorithms by the assumptions they make on the underlying
system (synchronymodel, failure model, communication model, oraclemodel) and
by the objectives they achieve. Here we focus on the ordering mechanisms.

Symmetric approaches are decentralized: each sender determines the order
by appending information to all outgoing messages. The appended information
reflects a causal order of messages, which may later be transformed into a total
order using a predetermined function. Receivers use the attached information to
decide whether to deliver or delay a message. Applications can append different
types of information; most use timestamps or sequence numbers [5,6,7,8,9]. In-
cluding this information in each message typically requires nodes to keep a view
of the messages they have received and sent.

In asymmetric protocols, order is built by a sender, destination, or sequencer.
In sender-based protocols [10,11,12], the sender can multicast a message only
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when granted the privilege, i.e., when it holds a token. In sequencer-based ap-
proaches, typically one node is elected as a sequencer and is responsible for
ordering messages [13,14,15]. More than one sequencer can be present, but only
one will be active or relevant at a time [16,17].

To preserve consistency among game states, networked multiplayer games
enforce an unambiguous order of events. Typically, a centralized coordinator
resolves all conflicts [18,19,20,21]. Although useful in a local area network, as the
network grows, centralized approaches do not scale well and provide a central
point of failure.

Although most work in decentralized ordering algorithms assumes only a sin-
gle group, a few consider overlapping groups [14,22,23,24]. Our approach is clos-
est to that of Garcia-Molina et al. [14]. In the taxonomy of this section, their
approach is asymmetric and sequencer-based: they order messages as they de-
liver them through a tree of subscriber nodes. A total order of messages results
when messages traverse this tree, assuming, among other typical assumptions for
fault-tolerant behavior, that message delay is bounded. The graph is arranged so
that messages are sequenced by the destination nodes that subscribe to the most
groups, and the task of sequencing messages is overlapped with distribution. We
separate these tasks to sequencing atoms, which may be placed on any nodes in
the network, and to a distribution tree, which may be tailored to perform well
despite distant nodes. Our sequencing atoms sequence only messages for double-
overlaps, in which groups share multiple members in common, not all messages
for a destination. Although we provide only causal ordering, we expect that our
design makes it possible for sequencing atoms to marshal fewer messages and do
less work for each message.

There has been little interest in applying these ordering protocols in dis-
tributed publish/subscribe systems [25,26,27,28]. As the network grows, cen-
tralized approaches do not scale because the sequencer becomes a bottleneck
and central point of failure. Furthermore, token-based protocols introduce long
delays when nodes must wait for the token or recover lost tokens. Distributed
approaches based on vector timestamps are more scalable but they incur pro-
hibitive network overhead due to the large timestamps. Our protocol is both
scalable and incurs low overhead. By distributing the task of sequencing across
a network of sequencers, we remove the requirement for a centralized coordina-
tor or large vector timestamps. Unlike vector timestamp approaches, the addi-
tional information we append to each message does not depend on the size of
the destination group and is proportional, in the worst case, to the number of
groups.

3 Ordering Protocol

Our model of an ordered message delivery system consists of three phases:
ingress, where messages move from senders to the sequencing network, sequenc-
ing, where messages traverse sequencing atoms while collecting sequence num-
bers, and distribution where packets leave the sequencing network and are sent to
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destination nodes. We focus on sequencing; existing multicast delivery schemes
can support ingress and distribution.

Our goal is to ensure a consistent ordered delivery of messages to members
of the same groups. A group is formed of all subscribers that share a common
subscription. Our key observation is that when messages are sent to groups with
overlapping membership, receivers may make inconsistent decisions about the
order of those messages. We call groups that have two or more subscribers in
common double overlapped, and our approach is to provide a sequence number
space for each double-overlapped set of groups. These sequence numbers remove
the possibility of inconsistent ordering decisions by receivers. By sending mes-
sages through sequencing atoms arranged into a sequencing network, the network
determines the order of related messages in a decentralized way.

The sequencing graph is arranged so that sequencing atoms (also called se-
quencers) instantiated for double-overlapped groups form paths that group mes-
sages can follow. A group may have many sequencing atoms because it may
have many double-overlaps with other groups. The paths of messages addressed
to doubly-overlapped groups intersect at the sequencer associated with the over-
lap, ensuring that these messages are ordered.

Sequencing atoms are virtual. They need not be placed on different hosts; in
fact, placing atoms on the same host may improve performance. A sequencing
node is a machine that hosts sequencing atoms. We assume that the group
membership matrix—which nodes belong to which groups—is globally known;
it can be kept in a distributed data store such as a DHT or it can be provided
by the underlying publish/subscribe system.

3.1 Operation

Each sequencing atom maintains the following state:

– A sequence number for its overlapped groups.
– A group-local sequence number for the groups it acts as ingress node for.
– A forwarding table to direct messages to the next sequencer for each desti-

nation group.
– A reverse-path table listing the previous sequencer in the network for each

group.
– An output retransmission buffer for each subsequent sequencer.
– A buffer to store received messages from previous sequencers.

Upon receiving a new message from outside the sequencing network, a se-
quencer assigns it a group-local sequence number. The message can be forwarded
immediately for distribution if its destination group has no double overlaps. Oth-
erwise, if a group has a double overlap sequenced at this sequencer, the current
sequence number for the overlap is added.

The message is then placed in the output buffer and transmitted to the next
sequencer (if any) in the path for the group. The message can be removed from
the buffer when this sequencer receives an acknowledgment from the next hop.
We assume that there is a FIFO channel between any two sequencers. If the
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message is leaving the sequencer network, it will be sent to a delivery tree and
on to group members.

This protocol provides two key properties. First, all members of the same
group see messages in the same order, which is a causal order if the sender is
also part of the group. Causal order expresses the “happens before” relationship
among messages, as defined by Lamport [5]. Second, all destinations can make
an immediate decision of whether to deliver or buffer arriving messages.

3.2 Sequencing Graph: Construction

The sequencing graph must meet two criteria:

C1: A single path must connect sequencers associated with each group.

C2: The undirected sequencing graph must be loop-free.

C1 ensures that each message is sequenced relative to all other groups with
which the destination group shares a double overlap. When leaving the sequenc-
ing network, each message has sufficient information that it can be ordered
relative to the messages to all overlapping groups. C2 prevents messages from
having circular dependencies, e.g., message a before b, b before c, and c before a.
A loop in the sequencing graph could allow an atom to make an ordering decision
inconsistent with the ordering of messages not seen by that sequencing atom, as
we illustrate with an example in the next subsection. The group- and sequencer-
based sequence numbers and ordered inter-sequencer message channels ensure a
consistent order of related messages at destinations.

Operations on a sequencing network include adding, removing, and modifying
groups. They correspond to the operations of adding, removing and changing a
subscription in the publish/subscribe system. When a subscriber node A adds
a new subscription, if there is no other node with the same subscription, a
new group is created with A as its only member. Otherwise, A joins the group
that is associated with the subscription. Similarly, when A removes one of its
subscriptions, it will leave the group associated with the subscription. If A was
the only member of the group, the group is deleted.

We describe only addition and removal of groups; changing the graph when
group membership changes can be accomplished by adding a group with the new
membership and removing the old one. Figure 1 illustrates these operations.

Adding the first group G0 is trivial: an ingress-only sequencer is created—this
sequencer orders all messages sent to the group. When the second group, G1 is
added, if the memberships of G0 and G1 overlap with at least two nodes (are
doubly-overlapped), a new sequencer, Q0, must represent G0 ∩ G1. All messages
for both groups must transit this sequencer, and the G0-specific sequencer may
be replaced or removed. This sequencer is relevant for all nodes in G0 ∩ G1; the
rest need only use the group-local sequence number.

Adding each new group starts with the same basic procedure: a new sequenc-
ing atom is instantiated for any new double overlap. The new sequencing atoms
must then be connected to the graph to form a path for the new group so that
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Q1
Q0

       A    B   C   D

G0:  1    1    1    0

G1:  0    1    1    0

G2:  1    1    0    1

G3:  0    1    1    1

Q2

Q1
Q0

       A    B   C   D

G0:  1    1    1    0

G1:  0    1    1    0

G2:  1    1    0    1

G3:  0    1    1    1

Q2

G4:  0    1    0    1

Q0

       A    B   C   D

G0:  1    1    1    0

G1:  0    1    1    0

G2:  1    1    0    1

G3:  0    1    1    1

Q2

G4:  0    1    0    1

       A   B   C   D

G0:  1    1   1    0

G1:  0    1   1    0

G2:  1    1   0    1

Q1
Q0

to G0

Q1

Q0

to G3

to G2

to G1

to G0

Q1

Q0

to G3to G4

to G2

to G1

Q2

to G2

Q0

to G3to G4

to G1

Q2

(b) G3 is added: Q0 and Q2 are associated to its overlaps; messsages to G3 are 
redirected through Q1 to avoid a loop in the sequencing graph

to G0

Q1
to G2

to G1

Q0

(a) Sequencing network for G0, G1 and G2

(c) G4 is added: messages to G4 traverse Q2 due to the overlap with G2 and G3

(d) G0 is removed: sequencer Q1 is no longer needed

Fig. 1. Adding and removing groups for a set of four nodes, A, B, C and D

C1 is satisfied. Unlike C1, C2 is difficult to maintain using only local informa-
tion. We use a global picture of the sequencing graph and subscription matrix
state to find a new sequencer arrangement that satisfies C1 and C2.
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Removing a group may eliminate the overlaps that justify a sequencer’s exis-
tence. Sequencers associated with a group can be removed lazily: adding ignored
sequence numbers to a message does not hurt correctness, only efficiency. To
remove a group, a termination message is sent to that group, signifying the end
of the sequence space for that group, much like a TCP FIN. Each sequencer
can inspect this termination message to determine if there is no longer overlap
between the nodes this sequencer operates for. If the overlap is gone, the se-
quencer may retire by informing its parent to forward messages to its child for
each sequenced group.

3.3 Sequencing Graph: Analysis

We present next an analysis of our protocol. We first describe how conditions
C1 and C2 affect the sequencing graph and then we prove the unambiguity of
the message delivery order across each group.

Let G be a group of subscribers that has double overlaps with other groups
in the system. Each double overlap is associated with a sequencing atom and,
according to C1, all the sequencers for the group form a single path in the se-
quencing graph. Since the graph is loop free and there are FIFO channels between
each pair of sequencers, any order of arrival of two messages at a sequencing atom
will be maintained by all the other sequencing atoms traversed by the messages
afterward. We denote the sequence number assigned by sequencing atom Q to a
message m addressed to group G by Q(m) and the group-local sequence number
with G(m). The path of sequencing atoms traversed by a message m is sp(m).

Definition 1. Let G be a group with |G| ≥ 2, let A, B ∈ G and MA,B be the
set of messages received by both A and B. We define a relation ≤A,B on the set
MA,B such that ∀m1, m2 ∈ MA,B, m1 ≤A,B m2 if and only if Q(m1) ≤ Q(m2)
when sp(m1) and sp(m2) have a common sequencer Q, or G(m1) ≤ G(m2)
otherwise.

Theorem 1. ∀G, ∀A, B ∈ G, A �= B, ≤A,B is a total order.

Proof. ≤A,B is a total order if it is reflexive, transitive, antisymmetric and total.
For simplicity we refer to MA,B and ≤A,B simply as M and ≤M.

Reflexivity: ∀m ∈ M, m ≤M m.
The property is obviously true.
Transitivity: ∀m1, m2, m3 ∈ M such that m1 ≤M m2 and m2 ≤M m3 then
m1 ≤M m3.
Case I: If all three messages are addressed to the same group, and traverse a
sequencing atom Q then m1 ≤M m2 ⇒ Q(m1) ≤ Q(m2) and m2 ≤M m3 ⇒
Q(m2) ≤ Q(m3). Therefore Q(m1) ≤ Q(m3) and consequently m1 ≤M m3. If
the messages do not traverse a sequencing atom, transitivity is proved similarly
using the group-local sequence numbers.
Case II: If two of the groups are identical and different from the third, there
can be only one double overlap between them. All messages are sequenced by
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the sequencer associated with the overlap and the proof is identical to the first
subcase of Case I.
Case III: We now consider the case when messages are addressed to three dif-
ferent groups and travel on sequencing paths sp(m1), sp(m2) and sp(m3). Since
a group may have different double overlaps with each of the other two groups,
the sequencing paths pairwise intersect. Therefore the paths of m1 and m2 must
have a common sequencing atom, Q1, which establishes the order between the
messages. The same applies for m2 and m3 (both sequenced by Q2) and for
m1 and m3 (sequenced by Q3). If the paths have more than one common se-
quencing atom, we pick the one closest to the sender as the most significant one.
Because the sequencing graph is loop-free, it is imperative that Q1 ⊂ sp(m3),
Q2 ⊂ sp(m1) or Q3 ⊂ sp(m2). We assume that Q1 ⊂ sp(m3)—for the other two
cases the reasoning is similar. Then, message m3 transits Q1 (although it does not
receive a sequence number from it). From the hypothesis, we have m1 ≤M m2

and m2 ≤M m3, therefore Q1(m1) ≤ Q1(m2) and Q2(m2) ≤ Q2(m3). Because
m2 arrives before m3 at Q2 and because the order of arrival of two messages at
all sequencing atoms on a path must be consistent, m2 arrives before m3 at Q1.
m1 arrives before m2 at Q1 and, using the transitivity of the “arrives before”
relation, it results that m1 arrives before m3 at Q1. The consistent arrival order
on sp(m3) maintains this property at Q3, which will assign a lower sequence
number to m1. Since Q3(m1) ≤ Q3(m3) then m1 ≤M m3.
Antisymmetry: ∀m1, m2 ∈ M, if m1 ≤M m2 and m2 ≤M m1 then m1 = m2.
If m1 and m2 travel through a sequencer Q then they will be assigned sequence
numbers Q(m1) and Q(m2). If m1 ≤M m2 and m2 ≤M m1 then Q(m1) ≤ Q(m2)
and Q(m2) ≤ Q(m1) and the total ordering of the natural numbers implies that
Q(m1) = Q(m2). A sequencing atom does not assign the same sequence number
to two different messages therefore m1 = m2. If m1 and m2 do not traverse any
sequencer they will be ordered based on the group local sequence number and
the reasoning is the same.
Totality: ∀m1, m2 ∈ M, either m1 ≤M m2 or m2 ≤M m1.
Any two messages received by both A and B can either be addressed to a single
group or to two different groups. If their destination is a single group, the group
local sequence number will be used to establish a total order between them.
On the other hand, if they go to two different groups, they have to traverse
the sequencing atom instantiated by the overlap (A,B). The assigned sequence
numbers are used to determine the order. ��
Any destination node can make an instant and deterministic decision of whether
to deliver an arriving message to the application or to buffer it. The order of
delivery is consistent over all members of the same group, but it does not reflect
causal relationships between messages. This is because the sender and the re-
ceivers are completely decoupled and the ordering is enforced by the sequencing
graph. We achieve causal ordering only when the sender is part of the group to
which the message is sent. This happens because only then the sender can be
aware of any a priori causal relationship between messages and can propagate
it across the sequencing graph.
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m1:Q0(2) 
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 G : 1

m2

Q0: 1
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Q2: −
 G : 1

m0

(b)

Q0: 2
Q1: −
Q2: 2
 G : 1

m1
Q0: −
Q1: 1
Q2: 1
 G : 1

m2

Q0: 1
Q1: 2
Q2: −
 G : 1

m0

Q0

Q2Q1

to G0 to G1

to G2m2

m1 m0 m1 m0

m2

to G0

to G2

to G1

Q1 Q2

Q0

Fig. 2. Example of circular dependency among messages m1, m2 and m3 and how it
can be avoided; groups G0={A,B,D}, G1={A,B,C} and G2={B,C,D} are served by the
sequencers Q0, Q1 and Q2. Each sequencer assigns a sequence number to each message
that traverses it. (a) node B receives all three messages but cannot unambiguously
decide on their order; (b) message m1 is redirected through Q1 and the ambiguity is
eliminated.

As mentioned in Section 3.2, a sequencing graph must meet two criteria to un-
ambiguously order messages. The first condition, C1, is easy to justify: multiple
paths create nondeterminism which may produce ambiguous sequence numbers
for messages. We illustrate the need for the second condition through the fol-
lowing example.

Consider four nodes A, B, C, D and three groups with the following member-
ships: G0={A,B,D}, G1={A,B,C}, G2={B,C,D}. Figure 2(a) shows the result-
ing sequencing network—without C2—with the sequencers labeled Q0, Q1, Q2.
Now, assume that messages m0, m1, m2 are sent to groups G0, G1, G2. Without
C2, these messages will gain inconsistent sequence numbers, shown in the table
in Figure 2(a), by the following process. Messages m0 and m1 both traverse se-
quencer Q0 and receive a sequencer number. If m0 reaches Q0 first, it is tagged
with sequence number 1 and m1 tagged 2. Next, they continue on the path to-
wards the destination group, m0 sent to Q1 and m1 to Q2. Meanwhile message
m2 is sent to G2 and reaches sequencer Q1 before message m0. Thus, at Q1, m2

is tagged with 1 and m0 with 2. So far, message m0 passed through both Q0
and Q1, being assigned sequence numbers 1 and 2. Because these were the only
two sequencers through which it had to pass, m0 can now be delivered to the
members of G0, nodes A, B and D. Message m2, on the other hand is forwarded
to Q2. If the connection between sequencers Q1 and Q2 is very slow compared
to the one between Q0 and Q2, m2 reaches Q2 after m1 does. Then, at Q2, m1

receives sequence number 1 and m2 sequence number 2. We show in the table
from Figure 2(a) the sequence numbers of each of the three messages after they
exit the sequencing network. Because each is the first and only message sent to
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its group, all have group sequence number 1. As the table shows, the three mes-
sages have a circular dependency. B cannot deliver m0 because it waits for m1,
which cannot be delivered because of m2, while m2 depends upon the successful
delivery of m0.

We eliminate the circular dependency in Figure 2(b) by redirecting message
m1 through sequencer Q1 to make the sequencing graph loop free, condition C2.

3.4 Placing the Sequencing Atoms

Randomly scattering sequencing atoms throughout the network would lead to
poor performance: because messages must traverse the path of sequencing atoms
for the group, many needless network hops would result. We have developed a
two-step heuristic for co-locating sequencing atoms on the same machines. The
heuristic is based on the relationship between the double overlaps associated
to the sequencing atoms. In the first step, we place on the same machine any
sequencing atoms whose corresponding overlaps have a subset relationship be-
tween them. For example, let there be two sequencing atoms, Q1 and Q2, such
that Q1 is associated to an overlap containing nodes A, B and C and Q2 corre-
sponds to an overlap formed by A and B. Since {A,B} ⊂ {A,B,C}, Q1 and Q2 are
co-located on the same node. In the second step of the heuristic, we also co-locate
overlaps that do not have subset relationships between them but share at least a
common node as follows. For each overlap, we choose at random one of its nodes,
find all other overlaps that contain the chosen node and place the corresponding
sequencing atoms on the same machine. We impose the restriction that each se-
quencing atom be co-located only once. This arrangement of sequencing atoms
on the same sequencing node preserves our scalability goal—that no sequencing
machine sees more messages than the most loaded receiver—without needlessly
distributing related sequencing atoms throughout the network.

The selection of the machine on which to place a related set of sequencing
atoms is also important. Ideally, we want to minimize the extra delay that a
message experiences when it traverses the sequencing path. We abstract a related
set of sequencing atoms by a sequencing node and we seek to find an optimal
mapping between sequencing nodes and physical machines. We propose a simple
heuristic that is run on behalf of each group as follows:

– if no sequencing node associated to the group has been assigned to a physical
node yet, assign one at random

– if there are sequencing nodes already assigned to machines, then pick the
closest unassigned sequencing node on their sequencing paths and assign it
to neighboring machines.

The heuristic tries to put neighboring sequencing nodes on a sequencing path on
close machines in the publish/subscribe infrastructure. This placement makes
messages traverse relatively few extra hops to be ordered and helps us show that
acceptable performance is feasible.
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4 Results

In this section, we present simulation results to validate the performance of our
ordering scheme. We only focus on the properties of the protocol when group
membership is static or does not change very often.

4.1 Experimental Setup

We developed a packet-level discrete event simulator to evaluate the sequencing
protocol. We simulated using a 10,000 node topology generated by GT-ITM [29].
The simulator models the propagation delay between routers, but not packet
losses or queuing delays.

We attach hosts to the topology by grouping them into similar size clusters,
then distributing each cluster uniformly at random through the topology. Nodes
in the same cluster are placed close to each other. We choose this mapping
because it is consistent with online communities, in which users tend to clus-
ter around the lowest-latency server. We do not place any constraints on the
publish/subscribe system that uses the ordering scheme. Messages travel from
publishers to subscribers on the shortest path and any router in the topology
can serve as a forwarding node. This is acceptable because our experiments are
concerned only with the characteristics of the ordering layer. We are interested
in measuring the penalty in performance that our primitive introduces with re-
spect to the underlying layer. The mapping between the sequencing graph and
the underlying infrastructure is done using the heuristic described in Section 3.4.
Better heuristics may give better results—our intent in this section is to show
that acceptable performance is possible.

We vary the number of end-hosts between 32 to 128, and each host can sub-
scribe to zero or more groups. We vary the number of groups from 8 to 32. We
rank the groups based on their size and we generate the size of each group using
a Zipf distribution with exponent 1. The sizes are proportional to the function
r−1/Hn,1, where r is the rank of the group, n is the number of hosts and Hn,1 is
the generalized harmonic number of order n of 1. We choose the Zipf distribution
because it is known to characterize the popularity of online communities [30,31]

4.2 Latency Stretch

We evaluate the extra delay messages encounter when traversing the sequencing
network compared to taking the shortest unicast path. We measure the latency
stretch: the ratio between the time taken for a message to traverse the network
using the sequencers and the time taken using the direct unicast path. Similar
metrics have been described by Chu et al. [32] (RDP) and Castro et al. [28]
(RAD). RAD is defined per group and RDP per sender-destination pair; we
believe latency stretch better represents the performance of our protocol because
it captures the delay penalty of an individual node, when the node requires
unambiguous delivery. To measure the latency stretch, each node sends a message
to each of the groups it is part of, first using the sequencer network and then
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directly. We average the results and index them by destination nodes. We leave
group membership fixed during the experiment.

Figure 3 presents the cumulative distribution of the latency stretch computed
for 128 nodes subscribing to 8, 16, 32, and 64 groups. When there are fewer
groups, the sequencing network is smaller and traversing it takes less time. For
example, when we used 8 groups, latency stretch did not exceed 2.5. As the
number of groups increases, so do the number of overlaps and the number of se-
quencing nodes that must be traversed. The growth is sub-linear: for 64 groups,
the maximum latency stretch observed is less than 8. We quantify next how the
increase in delay incurred by ordering is distributed with respect to the actual
latency between the publisher and its subscribers. For this we compute the Rel-
ative Delay Penalty (RDP [32])—the ratio between the sequencing and unicast
delay for each sender-destination pair—and plot it against the corresponding uni-
cast delay between the sender and the destination. Figure 4 shows the results for
128 subscribers arranged in 64 groups. The highest values for RDP correspond
to the pairs in which the sender and the destination are very close to each other.

Increased delivery time in exchange for guaranteed order among messages is
an inherent tradeoff of our approach. Delaying message delivery may be accept-
able for Internet messaging or stock ticker applications, but generally it affects
negatively the performance of network games. However, this section presents
worst case results because we overestimate the performance of unicast: shortest
unicast paths are rarely followed. To obtain faster delivery, the mapping of the
sequencing graph should take into account the requirements of the applications
that need ordering as well as the characteristics of the pub/sub infrastructure.

4.3 Sequencing Nodes

We next consider how adding groups affects the number of sequencing nodes
and the stress on each node. We might worry that the number of sequencing
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nodes and the number of groups associated with each of them would increase
exponentially as we add more groups; such a protocol would be impractical. To
simplify presentation, we consider only the sequencing nodes that host non-
ingress-only sequencers: each group has at most one ingress-only sequencer,
so the ingress-only sequencers may grow at most linearly with the number of
groups.

Figure 5 shows the average number of sequencing nodes created as we vary the
number of groups. We vary the number of groups formed by 128 subscriber nodes
from 1 to 64, and run the experiment 100 times. The error bars range from 10th
to 90th percentile. As the number of groups increases, there are more overlaps
and thus more sequencing nodes. After 30 groups, the number of sequencing
nodes grows more gradually because many of the new overlaps have common
members with existing overlaps, and so can be mapped to existing sequencing
nodes.

We define the stress of a sequencing node as the ratio between the number of
groups for which it has to forward messages and the total number of groups. A
sequencer with a stress value of 1 forwards messages to all groups. In Figure 6, we
present the average, 90th percentile and maximum values of stress as the number
of groups increases. We observe the same behavior as in Figure 5. Initially, as we
add more groups, we also add more sequencing nodes and the stress decreases and
stabilizes around the value 0.2. After 30 groups, when the number of sequencing
nodes increases more slowly, the stress slightly increases because there are more
groups to be sequenced by the same number of sequencing nodes. The heuristic
we used to map sequencing atoms to sequencing nodes makes sure that all the
groups associated to a sequencing node share at least a member. As such, the
load of this member is an upper bound for the load on any sequencing node that
lies on the path to it.
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4.4 Sequencing Atoms on a Path

Although the number of sequencing nodes remains small, the number of over-
laps, and thus sequencing atoms, grows large. The size of the graph in atoms
is less important, however, than the number of atoms each message must tra-
verse, which represents how many sequence numbers a message must collect.
Our approach is most attractive when the path length through the sequencing
network is smaller than the number of nodes; that is, when the message over-
head of sequence numbers provided by the sequencing network is less than that
of system-wide vector timestamps. We compute the ratio between the number of
sequencing atoms on a path and the total number of nodes, for different group
sizes, and present it as a cumulative distribution in Figure 7. In the worst case,
the number of sequencing atoms in the path of a message is less than half of the
total number of nodes that participate. The path length through the sequencing
network is bounded by the total number of groups, since a group can have an
overlap with at most each of the other groups. As a result, our sequencer-based
approach is attractive whenever the number of nodes exceeds the number of
groups.

4.5 Varied Occupancy

Although we use a Zipf distribution to generate group sizes because we believe
it models likely usage, we also wanted to explore worst-case usage scenarios.
We define the expected occupancy as a measure of the density of the group
membership. The value of the expected occupancy can be interpreted as the
probability that a node is member of a group: an occupancy of 0 means that all
groups are empty, while an occupancy of 1 means that every node subscribes to
every group. Using 128 nodes and 32 groups, we vary the expected occupancy
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between 0 and 1 to see if the sequencing network approach is more efficient at
some group densities.

Figure 8 illustrates how the expected occupancy of groups affects the average
number of double overlaps and sequencing nodes. As the expected occupancy in-
creases, the number of double overlaps and necessary sequencing nodes increase
until approximately 0.2 occupancy. Beyond this, increasing group densities cre-
ates double overlaps that have common members with existing overlaps, and the
number of sequencing nodes gradually decreases. When the group densities are
very high (above 0.9), the overlaps include the entire population and the number
of sequencing nodes drops to one.

5 Conclusion

Our primary contribution is a method for ordering messages in a pub/sub system
without centralized control and without vector timestamps. We showed that it
is practical and scalable, because little local and global state is maintained,
because sequencing atoms can be placed to achieve good performance relative to
a centralized sequencer, and because sequencing nodes order no more messages
than destinations receive. Our insight is that only messages to groups with two
or more common members must be ordered, and this provides a causal ordering
when senders also subscribe.

This approach forms a new primitive for publish/subscribe systems. To in-
vestigate its applicability, we plan to apply the idea to the realistic workloads
of these and other systems and measure when group membership is (or can be)
geographically-correlated. We also intend to more completely understand the
dynamic behavior of our algorithm. When changes in the group membership are
infrequent or along existing patterns, we expect very little churn in the sequenc-
ing graph. However, we want to determine whether sequencing networks perform
well even when incrementally updated as groups and nodes join and leave very
often.
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4. Défago, X., Schiper, A., Urbán, P.: Total order broadcast and multicast algorithms:
Taxonomy and survey. In: ACM Computing Surveys. (2004)

5. Lamport, L.: Time, clocks and the ordering of events in a distributed system.
Communications of the ACM (1978)

6. Schiper, A., Eggli, J., Sandoz, A.: A new algorithm to implement causal ordering.
In: 3rd International Workshop on Distributed Algorithms. (1989)



178 C. Lumezanu, N. Spring, and B. Bhattacharjee

7. Peterson, L.L., Buchholz, N.C., Schlichting, R.D.: Preserving and using context
information in interprocess communication. ACM TOCS 7(3) (1989) 217–246

8. Dolev, D., Dwork, C., Stockmeyer, L.: Early delivery totally ordered multicast in
asynchronous environments. In: 23rd Int’l Symposium on Fault-Tolerant Comput-
ing (FTCS-23). (1993)

9. Birman, K.P., Joseph, T.A.: Reliable communication in the presence of failures.
ACM TOCS 5(1) (1987) 47–76

10. Amir, Y., Moser, L.E., Melliar-Smith, P.M., Agarwal, D.A., Ciarfella, P.: The
Totem single-ring ordering and membership protocol. ACM TOCS 13(4) (1995)
311–342

11. Cristian, F.: Asynchronous atomic broadcast. In: IBM Technical Disclosure Bul-
letin. (1991)

12. Rajagopalan, B., McKinley, P.: A token-based protocol for reliable, ordered multi-
cast communication. In: 8th Symposium on Reliable Distributed Systems (SRDS).
(1989)

13. Kaashoek, M.F., Tanenbaum, A.S.: An evaluation of the Amoeba group commu-
nication system. In: ICDCS. (1996)

14. Garcia-Molina, H., Spauster, A.: Ordered and reliable multicast communication.
ACM TOCS 9(3) (1991) 242–271

15. Schiper, A., Birman, K., Stephenson, P.: Lightweight causal and atomic group
multicast. ACM TOCS 9(3) (1991) 272–314

16. Chang, J.M., Maxemchuk, N.F.: Reliable broadcast protocols. ACM TOCS 2(3)
(1984) 251–273

17. Whetten, B., Montgomery, T., Kaplan, S.M.: A high performance totally ordered
multicast protocol. In: Selected Papers from the International Workshop on Theory
and Practice in Distributed Systems. (1995)

18. Gautier, L., Diot, C.: Design and evaluation of mimaze, a multi-player game on
the Internet. In: IEEE Int’l Conference on Multimedia Computing and Systems.
(1998)

19. Ishibashi, Y., Tasaka, S., Tachibana, Y.: A media synchronization scheme with
causality control in networked environments. In: IEEE LCN. (1999)

20. Ishibashi, Y., Tasaka, S., Tachibana, Y.: Adaptive causality and media synchro-
nization control for networked multimedia applications. In: IEEE ICC. (2001)

21. Iimura, T., Hazeyama, H., Kadobayashi, Y.: Zoned federation of game servers:
a peer-to-peer approach to scalable multi-player online games. In: NETGAMES.
(2004)

22. Jia, X.: A total ordering multicast protocol using propagation trees. IEEE Trans.
Parallel Distrib. Syst. 6(6) (1995) 617–627

23. Ezhilchelvan, P.D., Macedo, R.A., Shrivastava, S.K.: Newtop: a fault-tolerant
group communication protocol. In: ICDCS. (1995)

24. Aguilera, M.K., Strom, R.E.: Efficient atomic broadcast using deterministic merge.
In: PODC. (2000)

25. Carzaniga, A., Rosenblum, D.S., Wolf, A.L.: Design and evaluation of a wide-area
event notification service. ACM TOCS 19(3) (2001) 332–383

26. Aguilera, M.K., Strom, R.E., Sturman, D.C., Astley, M., Chandra, T.D.: Matching
events in a content-based subscription system. In: PODC. (1999) 53–61

27. Pietzuch, P., Bacon, J.: Hermes: A distributed event-based middleware archi-
tecture. In: 1st International Workshop on Distributed Event-Based Systems
(DEBS’02). (2002)



Decentralized Message Ordering for Publish/Subscribe Systems 179

28. Castro, M., Druschel, P., Kermarrec, A.M., Rowstron, A.I.: Scribe: A large-scale
and decentralized application-level multicast infrastructure. IEEE Journal of Se-
lected Areas in Communication (2002)

29. Zegura, E., Calvert, K., Bhattacharjee, S.: How to model an internetwork. In:
IEEE Infocom. (1996)

30. Wolman, A., Voelker, G.M., Sharma, N., Cardwell, N., Karlin, A.R., Levy, H.M.:
On the scale and performance of cooperative web proxy caching. In: SOSP. (1999)

31. Breslau, L., Cao, P., Fan, L., Phillips, G., Shenker, S.: Web caching and zipf-like
distributions: Evidence and implications. In: INFOCOM. (1999)

32. Chu, Y.H., Rao, S.G., , Zhang, H.: A case for end system multicast. In: ACM
Sigmetrics. (2000)



DBFarm: A Scalable Cluster for Multiple Databases

Christian Plattner1, Gustavo Alonso1, and M. Tamer Özsu2
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Abstract. In many enterprise application integration scenarios, middleware has
been instrumental in taking advantage of the flexibility and cost efficiency of clus-
ters of computers. Web servers, application servers, platforms such as CORBA,
J2EE or .NET, message brokers, and TP-Monitors, just to mention a few exam-
ples, are all forms of middleware that exploit and are built for distributed de-
ployment. The one piece in the puzzle that largely remains a centralized solution
is the database. There is, of course, much work done on scaling and paralleliz-
ing databases. In fact, several products support deployment on clusters. Clus-
tered databases, however, place the emphasis on single applications and target
very large databases. By contrast, the middleware platforms just mentioned use
clustered deployment not only for scalability but also for efficiently supporting
multiple concurrent applications. In this paper we tackle the problem of clus-
tered deployment of a database engine for supporting multiple applications. In
the database case, multiple applications imply multiple and different database in-
stances being used concurrently. In the paper we show how to build such a system
and demonstrate its ability to support up to 300 different databases without loss
of performance.

Keywords: database clusters, scalability, replication, consistency.

1 Introduction

In many enterprise application integration scenarios, middleware has been instrumental
in taking advantage of the flexibility and cost efficiency of clusters of computers. There
exists a plethora of middleware solutions to create distributed deployments and to par-
allelize a wide range of application types. In addition, distributed deployment across a
cluster of machines is most effective when the same platform can be used for concurrent
applications. Thus, platforms such as J2EE or .NET are clearly designed to be used with
multiple concurrent applications. In spite of this, the piece of the puzzle that still mostly
remains a centralized solution is the database. Even though there is much work done
in the area of cluster and parallel databases [20], the emphasis is always on improving
access to a single database. This is not a trivial distinction. The problem with single
instance optimizations is that they often conflict with the goal of supporting multiple
database instances. For instance, crucial to be able to exploit clusters is the ability to
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Fig. 1. Managing 100 Databases (DBx) on a DBFarm using 3 Master (Mx) and 6 Satellite (Sx)
Servers. Each Database is installed on one Master and may be replicated on different Satellites.

freely move resources from machine to machine as needed and allocate more or less
machines to different applications as load fluctuates. In the single database case, the
clients simply connect to that database. In a cluster based solution, clients should see a
single image of the system even when databases are dynamically moved around. Sim-
ilarly, efficient use of the resources of the cluster imply that database instances might
share computing nodes. Care must be taken that work on one instance does not nega-
tively affect work on a different instance. Finally, clients should always see a consistent
state but consistency needs to be accomplished without limiting the scalability of the
cluster and without introducing unacceptable overhead.

These constraints point out to the need for some form of middleware based solution
since database optimizations mostly apply to single instances and somebody has to co-
ordinate the access to multiple, independent instances. The challenge in building such
a middleware based solution is that it must be very light weight so as not to limit scal-
ability. Handling, for instance, 100 databases each running 100 transactions per second
does not allow to spend too much time on each transaction (and our goal is to scale
well beyond that). Yet, that same middleware must guarantee consistency and a single
system image.

In this paper we describe the architecture and implementation of DBFarm, a clus-
ter based database server implemented as a thin middleware layer that can be used to
support several hundred database instances. DBFarm is based on using two kinds of
database servers: master database servers (see Figure 1) and satellites. Master servers
can be made highly reliable by using specialized hardware, RAID systems, hot stand-by
techniques, and sophisticated back-up strategies. This provides the necessary reliability
and does it in a way that the resources are shared among all databases. Scalability is
then provided by a cluster of unreliable satellite machines where copies of the individ-
ual databases are placed. A key aspect of DBFarm is that the users of the databases
are not aware of the fact that they may be working with an unreliable copy rather than
working on the master database. DBFarm ensures that they see a consistent state at all
times. Another key feature of DBFarm is that the load distribution between the master
databases and the satellite copies is done based on the read/write characteristics of the
operations requested by the users. Writes are performed at the master databases, reads at
the copies. This workload distribution allows to significantly reduce the load at the mas-
ters (and thus, be able to support a larger number of databases on the same machines)
while providing a high level of parallelization for the satellites (and, thus, the basis for
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high scalability). The distribution also reflects the characteristics of most database loads
where updates tend to be small operations with high locality while read-only transac-
tions typically cause much more I/O (to retrieve data and indexes) and computation
overhead (to perform operations such as joins, order, averages, or group by).

The feasibility and advantages of this approach are demonstrated through an ex-
tensive set of experiments. We show how DBFarm provides more stable and scalable
performance (in both response time and throughput) for a set of up to 300 TPC-W
databases than a stand alone database server installation. We also show the performance
of DBFarm using the RUBBoS benchmark (much larger databases with a more com-
plex load) and discuss how to assign priorities to individual databases so that they get a
better performance than others.

In terms of applications, DBFarm can be used in a wide variety of settings. It can
be used to turn a cluster of machines into a database service that is provided within a
LAN setting (a company, a university), thereby localizing the maintenance and admin-
istration of the databases and the machines on which they run. It can also be used to
implement database services as part of an Application Service Provider where small or
medium companies place their databases at a provider’s DBFarm. The sharing of re-
sources implicit in DBFarm makes this an efficient solution and its simple scalability
enables the support of a large number of users.

Our work exploits a novel form of replication and load distribution that is well suited
to many modern applications such as web servers. Unlike many existing solutions, it
provides consistency while remaining light weight. DBFarm does not involve complex
software or hardware layers (e.g., specialized communication infrastructures, shared
disks) or requiring the modification of the application (e.g., special clustering of the
data or submission of complete transactions). Our approach also includes innovative
algorithms for transaction routing across a database cluster that avoid many of the lim-
itations of current database replication solutions. Finally, DBFarm provides a highly
scalable clustering solution for databases.

2 Architecture

2.1 Load Separation

In order to provide scalability in databases, the load must be distributed across a num-
ber of machines. This is a well know problem in replicated, distributed and parallel
databases. In DBFarm the added complication is that the load separation must happen
on a per database instance basis while still maintaining consistency. There are many
ways to implement load separation in single instance settings. [2, 5] use versioning and
concurrency control at the middleware level to route transactions to the appropriate ma-
chines. [17] relies on clients to produce a well balanced load over a cluster, different
cluster nodes are then synchronized using group communication primitives. [13, 18]
assumes the database schema has been pre-partitioned into so called conflict classes,
which are then used for load separation. [1] requires clients to specify the freshness
level of the data and directs transactions to different nodes according to the freshness of
the nodes (i.e., how up-to-date they are). This approach, however, already assumes that
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clients do not want to see the most up-to-date state and, thus, represents a relaxation of
concurrency.

Unfortunately, none of these methods is feasible in the context of a multi instance
cluster. Duplicating concurrency control at the middleware layer would result in a pro-
hibitive overhead per transaction (aside of a complex maintenance issue since the mid-
dleware would have to be aware and maintain versioning and schema information for
hundreds of instances). Group communication as a way to distribute load and maintain
consistency is also out of the question because of the overhead of membership (each
instance would have its own group membership) and the implicit synchronization of
cluster nodes. Similarly, the use of conflict classes requires to parse the incoming trans-
action load to identify the conflict class being accessed which will immediately put a
limit on the number of transactions the middleware can route per second.

The load separation approach used in DBFarm is a direct consequence of these
restrictions. Rather than relying on schema or data partition information, we simply
distinguish between read-only and update transactions. Update transactions are those
that perform an update in the database (can nevertheless contain many read operations
as well). Read-only transactions are those that do not result in a state change at the
database. Such a load separation can be efficiently implemented at the middleware
level without having to parse the statements of the transactions and without the need
to maintain information on the schema of each database instance in the cluster. Such a
separation also has important advantages. The update transactions determine the state
of each instance and define what is consistent data. We only need this stream of trans-
actions to determine correctness and consistency. Read-only transactions are used to
provide scalability by re-routing them to different cluster nodes in the system. This is
based on the nature of many database benchmarks (e.g., TPC-W or RUBBoS) that are
used as representative loads and where the load is clearly dominated by read-only trans-
actions (at least 50% of the transactions in most database benchmarks and typically far
more complex than update transactions).

Load separation based on read/write transactions results in scalability that is limited
only by the proportion of reads and writes in the load. Thus, DBFarm will not provide
any scalability to a database with 100% updates (but such load also results in no scal-
ability for any replicated solution -not just DBFarm- and would severely tax existing
parallel database engines). However, in the common case that read-only transactions
dominate the load, DBFarm provides significant scalability.

2.2 Master and Satellite Servers

As a direct result of the load separation technique used, DBFarm adopts a per instance
primary copy, lazy propagation strategy. The primary copy of an instance is called the
master database. Master databases are always located on master servers (masters). A
master server processes all the update transactions of the hosted master databases. As
such, it is always up-to-date. Each master database is responsible for maintaining its in-
ternal consistency using its own concurrency control and recovery mechanisms. Copies
of the master databases (so called satellite copies) are placed in satellite servers. Satel-
lites are used exclusively for executing read-only transactions. Hence, what is a con-
sistent state is always dictated by the master servers. As a direct result, recovery of
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failed satellites and spawning of new database copies is not a complex issue in DBFarm
(unlike other approaches where the transfer of state for creating or removing a copy
involves complex synchronization operations [12,17]). In addition, the master database
of an instance is the fall back solution. If all copies fail, the master server allows clients
to continue working on a consistent version of the managed data (albeit with a reduction
in performance).

Generally, we assume the masters to be large computers with enough resources (main
memory and disk capacity) to accommodate a large number of databases (see the ex-
perimental section for details). We also assume the masters to be highly available based
on either software or hardware techniques. The capacity of a master will determine
how many different databases can be supported by that master and how high the over-
all transaction load can be. DBFarm reaches saturation once all masters reach the limit
of update transaction streams they can process. At that point, and unless they submit
exclusively read-only transactions, clients cannot increase the rate at which they sub-
mit transactions since the speed at which the update part of the load is processed is
determined by the masters which, at saturation, have no more available capacity. Scal-
ability can, however, be easily increased by adding more masters and redistributing the
databases across these machines.

Satellites in turn do not need to be as powerful as the masters, nor need they to be
very reliable. There can be an arbitrary number of database copies in each satellite.
Scalability for a single master database is provided by having copies in multiple satel-
lites. The limit in scalability, aside of the limit imposed by the proportion of updates
in the load, is reached when each concurrent read-only transaction executes in its own
satellite server. Beyond that, additional copies will remain idle. Such an extreme de-
gree of distribution can nevertheless be employed in a cluster without loss of efficiency
by placing copies of different instances on the same satellite. Since satellites might be
shared by different database copies, no resources are wasted because each copy is exe-
cuting a single read-only transaction. On the other extreme, in DBFarm it is possible for
an instance to be centralized and without any copy. In such a case, the master processes
both the update and the read-only transaction streams for that database.

An advantage of the approach taken in DBFarm is that it provides a solution for re-
alistic database applications. The master servers host normal databases. User defined
functions, triggers, stored procedures, etc. can all be placed at the masters and do not
need to be duplicated at the satellites. Most existing database replication solutions as-
sume such features are either not used (e.g., when concurrency control or versioning
happens at the middleware level) or require that they are replicated across all copies
and behave deterministically at all cluster nodes - something not entirely feasible in
the case of triggers in most existing database engines (e.g., when update propagation is
done with group communication).

2.3 Transaction Scheduling in DBFarm

While the load separation approach of DBFarm enables scalability and makes sure that
the master databases are always up-to-date, it does not by itself guarantee consistent
views when copies are being accessed. Therefore, as long as no other measures are
taken, the consistency from the client point of view will depend on how the transactional
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load generated by a client is split into read-only and update streams and how these
streams are forwarded to the different database machines in the cluster.

From a client’s perspective, what matters is what has been called strong session
serializability [8]. Briefly explained, strong session serializability requires that a client
always sees its own updates. In other words, a read-only transaction from a given client
must see not only a consistent state but one that contains all committed updates of that
client. This prevents the client from experiencing travel-in-time effects where suddenly
a query returns correct but stale data. Although in principle strong session serializability
would be enough, the approach we take in DBFarm goes a step beyond and makes sure
that a read-only transaction executed at a copy will see all updates executed at the master
database up to the point in time the read-only transaction has arrived at the system. In
doing so, DBFarm effectively becomes transparent to the clients1 since they will always
read exactly the same they would have read using a single database server.

For simplicity in the explanations, and without loss of generality, we describe the
details of the DBFarm transaction scheduling with a single master database server. As
clients communicate only with masters, they are not aware of any satellites. Therefore,
incoming read-only transactions need to be forwarded by the master to the satellites in
a way that consistency is guaranteed. Update transactions for a given database instance
are executed locally on the master database. The result is, conceptually, a series of con-
sistent states of the database each of which contains the updates of all the transactions
committed up to that point. The master takes advantage of this conceptual ordering by
capturing the writesets of update transactions in commit order. A writeset is a precise
representation of what has been changed (i.e., the tuple id and the new value). The mas-
ter then uses this commit order to forward the writesets to all needed satellites using
FIFO queues. Satellites then apply these writesets in the same order they are received.
It is easy to see and formally prove that, if the execution of transactions at the master
database was correct, then the application of changes to a copy in the commit order
established by the master guarantees that the copy will go through the same sequence
of consistent states as the master database and will eventually reach the same correct
state as the master database.

Conceptually, the way this is done in a DBFarm is as follows. For every successful
committed update transaction, the master sends back to the client a commit acknowl-
edgment message. The latest sent commit acknowledgment therefore reflects the oldest
state that any client should see when sending the next transaction. Hence, if DBFarm
sends a commit acknowledgment to a client that executed transaction Tk, then all later
incoming read-only transactions from any client must observe a state of the database
that includes the effects of writeset WSk (the writeset that includes the changes done by
transaction Tk). Therefore, once a request for a read-only transaction arrives at the mas-
ter, the master can deduce (by keeping track of the sent commit acknowledgment mes-
sages) the minimum state of the database that the read-only transaction must observe.
Of course, the management of tracking commit acknowledgment messages and assur-
ing consistency for read-only transactions must be done by DBFarm for each database
separately. A possible approach to ensure that a read-only transaction sees no stale data

1 Of course, by giving up transparency and using less strict forms of consistency, the system
could offer even more scale-out for read-only transactions.
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Algorithm 1: Master Transaction Handling
1: INPUT DB: Database Name
2: INPUT T: Incoming Transaction
3: INPUT M: Mode of T, M ∈ {Read-Only, Update}
4: if M == ’Update’ then
5: /* T must be executed on the master */
6: Start a local update transaction in database DB
7: for all Incoming statements S in T do
8: if S == ’ROLLBACK’ then
9: Abort the local transaction

10: Send abort response back to client
11: RETURN
12: end if
13: if S == ’COMMIT’ then
14: ENTER CRITICAL SECTION
15: Commit the local update transaction
16: if Commit operation failed then
17: LEAVE CRITICAL SECTION
18: Abort the local update transaction
19: Send error response back to client
20: RETURN
21: end if
22: Determine T’s commit number CN
23: Set CN(DB) := CN
24: LEAVE CRITICAL SECTION
25: Send successful commit reply to client
26: Retrieve T’s encoded writeset WS from DB
27: Forward (DB, WS, CN) to all satellites that

host a copy of database DB
28: RETURN
29: end if
30: Execute S locally
31: if Execution of S fails then
32: Abort the local transaction
33: Send error response back to client
34: RETURN
35: end if
36: Send result of S back to client
37: end for
38: end if
39: /* T is Read-Only, try to execute on a satellite */
40: if ∃ satellite N with a copy of DB then
41: Use load balancing to select a satellite N
42: MIN CN := CN(DB)
43: Forward (DB, T, MIN CN) to N
44: Relay all incoming statements S in T to N
45: RETURN
46: end if
47: /* Need to execute T locally */
48: Start a local read-only transaction in database DB
49: for all Incoming statements S in T do
50: if S ∈ {COMMIT, ROLLBACK} then
51: Commit the local read-only transaction

52: Send response back to client
53: RETURN
54: end if
55: Execute S locally
56: if Execution of S fails then
57: Abort the local read-only transaction
58: Send error response back to client
59: RETURN
60: end if
61: Send result of S back to client
62: end for

Algorithm 2: Satellite Transaction Handling

1: INPUT DB: Database Name
2: INPUT T: Incoming Transaction
3: INPUT CN MIN: Min. committed State needed to exe-

cute T

4: Wait until CN(DB) ≥ CN MIN
5: /* Execute T locally in read-only mode */
6: Start a local read-only transaction in database DB
7: for all Incoming statements S in T do
8: if S ∈ {COMMIT, ROLLBACK} then
9: Commit the local read-only transaction

10: Send response back to client
11: RETURN
12: end if
13: Execute S locally
14: if Execution of S fails then
15: Abort the local read-only transaction
16: Send error response back to client
17: RETURN
18: end if
19: Send result of S back to client
20: end for

Algorithm 3: Satellite Writeset Application
1: INPUT DB: Database Name
2: INPUT WS: Writeset
3: INPUT CN: Committed State produced by WS

4: Turn WS into a set of SQL statements
5: Wait until CN(DB) == (CN - 1)
6: Start a local update transaction in database DB
7: Apply the produced SQL statements
8: Commit the local transaction
9: if Application of WS failed then

10: Report ERROR to the master
11: Disable further processing for database DB
12: RETURN
13: end if
14: Set CN(DB) := CN

is to block it on the master and then only forward its operations to the target satellite
once it has reported the successful application of all needed writesets. However, this
approach has several disadvantages: first, there is additional logic, communication and
complexity; second, the master must implement transaction queuing; third, overhead
is introduced due to the round-trip times of the involved messages and, as a result,
read-only transactions may be unnecessarily blocked. In practice, the way the system
works achieves the same result but without blocking transactions longer than needed
and without imposing additional load on the master. The solution is based on a tagging



DBFarm: A Scalable Cluster for Multiple Databases 187

mechanism. Every time an update transaction commits, the master not only extracts the
writeset, but also atomically creates an increasing number which gets shipped together
with the writeset. We call this number the change number for database DB (denoted by
CN(DB)). Note that the change number is no longer client specific but applies to all
update transactions executed on the database. When re-routing read-only transactions
to satellite nodes, the master tags the begin operation of such transactions with the cur-
rent change number of the respective database. This number is also maintained for the
copies of database DB: if a satellite applies a writeset to a copy, then the copy is known
to have achieved the writeset’s assigned change number.

A satellite that receives a tagged read-only transaction will only start executing it
after it has applied the needed writesets. This is how we make sure a read-only transac-
tion sees all updates performed up to the point it starts executing, not only those from
that particular client. The blocking of read-only transactions is therefore delegated to
the satellites, where it can be efficiently handled.

It is important to note that other than checking that every read-only transaction
observes the newest consistent state, no concurrency control is needed outside the
databases and scheduling therefore has a low overhead in our approach. This is in con-
trast to existing replication strategies that require additional concurrency control and
versioning mechanisms outside the databases [2, 6, 18].

The details of the algorithms used by DBFarm to handle transactions on the master
and satellite servers, as well as writeset handling, are given in algorithms 1, 2 and 3.

Algorithm 1 describes the routing on a master. Lines 4-38 handle update transac-
tions. These are executed locally on the master, statement by statement, until the client
either decides to rollback (abort the transaction, in line 8) or to commit (line 13). In
case of a rollback, the transaction can simply be aborted on the master. No further ac-
tion is required. If the client wishes to commit, then the master commits the transaction
on the master database DB, extracts the encoded (compressed) writeset and forwards
it to all satellites that keep a copy of the database. Also, the master atomically up-
dates the CN(DB) value. The handling of read-only transactions is described in lines
39-62. Basically, such transactions are always tagged with CN(DB) and re-routed
if possible. If no copies are available, then the transaction has to be executed on the
master.

Algorithms 1 and 2 describe the handling of read-only transactions and writesets on
the satellites. Line 4 in algorithm 2 is where we make sure that read-only transactions
never observe stale data. Transactions re-routed to satellites are always started in read-
only mode. If a client inside a declared read-only transaction tries to update database
elements, then the underlying database will automatically abort the transaction.

3 Implementation

The current implementation of DBFarm runs on top of PostgreSQL 8.1. The core part
of DBFarm are the adapters, which are distributed middleware components used to
integrate the concepts of the previous section (see Figure 2). As the adapters make up
the main component of our implementation we are going to describe them first.
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3.1 The Adapter Approach

Clients access the DBFarm by establishing a connection to an adapter at a master server.
If the requested database instance is not locally hosted as a master database, then the
connection is transparently forwarded to the correct master. Database copies hosted on
satellites are not directly accessible by the clients. In Figure 2 the adapter on the master
(the master adapter) intercepts all incoming client connections and re-routes read-only
transactions to satellites. The actual routing is more fine grained, since clients never
send transactions as a block. The master adapter therefore needs to inspect the data
stream on each client connection and handle operations accordingly. To be able to iden-
tify read-only transactions the master adapter assumes that clients use the standard SQL
mechanisms to either declare the whole session as read-only or decorate the begin op-
eration of submitted read-only transactions with the READ ONLY attribute. In Java
clients, for example, this can be forced by executing the Connection.setReadOnly()
method. If a client does not give any information, then the adapter assumes that the
client is starting an update transaction.

The master adapter also extracts the latest changes produced by each update oper-
ation (the writesets) from the master databases and sends them to the corresponding
satellite adapters. In contrast to [6] we use writesets rather than the original SQL up-
date statements since it has been shown that they are a more efficient way to propagate
changes in replicated systems [14]. The writesets consist of a compact, encoded de-
scription of the tuples that need to be inserted, changed or deleted. At the target adapter,
they are translated and executed as a minimal set of SQL statements. The extraction of
the writeset for a given transaction occurs after the transaction commits and it is done
for the entire transaction. Thus, when the master adapter propagates changes, it does so
for all the changes of a given transaction.

Adapters on the satellites (satellite adapters) receive operations from read-only
transactions and execute them on the locally installed copies making sure that
consistency is preserved. To maintain consistency, satellite adapters constantly apply
the received writesets and respect the tags at the beginning of re-routed read-only
transactions.

Upon startup, each adapter configures and starts the local PostgreSQL installation
(each PostgreSQL installation typically contains several master databases or satellite
copies). All needed PostgreSQL configuration files are then dynamically generated so
that the PostgreSQL database software only binds itself to the local loopback network
interface. As a result, all PostgreSQL installations are not accessible by clients directly
from the network. After the local PostgreSQL installation is up, the adapter connects to
it and scans for installed databases. As a last step, the adapter starts its own listener on
the external network interface. However, unless an adapter has been further configured
by the administration console, it denies all client requests - until then it is simply not
aware if it is running as a master or satellite. Information about the overall DBFarm
configuration is at this stage centralized and provided by the administration console.
Only after a master has been informed by the administration console about its mode
and about other masters and the available satellite adapters (and the database copies that
they host) it can establish all needed writeset and transaction re-routing connections and
is then ready to process client transactions.
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Fig. 2. Adapters in an example DBFarm with one Master Server and a set of Satellites

Currently, only the master adapters distribute read-only transactions across the satel-
lites, for load-balancing purposes a round-robin assignment is used. At a later point
of time, we plan to explore more sophisticated assignments to improve overall perfor-
mance. The need for more sophisticated assignments arises from the fact that some
read-only transactions may take a long time to execute (hours in some cases). If the
scheduling would take load into consideration, it would do a better job distributing the
incoming transactions. Nevertheless, for the purposes of demonstrating the characteris-
tics of DBFarm, round robin scheduling suffices.

For efficiency reasons, connections from the master to other adapters are organized
in pools: for each local database and for each known peer adapter there is a connection
pool. The reason for using a pool for each local database (instead of one pool for the
whole PostgreSQL installation) lies in a limitation of the PostgreSQL on-wire protocol:
one cannot switch the selected schema and database user after a connection has been
established and authenticated. Connections to other adapters are mainly used for two
purposes: first, to send tagged read-only transactions and second, to stream writesets to
the satellites. Connections are generated lazily; once a connection is no longer used, it
will be put back into its pool. Pooled connections that are not used for a certain period
of time will be closed and removed.

The adapters have been implemented as a thin layer of Java software. The software
for the master and satellite adapters is the same, however, depending on its configuration
an adapter either acts as the master or a satellite. The advantage of having identical
adapters at both master and satellites is that it will eventually also allow us to move a
master to one of the satellite machines. This makes DBFarm more dynamic but also
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changes the properties of the resulting architecture since the satellites are, in principle,
unreliable. For reasons of space we do not further pursue such an approach in this paper
but use the idea to emphasize the flexibility that the DBFarm architecture provides.

3.2 Assuring Consistency

Following up on our previous work on consistent database replication [23, 24, 22], we
use snapshot isolation (SI) [3, 25] as correctness criteria for the master and satellite
databases. Common database products that make use of SI are Oracle, PostgreSQL
and Microsoft SQL Server 2005. SI is used to prevent complex read operations from
conflicting with updates and viceversa. The way it works is by giving every transaction
a snapshot of the database at the time it starts (the snapshot contains all committed
changes up to that point). Since each transaction works on a different snapshot, conflicts
between concurrent reads and writes do not occur. In the original definition of SI, the
check for conflicts between transactions that perform updates is only done at commit
time: if concurrent transactions try to modify a common item, the first committer wins
rule is applied (the first one to commit succeeds, all others will be aborted). However,
real implementations all rely on more efficient, incremental conflict detection methods.
Read-only transactions are not checked for conflicts. SI avoids the four extended ANSI
SQL phenomena as described in [3] (which is a prerequisite for an implementation of a
SERIALIZABLE isolation level). However, one has to be aware that this is not the same
as the classic definition of conflict serializability, e.g., as given in [4]. Fortunately, this
does not impose problems in real applications, e.g., [11] has shown that transactions
can be re-structured so that running them in SI based databases leads to serializable
executions.

Using SI makes it relatively simple to implement consistency requirements by DB-
Farm to provide clients with a consistent view. Since a read-only transaction is executed
in a copy using SI and the copy will provide consistent snapshots, a read-only transac-
tion will always read a snapshot that has existed in the master database. This has im-
portant practical advantages since it allows a copy to constantly keep applying updates
without having to abort or interfere with concurrently running read-only transactions
from the clients.

3.3 PostgreSQL Frontend

In the current implementation of DBFarm a master adapter, as seen from the client side,
looks like a normal PostgreSQL installation (the adapter listens on TCP port 5432). We
have implemented server and client-side support for the low-level PostgreSQL proto-
col. The server side is used to implement the PostgreSQL frontend end, the client side
is used to communicate with the locally installed PostgreSQL databases. When rout-
ing transactions between different adapters, the adapters use a slightly extended vari-
ant of the PostgreSQL client/server protocol (e.g., it is possible to switch the database
schema/user for the current connection and transactions can be tagged with commit
numbers; in addition, the mechanism for transportation of writesets was added).

Since master adapters implement the standard PostgreSQL server interface, DBFarm
can be used by a plethora of application types and platforms: C, C++, Java, Perl, Phy-
ton, .NET (with the PostgreSQL ADO provider), etc. - actually every application that
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is designed to be used with PostgreSQL. In fact, it can be used with already exist-
ing applications without requiring any changes as long as those applications use the
standard PostgreSQL interface. This is in sharp contrast to other replication proposals,
where clients need to be changed (or need special drivers) to be able to use the database
system (e.g., [6, 17, 2]).

3.4 Writeset Extraction

We have implemented and tested different variants of writeset extraction. Currently,
DBFarm supports two approaches. The basic, generic approach, is similar to what is
being done in other systems (e.g., [6]): we simply collect all DML (data modification
language) statements of transactions in the master adapter and use them as writeset. This
method was only used for testing, since it has many open problems. For instance, one
cannot handle updates that have been produced by triggers, since those are not visible
to the adapter. Also, there are problems with statements that instruct the database to
insert function based values into tuples (e.g., random numbers or the current time in
milliseconds, which will, obviously, not lead to the same result when being executed on
different cluster nodes).

The second approach is based on triggers: we have implemented a shared library
which can be loaded into PostgreSQL at run-time. The library contains functions which
will then be assigned by the master adapters as triggers to all tables that need replica-
tion. Whenever there is a change on a table, then our trigger function will capture the
new values - no matter if the change was directly provoked by the user or by a stored
procedure inside the database. The writeset is then simply collected in memory. At the
end of a transaction a master adapter can then call another function in the shared library
to extract the writeset. This is very fast, since writeset collection does not involve any
disk accesses. Our implementation is also able to capture schema changes due to DDL
(data definition language) commands (e.g., table and index creation) and to produce
special writesets which lead to the corresponding changes of the database schema on
the copies.

To keep different database copies synchronized, other replication systems often re-
play the server’s complete redo-log on the replicas - e.g., [29] have implemented this
for PostgreSQL. Unfortunately, such an approach only works for very simple setups,
where each replicated PostgreSQL installation has the same content and page layout.
This considerably reduces the flexibility. In DBFarm, the source and destination Post-
greSQL installations may contain different sets of databases, and therefore we need
to extract and apply writesets per database. Currently, we are working on an approach
where it is possible to extract the redo-information for a subset of the databases in a
PostgreSQL installation.

3.5 Administration Console

The administration console has been implemented as a platform independent graphical
Java application. It is used to remotely start, stop and configure the adapters. Further-
more it helps to inspect the state of each cluster node. All communication between the
administration console and the DBFarm cluster nodes is encrypted. What we require is



192 C. Plattner, G. Alonso, and M.T. Özsu

that each node runs an OpenSSH [19] daemon. To be able to use the SSH-2 protocol
from within Java, we use our own open source, pure Java SSH-2 client library [21].

4 Performance Evaluation

In general our approach makes no restrictions on how resources can be shared across
different databases. However, in this paper we only evaluate the performance of static
setups where a single powerful server hosts all master databases and a set of smaller,
less reliable satellites are used to host the read-only copies. We present the results from
our experiments involving a DBFarm deployment that uses 360 customer databases on
a master database server and up to 30 additional satellite machines to offer improved
performance for clients.

To produce realistic measurements, we used database setups based on two different
standard benchmarks: TPC-W (as defined by the Transaction Processing Council [28])
and RUBBoS (defined by the Object Web Consortium [26]). The TPC-W benchmark
models customers that access an online book store, while RUBBoS models a bulletin
board similar to the Slashdot website [27]. For TPC-W we use the default shopping mix
workload which consists of 80% read-only interactions. The workload defined by the
RUBBoS benchmark consists of 85% read-only interactions.

We installed 300 TPC-W databases (using scaling factors 100/10,000, which results
in 497 MB per database) on the master server, as well as 60 RUBBoS databases (us-
ing the extended data set, which results in 2,440 MB disk consumption per database).
The denoted sizes include all the diskspace needed for a given single database (e.g.,
including index files). The overall disk space occupied by these databases on the master
machine exceeds 417 GB. All databases were reasonably configured with indexes.

The master database server is a dual Intel(R) Xeon CPU 3.0 GHz machine with 4
GB RAM and an attached RAID-5 (ICP-Vortex GDT8586RZ PCI controller with 5
Hitachi HDS722525VLAT80 SATA 250 GB disks) which results in 931 GB of avail-
able space (we use a XFS partition which spawns the whole RAID-5), running Fedora
Core 4 (2.6.13-1.1532smp). The thirty satellite machines have dual AMD Opteron(tm)
250 processors (2.4 GHz), 4 GB RAM and a Hitachi HDS722512VLAT80 disk (120
GB). These machines run Red Hat Enterprise Linux AS release 4 (2.6.9-11.ELsmp).
All machines are connected with 100MBit links over a local area network (all machines
are attached to the same ethernet switch). The adapter software was run with the Java-
Blackdown 1.4.2-02 JVM. We used an unmodified version of PostgreSQL 8.1 for all
experiments.

To measure the performance of our setups we use a Java based loadclient software
that is able to reproduce the database loads that are generated by the TPC-W and RUB-
BoS benchmarks. One has to emphasize that we are not running the entire benchmarks,
but only the database part to stress DBFarm (e.g., a full TPC-W implementation would
also have to measure the performance of the used web- and application servers).

The loadclient uses worker threads to simulate a number of clients. On startup, the
loadclient generates a pool of connections to the target databases on the master. If the
number of workers is less than the number of target databases, then for each database
one connection is put into the pool. Otherwise, the loadclient generates connections
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to the target databases in a round-robin fashion, until the amount of connections is as
large as the set of worker threads. Also, for each connection per target database there
is a state machine that dictates the next transaction type to be executed. Each worker
thread, in an endless loop, randomly chooses a connection from the pool and executes a
transaction according to the connection’s state machine. After the transaction has been
executed, the worker puts the connection back into the pool. It is important to note that
between the executions of the different transactions the workers use no thinking time -
each worker is intended to stress the tested setup as hard as possible.

When benchmarking the system, the loadclient uses varying numbers of workers.
Whenever the number of workers changes, the loadclient uses a warm up time of sev-
eral minutes until the system is stable. Then, a benchmarking phase of two minutes
follows. During the benchmarking phase, the loadclient measures the response times
for all executed transactions. At the end of a run it reports the mean response time as
well as the 90-percentile response time. The data points in the following figures repre-
sent such runs.

To be able to calculate the 90-percentile response time, the loadclient keeps an inter-
nal histogram for each experiment. Please refer to Figure 3 for an example. The figure
only shows a section of the overall collected historical data - internally the loadclient
keeps track of all measured response times with a 1 ms resolution over the range from
0 to 20 seconds.

4.1 Part A: Handling Many Concurrent Databases

In the following experiments we show that DBFarm is able to handle situations where
many databases are being accessed concurrently. We use a set of satellites to execute ex-
pensive read-only transactions, and therefore we can reduce the number of page fetches
on the master. At the same time, more resources are available for update transactions on
the master. In the experiments we use a simple satellite setup - for each database on the
master we created only one satellite copy. These copies were then evenly spread over
the available satellites.

Results for TPC-W. In these experiments we compared the achievable performance
for a large amount of TPC-W databases that are accessed concurrently. First, we used
the loadclient to stress the master alone. Then, we put the DBFarm system in place and
measured the performance again.

In the first experimental round we used 100 concurrent TPC-W databases (Figure
4). One can observe that the master server already is at its limits with 300 concurrent
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TPC-W shopping workers, since a mean response time of 1 second and a 90-percentile
response time of almost 4 seconds is probably not acceptable for most interactive
applications.

By applying the same load to DBFarm with 10 attached satellites (each containing
10 database copies), one can observe that the system is able to scale-up to a much
higher number of concurrent clients while at the same time giving acceptable response
times. These results are particularly telling since there is only one copy of each master
database. Performance could be improved even more by adding more satellite machines
and having 2 copies for each master database.

With the DBFarm setup, each satellite hosts 10 TPC-W database copies. This makes
up a data set of about 5 GB that has to be handled by each satellite. Due to the fact
that the TPC-W workloads mainly access hot-spot data (e.g., queries for the best seller
books in the store), the 4 GB of main memory on each satellite is sufficient to keep the
number of disk accesses low. Also the update transactions that appear in the TPC-W
workload (mainly operating on the customer’s shopping cart and placing new orders)
need only on a small fraction of the data in each database. Therefore, the master server
in the DBFarm setup (executing only update-transactions) can easily handle update-
transactions for all accessed databases with the in-memory buffer cache. Most of its
disk accesses are related to writing the latest changes to disk - this is also true for the
satellites, which, after the warm-up phase, mainly access their disks to commit the latest
received writesets.

Encouraged by the good results for 100 concurrent databases we also tried to handle
300 TPC-W databases. The results are given in Figure 5. Clearly, without the DBFarm
approach the load of 300 concurrently accessed TPC-W databases is too much for our
master server, the response times are not acceptable. Due to the fact that the machine is
mainly doing disk I/O, the results are rather unstable - performance is dictated by the
RAID-5 controller and seek times of the attached disks.

The same experiment over a DBFarm setup with the same 300 databases using thirty
satellites (each holding 10 database copies) shows that DBFarm is able to handle the
load and to offer acceptable response times for such a scenario.

Results for RUBBoS. The RUBBoS databases are not only larger (each database is
over 2 GB) than the benchmarked TPC-W databases, but the used workload is also
more complex, as the resulting transactions not only use hot-spot data but also touch a
wide range of tuples inside the databases.
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Fig. 6. RUBBoS Results

As before, we first measured the performance of the master server alone. The results
are given in Figure 6. The results show that the master machine alone cannot handle
many RUBBoS databases concurrently, already 10 databases lead to performance prob-
lems as shown by the large 90-percentile results.

By looking at the results for the DBFarm setup, one can observe that it is crucial
that the number of copies on each satellite does not exceed a certain threshold. In the
experiment where we used only two satellites (each containing 5 RUBBoS database
copies) the performance improvement over a single master machine is insignificant.
This is due to the fact that DBFarm has a similar problem as a single master server:
the working set of 5 databases is too big for the available memory, and therefore the
throughput on the satellites is limited by the available disk I/O-bandwidth. One can
interpret the result as having moved the bottleneck from the master database server to
the satellites. This may look like a waste of resources, but one should keep in mind
that the overall setup has improved: by taking away load from the master, there is more
available capacity for other concurrently accessed databases. We will point out this
feature in the next section. To verify that the satellites are really the bottleneck, we
then tested the same workload on a DBFarm setup with 10 satellites, therefore having
only 1 RUBBoS copy per satellite. One can observe how the performance significantly
improves over a setup with only 2 satellites.

In a last experiment set we tried to handle 60 concurrent RUBBoS databases with
DBFarm. We used a setup with 30 satellites, each holding two database copies. It was
impossible to perform the same experiment with a single master server, as the machine
was stuck with disk-I/O and no stable results could be achieved (the throughput never
got higher than a few transactions per second). The results in Figure 6 show that, again,
DBFarm can handle such a scenario. Interestingly, the achieved performance is slightly
lower than for the experiment based on 10 copies on 10 satellites. There are two reasons:
first, by having two RUBBoS copies on each satellite, the buffer cache of the satellites is
not big enough two hold both databases in memory. However, this is only a minor prob-
lem, as could be verified by observing the number of disk reads on the satellites during
the experiment. Second, with 60 concurrent RUBBoS databases, the master server is
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becoming a bottleneck, since the data needed for each update transaction is not always
in memory (the machine was performing more read operations than in the 10 databases
experiment). One can learn the following from this experiment: when using a system
like DBFarm, it is very important to optimize the structure of update-transactions: one
has to try to keep the number of read operations (e.g., select operations or index scans
for update statements) small, otherwise the master databases become the bottleneck of
the system. This can, e.g., be achieved by introducing appropriate indexes specific to
master databases.

4.2 Part B: Scaleout for Selected Databases

In the preceding experiments we used database copies on satellites to extend the ca-
pacity of a master database server. In all setups, we used no more than one copy per
database on the master server. We could show that with such a system setup we can
handle bursts over a set of databases.

In the last experiment we show how a single RUBBoS database can benefit from
the DBFarm approach. For instance, one could think of having a high priority customer
database that needs a certain guaranteed response time since there may be a service level
contract with the customer. The approach to solve the problem is to assign a set of satel-
lites, each holding exactly and exclusively one copy of the customer’s database on the
master server. In this way, the customer’s read-only transactions can be load-balanced
over different satellites which are at the same time guaranteed not to be affected by other
customers. Again, there are two measurements: first we measured the performance of a
pure PostgreSQL installation on the master server, then we measured the performance
of the DBFarm setup. However, this time the load for the DBFarm was made much
harder: to make things more interesting, in parallel to the RUBBoS load 200 TPC-W
databases were also loaded by 100 worker threads with the shopping-mix. Copies of the
200 TPC-W databases were located on 20 separate satellites (each holding 10 copies).
In case of the RUBBoS database, we used 3 satellites each holding exactly one copy.
The results for the two experiments are given in Figure 7. Clearly one can observe that
the high priority RUBBoS customer database is performing much better than with the
single server setup - even though DBFarm has to concurrently deal with 200 TPC-W
databases. The detailed results show that the throughput (given in TPM, transactions
per minute) for the RUBBoS database has more than doubled.

5 Related Work

DBFarm builds upon the ideas developed in several previous projects in our group
[23, 22, 15, 16] as well as on a wealth of related work on middleware based database
replication. In [23, 22] we presented a system for replicating single database instances
using snapshot isolation. The current version of DBFarm uses that implementation for
providing snapshot isolation consistency to the clients.

On the theoretical side, [8] has extensively studied the problem of session consis-
tency as a more meaningful correctness criterion for replicated databases than standard
1-copy-serializability. Their algorithms are targeted at offering serializability for a sin-
gle, fully replicated database and they have so far only simulated the algorithms they
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Fig. 7. Detailed Scale-Out Results for the RUBBoS Database. Note that DBFarm had to handle
simultaneously 100 clients that randomly accessed 200 TPC-W databases (not included in TPM).

describe. DBFarm offers a stronger notion of consistency (not only one’s own updates
but all updates until a certain timestamp) using mechanisms that should not result in
a loss of performance when compared to those presented in [8]. [9] proposes gener-
alized snapshot isolation, a technique for replicated databases where readers may use
older snapshots. Again, our system offers scale-out without giving up consistent views
for all clients. In our current implementation, we also use snapshot isolation as a con-
currency control mechanism. [11] investigated research in the serializability aspects of
snapshot isolation. The consistency guarantees of systems that allow the use of other
concurrency control mechanisms in parallel to snapshot isolation have been investi-
gated in [10], these results directly apply to our system, as we are able to mix different
concurrency control mechanisms on the different database nodes.

In terms of implemented systems, [1] applies the techniques presented in [22] to
provide a travel-in-time feature where clients can requests older snapshots. Although
this technique can easily be implemented in DBFarm, the goal of DBFarm is to support
full consistency and On Line Transaction Processing (OLTP) loads ( [1] uses TPC-R as
benchmark, a data mining load). Note that once consistency is relaxed, scalability can be
significantly increased (and, in fact, the concept of scalability changes since clients are
accessing historical rather than actual data). The work described in [2] centers around
a technique called distributed versioning. The key idea is to use a centralized middle-
ware based scheduler which does bookkeeping of versions of tables in all the replicas.
Every transaction that updates a table increases the corresponding version number. At
the beginning of every transaction, clients have to inform the scheduler about the tables
they are going to access. The scheduler then uses this information to assign versions of
tables to the transactions. Our time tagging of transactions resembles the per table ver-
sioning of [2] but ours introduces clearly less overhead as it does not require any parsing
of statements nor schema information at the middleware layer. C-JDBC [6], an open
source database cluster middleware, has been primarily designed for fault tolerance. To
be able to access a C-JDBC cluster, clients need to use a special Java JDBC driver.
The system implements variants of the Read-One Write-All approach with consistency
guaranteed through table level locking at the middleware level. The backend databases
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are accessed over JDBC, so the system can be used with different database implementa-
tions, they only need to provide a JDBC interface. The downside of this approach is the
need for duplicating logic from the backend databases into the middleware, since JDBC
does not supply mechanisms to achieve a fine grained control over an attached database.
One example for this is locking, which, again, has to be done at the middleware level by
parsing the incoming statements and then doing table-level locking. Another example
is the writesets, which are not supported by the JDBC standard, so the middleware has
to broadcast SQL update statements to all replicas to keep them in-sync. Also, when
encountering peaks of updates, this leads to a situation where every backend database
has to evaluate the same update statements. To circumvent these scalability problems,
C-JDBC offers also the partition of the data on the backend replicas in various ways
(called RAIDb-levels, in analogy to the RAID concept). However, static partitions of
data restrict the queries that can be executed at every node. Like the solution in [2],
C-JDBC cannot be used in the context of DBFarm because of the overhead it intro-
duces at the middleware level it does not scale to hundreds of database instances. [7]
presents a replication architecture based on partial replication and refresh transactions.
To offer consistent views for readers, the system relies on the ordering properties of
global FIFO multicast of the underlying network and as well as on maximum message
delivery times.

There are also a number of systems that use group communication to implement sin-
gle instance database replication [15,16,17]. These systems do not consider the problem
of load balancing (they assume clients distribute themselves evenly across all copies)
and impose severe restrictions on the transactional load. For instance, they require that
transactions are submitted as a single block since the system can only reason about
complete transactions. This is in contrast to DBFarm where clients can submit transac-
tions statement by statement as it is done in most database applications. From the point
of view of clustered databases with multiple instances, the biggest drawback of group
communication based replication is the high overhead of group communication itself.
With hundreds of database instances and several copies of each, the number of messages
to be handled by the group communication system can be very high. Also, maintain-
ing a membership group for each instance is very expensive and limits the flexibility
in allocating copies to satellites. Since these system also adopt an update everywhere
approach, each database copy must also duplicate application logic in addition to data
(triggers, user defined functions, etc.). In the context of DBFarm this is simply not
practical. Finally, group communication primitives rely on all nodes involved making
suitable progress at roughly the same pace. In DBFarm, where a node may contain a
potentially large amount of database instances, such forced synchronization will make
it impossible for the system to scale. The approach proposed in [13] and [18] where
load is partitioned using conflict classes is also not feasible in the context of multiple
instances.

Oracle RAC (Real Application Clusters) is a commercial clustering solution that
also uses snapshot isolation. It relies on the use of special hardware (all nodes in the
database cluster need access to a set of shared disks) or the use of special network file
systems. Therefore, unlike our approach, the system cannot easily be installed on a set
of commodity servers.
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6 Conclusions

This paper presents the architecture and implementation of DBFarm, a multi-instance
database cluster solution that can handle hundreds of client databases concurrently. Ad-
ditionally, it supports controlled scale-out for selected customer databases. DBFarm
offers consistency at all times, to the clients it looks like an ordinary database server.
There is no need to change any client code to be able to use the system. Our light
weight adapter approach offers many advantages over classic middleware based repli-
cation solutions. Our experiments show that the approach is feasible and that the system
can efficiently schedule transactions for relatively large amounts of customer databases
while offering good performance for large sets of concurrent clients.

Our future work will concentrate on the dynamic aspects of the system. By allocat-
ing satellites and establishing database copies as demand requires, we plan to build an
autonomic database service provider.
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Abstract. When interfacing Java with other systems such as databases,
programmers must often program in special interface languages like SQL.
Code written in these languages often needs to be embedded in strings
where they cannot be error-checked at compile-time, or the Java compiler
needs to be altered to directly recognize code written in these languages.
We have taken a different approach to adding database query facilities to
Java. Bytecode rewriting allows us to add query facilities to Java whose
correctness can be checked at compile-time but which don’t require any
changes to the Java language, Java compilers, Java VMs, or IDEs. Like
traditional object-relational mapping tools, we provide Java libraries for
accessing individual database entries as objects and navigating among
them. To express a query though, a programmer simply writes code
that takes a Collection representing the entire contents of a database,
iterates over each entry like they would with a normal Collection, and
choose the entries of interest. The query is fully valid Java code that,
if executed, will read through an entire database and copy entries into
Java objects where they will be inspected. Executing queries in this way
is obviously inefficient, but we have a special bytecode rewriting tool
that can decompile Java class files, identify queries in the bytecode, and
rewrite the code to use SQL instead. The rewritten bytecode can then
be run using any standard Java VM. Since queries use standard Java set
manipulation syntax, Java programmers do not need to learn any new
syntax. Our system is able to handle complex queries that make use of
all the basic relational operations and exhibits performance comparable
to that of hand-written SQL.

1 Introduction

Queryll is a middleware system that uses bytecode rewriting to allow program-
mers to interface Java with other systems without needing to use an intermediary
language. Currently, Queryll is focused on interfacing Java with SQL databases
by providing database query facilities to Java. With Queryll, programmers can
encode database queries using standard Java syntax for working with collections.
No special compiler or IDE is needed. The queries are also semantically correct
in that if they are executed as written, they will connect to a database, iter-
ate through all the entries in the database, and find the desired entries (though
executing queries in this way is obviously inefficient). When the compiled Java
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bytecode is fed into the Queryll bytecode rewriter, the queries in the bytecode
stream are identified, and they are replaced with code that executes equivalent
SQL queries instead. The bytecode rewriting acts, in fact, like a type of code opti-
mization in which whole algorithms are replaced with more efficient substitutes.

Unlike Queryll, other middleware systems use special programming languages
to interface Java to other systems. Databases, graphics cards, and symbolic com-
putation engines all require the use custom languages to access their features.
This approach can be very cumbersome. Not only does the Java programmer
need to learn another programming language, but mismatches between the un-
derlying models of these other languages and Java mean that programmers often
have to write extra code for translating concepts between the two models. Since
the Java compiler does not recognize the syntax of any of these other languages,
their code has to be embedded in strings where they cannot be statically error-
checked. Often parameters must be marshaled into special data structures before
they can be passed to and from these other systems. Ultimately, these annoy-
ances distract programmers from larger algorithmic and architectural issues.

One solution to these problems is to create hybrid programming languages
that mix other languages with Java. For example, SQLJ [1] is a hybrid of Java
and SQL. In SQLJ code, SQL queries can be intermixed with Java, and the
queries can make reference to Java variables. Although hybrid languages do
allow for static error-checking and do eliminate the need for data marshaling,
they require special compilers and IDE changes. The approach also falls apart
when multiple interface languages are merged with Java, resulting in a hybrid
language with a complex tangle of additional language constructs.

Ideally, it should be possible to interact with databases and other systems
using regular Java code. That way, programmers would not need to learn a new
language but only a few new API calls to interface with a system. Program-
mers would not need special compilers, nor would they have to deal with issues
such as data marshaling or embedding code inside strings. Unfortunately, it is
impractical to use Java in this way. The primary language construct that these
other interface languages have but Java lacks is a facility for inspecting and
modifying one’s own code. Queries written in a query language need to be un-
derstood and manipulated by a query optimizer to be executed on a database.
A fragment shader program needs to be compiled into instructions that can be
run on a graphics card. Java does support reflection, but it does not have APIs
for understanding and manipulating code.

Unlike other database middleware layers for Java, Queryll provides a pure
Java interface to databases that allows programmers to describe complex queries
without resorting to another programming language. As such, programmers do
not need to learn a new language, and the standard Java compiler can catch
many potential errors at compile-time. There is also no unnatural split in the
middleware API where a simplified API is available for performing basic queries
and a more extensive API is needed for more complex queries. Queryll is able
to achieve this behaviour because it is designed as a bytecode rewriting tool.
As such, it does not make any changes to the Java language, meaning that a
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standard Java compiler and IDE can be used by programmers. The rewritten
bytecode can also be run on a standard Java VM. Using bytecode rewriting for
extending Java does not force programmers to change any of their existing tools,
and it can be used to interface Java with multiple systems without adding new
complexity to the Java language.

2 Related Work

There are many middleware languages and tools for interfacing Java with var-
ious databases. These different tools provide differing levels of abstraction and
differing levels of integration with Java.

2.1 JDBC and SQLJ

The standard database middleware layer for Java is JDBC [2]. With JDBC,
queries are described using SQL and are stored in strings. Programmers then
pass these strings to the JDBC API, which executes the queries on a database.
Although JDBC provides some helper methods to help with data marshaling,
programmers must still manually pack parameters into queries and then manu-
ally read out and interpret individual fields from the query results.

As described earlier, SQLJ is a language that combines SQL with Java. Be-
cause of this integration, both the SQL and Java code can be checked for errors
at compile time, programmers can reference Java variables from within SQL,
and programmers can reference SQL results from within Java. Typically, a pre-
compiler is used to compile SQLJ into Java code that uses JDBC.

2.2 ORM Tools

Both JDBC and SQLJ are tightly bound to the SQL table-oriented view of data,
which is inconsistent with Java’s object-oriented model. Object-Relational Map-
ping (ORM) tools such as Hibernate [3] or EJB [4] allow programmers to specify
a mapping from SQL tables to an object representation. The ORM tool then
generates code that allows programmers to manipulate these objects in Java and
have these changes be persisted automatically to the corresponding SQL tables.
Although these objects do hide data marshaling issues and allow programmers
to execute simple queries with just a simple method call, they cannot be used for
more complex queries. For complex queries, ORM tools typically supply a special
object query language such as HQL or EJBQL (Fig. 1). Like JDBC, queries in
these languages are encoded in strings, and programmers must manually encode
parameters into their queries.

2.3 LINQ

In C# 3.0, Microsoft has added a feature called Language Integrated Query
(LINQ) [5]. This feature allows programmers to inline queries with their C#
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List l = em.createQuery("SELECT c FROM Customer c WHERE c.id = :id")

.setParameter(":id", 2500)

.getResultList();

Fig. 1. A sample EJBQL query

code. Unlike the approach used by Queryll, extensive changes to the C# com-
piler and language were made in order to support LINQ. Notably, C# now sup-
ports lambda expressions, and C# compiles lambda expressions into two forms:
executable code and a data structure representation that can be inspected at
runtime. The new language constructs in C# only provide support for queries.
They cannot be used to interface C# with systems such as graphics cards, for
example.

2.4 Bytecode Rewriting and Decompiling

All Java compilers compile Java programs into a machine independent interme-
diate representation known as bytecode. This bytecode is stored in files called
classfiles. Java programs are distributed as classfiles which can be executed us-
ing a Java VM. Bytecode rewriting is a well-known Java technique for modifying
the behaviour of compiled Java code. A typical example would be J-Orchestra
[6] which can alter Java objects so that they can be invoked remotely without
requiring changes to the original code. Many aspect-oriented programming tools
also make use of bytecode rewriting to support dynamic aspect weaving [7]. And
some ORM tools already make use of bytecode rewriting to transparently add
persistence code to ordinary Java objects to enable those objects to be stored
in databases. These uses of bytecode rewriting are limited to only modifying
surface features of code such as intercepting method calls; however, some tools
such as the automatic parallelization program javab [8] perform more detailed
code analysis. One can consider classfile decompilation [9], where bytecode is
converted to Java source files, to be an extreme form of bytecode rewriting.
There are several Java decompilation tools, and Queryll borrows some of their
techniques for its work.

3 Queries with Queryll

As mentioned earlier, Queryll is able to take database queries written in regular
Java and rewrite the queries to use SQL. Clearly though, the Queryll bytecode
rewriter is not able to convert arbitrary Java to SQL.

Queryll’s query syntax is designed to conform with standard Java patterns for
working with collections, resulting in a syntax that feels “natural” and consis-
tent with existing Java code. It is also designed to have the properties of being
executable and semantically correct. This means that if the query is compiled
with a standard Java compiler and run on a standard Java VM, the code will
not only execute but will return the correct query result as well. Although the
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Queryll bytecode rewriter detects query code and rewrites them to use SQL,
even if no rewriting occurs, the query code is perfectly functional. Admittedly,
without rewriting, the query will be horribly inefficient since it will download
the entire database and iterate through each row; nonetheless, the code will
behave correctly. By forcing query code to be executable and semantically cor-
rect, we ensure that queries are expressed in sufficient detail that the standard
Java compiler can verify much of the correctness of the query using its existing
static type checking. These properties also preclude a syntax that introduces
new domain-specific constructs to the Java language.

Queryll uses an object-relational mapping to allow database entities to be rep-
resented and manipulated as objects within Java. Queryll queries are expressed
using iterations over collections of these objects. The current Queryll query syn-
tax supports selection, projection, and join operations, thereby making Queryll
functionally equivalent to basic relational algebra. Unfortunately, Queryll does
not yet support aggregation operations or nested queries, meaning that it is
not currently able to handle the extended query operations needed to express
arbitrary SQL queries. Queryll does have support for SQL ordering and limit
operations though.

3.1 Queryll ORM

Because SQL tables are a foreign concept to the object-oriented model of Java,
they need to be translated into some sort of representation that can be ma-
nipulated by Java code. Queryll uses a custom light-weight ORM tool to map
tables to classes. Like with other ORM tools, programmers must describe how
table rows should map to objects, how table fields should be mapped into object
fields, and the various relationships between tables. They are essentially defining
an object representation of a database and defining how to convert between the
SQL representation and the object representation.

So, consider a simple database describing bank clients, each of whom may
have multiple bank accounts. This database might be composed of two tables
(Fig. 2): Client and Account. Using the Queryll ORM tool, this database can be
mapped to the class diagram in Fig. 3.

Client

ClientID
Name
Address
Country
PostalCode

Account

AccountID
ClientID
Balance
MinBalance

Fig. 2. A simple database
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Client

*ClientID
Name
Address
Country
PostalCode

Account

*AccountID
Balance
MinBalance

1 0..*

accounts holder

Fig. 3. Class diagram of database entities (* denotes primary keys)

From the mapping, Queryll generates the classes for each entity with acces-
sor methods for fields and special methods for traversing relationships between
objects (for example, retrieving a Collection of accounts belonging to a client).
These objects act as a cache of database data and are all lazily instantiated.
Queryll also creates a special class named EntityManager that is responsible for
ensuring that the database data and their in-memory object representations re-
main consistent. Figure 4 shows how the generated classes may be used. Queryll’s
approach to object-relational mapping is fairly standard among existing ORM
tools.

EntityManager em = db.beginTransaction();

Client c = em.findClient(1000);

System.out.println("Client 1000 lives at " + c.getAddress());

System.out.println("Client 1000 has " + c.getAccounts().size()

+ " accounts");

db.endTransaction(em, true);

// Note: the findClient() method is used here for illustrative

// purposes. In actuality, no such method exists because Queryll

// supports using full queries instead.

Fig. 4. ORM tools can generate classes that allow programmers to access database
data as objects instead of having to deal with SQL tables

3.2 Simple Queries and Selection

Since the main Java construct for working with large amounts of data is the for-
each loop for iterating over arrays and Collections, we built our syntax around
that construct. The for-each loop restricts our queries to using Collections to
represent database contents. As such, we created a special type of Java Collec-
tion called a QuerySet. A QuerySet is a lazily initialized container of database
entities. It holds a SQL query, and when any attempt is made to access any of
the elements of a QuerySet, the QuerySet will execute the query on a database,
and fill itself with the results of the query, and from then on behave like a normal
Java Collection.
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To write a simple Queryll query then, a programmer takes an existing Query-
Set, iterates over each element of the QuerySet to find the elements that she is
interested in, and adds these elements to a new QuerySet. All the elements of
the original QuerySet must be iterated over (no premature loops exits), and the
loop code can have no side-effects beyond adding elements to the new QuerySet.
The query syntax is purposely based on adding elements to a new QuerySet
as opposed to modifying an existing QuerySet. The elements added to the new
QuerySet may be of a different type than the elements in the QuerySet being
iterated over, so two different QuerySets are needed for everything to type-check
correctly.

Finally, the programmer must also label the methods containing Queryll
queries with the @Query annotation. Since bytecode rewriting is an expensive
operation, the Queryll bytecode rewriter will only look at the bytecode of @Query
methods when converting queries to their SQL equivalents.

Figure 5 shows a simple Queryll query that finds bank clients who come from
Canada. Notice that the EntityManager object em has methods for returning a
QuerySet of all the Client entities in the database. Since all queries must start
with an existing QuerySet, the EntityManager provides the initial QuerySet ob-
jects on which queries can be constructed. As mentioned previously, the standard
Java type rules impose a certain amount of correctness on the query. The string
“country” acts as a parameter in the query, and the Java compiler ensures that
this parameter is of the correct type. The Java compiler also ensures that the
entity fields being examined during the query actually exist (otherwise the acces-
sor methods would not exist) and that the result of the query is of the expected
type.

QuerySet<String> canadian = new QuerySet<String>();

String country = "Canada";

for (Client c: em.allClient())

if (c.getCountry().equals(country))

canadian.add(c.getName());

Fig. 5. A simple query for finding all clients from Canada

The Queryll query syntax is flexible enough to allow programmers to express
a wide variety of query operations in a natural way. For example, by simply
changing the conditions in which an element is added to a new QuerySet, a
programmer is writing a selection operation.

3.3 Projection

To support projection operations, Queryll supplies a Pair object that can hold
two arbitrary values. Similar to a LISP list which also holds only two values (car
and cdr), the Pair object can be used to construct simple data structures during
a query, which can then be added to a new QuerySet. This ability to create
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new data structures is equivalent to using projection operations to create new
columns for database relations or to remove columns from database relations.
Projection operations themselves are not directly expressible in Queryll, as doing
so would mean that Queryll would have to support the creation of new classes
at runtime. The Java syntax for the creation of new classes is quite verbose and
cumbersome, and working with a large number of these classes creates headaches
for programmers because they would not work well with Java’s type system. In
fact, to support projection in LINQ, Microsoft had to create a new C# syntax for
creating new classes at runtime and change the C# type system. Queryll’s use of
Pair objects to provide power equivalent to projection is much more consistent
with existing Java syntax. Figure 6 shows how a programmer might use Pair
objects to hold data about the penalty that should be applied to bank accounts
that are below their minimum balance and hence overdrawn.

QuerySet<Pair<Account, Double>> overdrawn

= new QuerySet<Pair<Account, Double>>();

for (Account a: em.allAccount()) {

if (a.getBalance() < a.getMinBalance()) {

double penalty = (a.getMinBalance() - a.getBalance()) * 0.001;

overdrawn.add(new Pair<Account, Double>(a, penalty);

}

}

Fig. 6. Queryll provides Pair objects, which can be used to create data structures for
holding calculated values, thus providing power equivalent to projection

3.4 Join

Expressing join operations is quite easy in Queryll. Since the relationship be-
tween entities is described during the ORM phase, Queryll generates methods
for navigating among objects, and these methods can be used during queries.
Some types of joins, such as those where a single table row is joined with multiple
rows from another table, are potentially difficult to express in Java, so Queryll
provides a few utility methods for handling these cases. Figure 7 shows two dif-
ferent ways that joins can be used to find all the bank accounts belonging to
clients in Switzerland.

3.5 Ordering and Limit

Currently, Queryll only has preliminary support for the SQL ordering and limit
operations. The syntax for ordering is not yet finalized, but the current syntax
requires programmers to create a sorter class that describes which fields of the
elements should be used for sorting. This is similar to the existing use of the
Comparator object in Java for sorting. Figure 8 shows an example of ordering
in Queryll.
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QuerySet<Pair<Client, Account>>

swiss1 = new QuerySet<Pair<Client, Account>>(),

swiss2 = new QuerySet<Pair<Client, Account>>();

for (Account a: em.allAccount())

if (a.getHolder().getCountry().equals("Switzerland"))

swiss1.add(new Pair<Client, Account>(a.getHolder(), a));

for (Client c: em.allClient())

if (c.getCountry().equals("Switzerland"))

swiss2.addAll(Pair.PairCollection(c, c.getAccounts());

Fig. 7. Two different join queries that give the same results

QuerySet<Account> top10Accounts = em.allAccount();

top10Accounts = top10Accounts.sortedByDoubleDescending(

new DoubleSorter<Account>() {

public double value(Account val) {

return val.getBalance();

}

});

top10Accounts = top10Accounts.firstN(10);

Fig. 8. Queryll supports ordering and limit operations as well

4 Implementation

The Queryll system (Fig. 9) is composed of two programs: an ORM tool and a
bytecode rewriter. The bytecode rewriter is by far the more complicated of the
two.

Suppose the query defined in Fig. 10 is given to the Queryll bytecode rewriter.
As mentioned earlier, all methods containing queries should be labelled with a
@Query annotation to help Queryll focus its optimizations on the right pieces of
code. Queryll finds all such methods and feeds the bytecode of these methods into
Sable’s Soot [10] framework for conversion into Jimple code, a representation that
is easier to analyze. Jimple is a three-address code for Java where all variables
are typed (Java objects on the execution stack are usually typeless). Three-
address code is useful because it eliminates Java’s execution stack, resulting in
one less structure that the bytecode rewriter needs to analyze and making it
easier to rearrange code without having to worry about whether the state of
the stack remains consistent. Queryll does not actually make use of the typing
feature of Jimple, meaning that a simpler three-address code framework than
Soot could be used if one becomes available. Figure 11 shows the Jimplified
version of the compiled bytecode of the previous query. Being a three-address
code, most instructions consist of an operation on two variables, the result of
which is then assigned into third variable.
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Java VMRunning
Application

Bytecode
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Fig. 9. Queryll system design

for (Office of: em.allOffice()) {

if (of.getName().equals("Seattle"))

westcoast.add(of);

else if (of.getName().equals("LA"))

westcoast.add(of);

}

Fig. 10. A simple query that can be analyzed by the Queryll bytecode rewriter

The next stage of the analysis then involves identifying loops within the code.
Although loops are easy to identify in Java source code, compiled Java code
uses only GOTO statements to describe its control flow. There are generally two
approaches for extracting loops from program code that uses GOTOs for control
flow. One approach is called GOTO-elimination [11] where code transformations
are applied to individual GOTO statements to convert them into looping struc-
tures. Instead, Queryll uses the alternate approach where the control flow graph
is analyzed as a whole and restructured to make use of loops [12]. This latter
approach is used because it provides a deeper understanding of the loop struc-
ture than the former approach. Loops are defined as being strongly connected
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1: $r12 = r1.<EntityManager: Set allOffice()>();

2: r6 = $r12.<Set: Iterator iterator()>();

3: goto label3;

label1: 4: $r13 = r6.<Iterator: Object next()>();

5: r14 = (Office) $r13;

6: $r15 = r14.<Office: String getName()>();

7: $z3 = $r15.<String: boolean equals(Object)>("Seattle");

8: if $z3 == 0 goto label2;

9: r11.<Set: boolean add(Object)>(r14);

10: goto label3;

label2: 11: $r16 = r14.<Office: String getName()>();

12: $z5 = $r16.<String: boolean equals(Object)>("LA");

13: if $z5 == 0 goto label3;

14: r11.<Set: boolean add(Object)>(r14);

label3: 15: $z7 = r6.<Iterator: boolean hasNext()>();

16: if $z7 != 0 goto label1;

Fig. 11. When a query is rewritten to be in a Jimple representation, it is easier to
analyze and manipulate

components in the control flow graph that have a single entry point. Queryll
further restricts its definition of loops to require that all exits from the strongly
connected component exit to the same instruction. Standard graph algorithms
can be used to find pieces of code that satisfy these requirements and label that
code as being a loop.

Since Queryll queries are all composed of a for-each loop over a QuerySet, the
Queryll bytecode rewriter must be able to determine whether a loop is a for-each
loop or not. A for-each loop that iterates over a Java Collection compiles down
to code that creates an Iterator object from the Collection, and then continually
advances the iterator until there are no more objects left to iterate over (see
instructions 2, 4, 15, and 16 in Fig. 11). Queryll tries to identify this pattern
in loops by looking for iterators being incremented within loops. Queryll also
checks other properties of the loop such as whether each loop instruction has
no side effects except for adding elements to a Collection or incrementing the
iterator. If that is the case, the loop is labelled as a candidate for being a query,
the Collection being iterated over is labelled as the source collection, and the
Collection to which elements are added is labelled as the destination collection.

It then becomes necessary to interpret what sort of query is being performed
by the loop. Since the loop might contain many variables and branching instruc-
tions, it can be difficult to understand what is going on. On the other hand,
analyzing straight-line code is much easier because it is easy to calculate both
the values of variables at any point in the code and dependencies between any
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instructions. To take advantage of that fact, Queryll breaks loops down into
straight paths to do its analysis. It does this by examining every control flow
path through a loop that results in a new element being added to the destination
collection. The instructions that form a path are then treated as a straight-line
piece of code. Table 1 shows the two paths that Queryll finds when examining
the code in Fig. 11.

Table 1. There are two paths through the loop that lead to new elements being added
to the destination collection

Path 1 Path 2

15: $z7 = r6.hasNext() 15: $z7 = r6.hasNext()
16: if $z7 != 0 goto label1 16: if $z7 != 0 goto label1
4: $r13 = r6.next() 4: $r13 = r6.next()
5: r14 = (Office) $r13 5: r14 = (Office) $r13
6: $r15 = r14.getName() 6: $r15 = r14.getName()
7: $z3 = $r15.equals(”Seattle”) 7: $z3 = $r15.equals(”Seattle”)
8: if $z3 == 0 goto label2 8: if $z3 == 0 goto label2

(branch not taken) (branch taken)
9: r11.add(r14) 11: $r16 = r14.getName()

12: $z5 = $r16.equals(”LA”)
13: if $z5 == 0 goto label3

(branch not taken)
14: r11.add(r14)

For each path, Queryll determines what the values of local variables need to
be for the path to be followed. So, essentially, for each branch instruction in the
path, Queryll will make a note of what values a variable must take for the branch
to be taken or not. These restrictions on the variables will be ANDed together
to form an expression describing the conditions that need to hold for the path to
be followed. These variables are likely only local variables holding intermediate
calculations that do not directly refer to any concrete object fields though. To
map these variables onto database entries, the bytecode rewriter starts at the
last instruction in the path and goes over each instruction in the path backward.
Since Jimple is a type of three-value code, most instructions are of the form
where a binary operation on two variables is assigned to another variable. If
the variable being assigned to is part of the expression representing the path,
the right-hand side of the instruction (made up of the binary operation on two
variables) is substituted for the left-hand variable in the path expression. When
the first instruction of the path is reached, the resulting expression should be
made up of operations acting on constants, outside variables, or entries from the
source collection. For example, if Queryll was trying to construct an expression
to describe the second path of Table 1, it would go through the steps shown in
Table 2. Because Java bytecode instructions for conditional GOTOs can only
work with conditions involving integers, when the above procedure is used on
code that works with non-integers, the resulting expression contains redundant
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comparisons. So in Table 2, the expression for the path compares Office.Name
with “Seattle”, resulting in an integer, and then compares this integer with 0.
These extra comparisons can confuse some SQL implementations, so Queryll
always performs a simplification step on the final expression to remove them.

Table 2. For a given path, Queryll can construct an expression that describes when
the path is executed

Instruction Expression

Initial $z3 = 0 AND $z5 != 0
14: r11.add(r14)
13: if $z5 == 0 goto label3
12: $z5 = $r16.equals(”LA”) $z3 = 0 AND ($r16 = ”LA”) != 0
11: $r16 = r14.getName() $z3 = 0 AND (r14.Name = ”LA”) != 0
8: if $z3 == 0 goto label2
7: $z3 = $r15.equals(”Seattle”) ($r15 = ”Seattle”) = 0

AND (r14.Name = ”LA”) != 0
6: $r15 = r14.getName() (r14.Name = ”Seattle”) = 0

AND (r14.Name = ”LA”) != 0
5: r14 = (Office) $r13 (((Office)$r14).Name = ”Seattle”) = 0

AND (((Office)$r13).Name = ”LA”) != 0
4: $r13 = r6.next() (((Office)entry).Name = ”Seattle”) = 0

AND (((Office)entry).Name = ”LA”) != 0
16: if $z7 != 0 goto label1
15: $z7 = r6.hasNext()
Simplification (((Office)entry).Name != ”Seattle”)

AND (((Office)entry).Name = ”LA”)

Each path found by Queryll represents a different way in which a new entry
can be added to the destination collection. So to construct a description of which
elements of the source collection should appear in the destination collection,
Queryll takes the expressions representing each path and ORs them together
(Fig. 12). This giant expression can then be put into the WHERE clause of a
SELECT..FROM..WHERE statement to create a SQL query. Similar techniques
are used to create SQL queries that calculate new columns or which join together
multiple tables.

SELECT ...

FROM Office AS A

WHERE (((A).Name != "Seattle") AND ((A).Name = "LA"))

OR ((A).Name = "Seattle")

Fig. 12. Queryll ORs together the expressions for each path through the for-each loop
to construct the WHERE clause of a SQL query
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5 Benchmarks

The SQL query code generated by Queryll tends to be a little more verbose
than hand-written SQL. Queryll also imposes some additional overhead at run-
time because it uses various abstractions to allow it to construct SQL queries
programmatically. These factors do negatively affect the performance of Queryll
queries. Adopters of middleware must always deal with the trade-off between
increased programmer productivity versus system performance, but ideally the
overhead of Queryll should be tolerably low if not negligible.

We have built a microbenchmark based on TPC-W [13]. TPC-W is a bench-
mark suite that models the behaviour of database-driven websites. We have
taken the Rice University implementation of TPC-W [14], which uses JDBC
SQL queries, as a benchmark base. The full TPC-W benchmark makes use of
application servers and web clients browsing through the website. Instead, we
have taken a select number of queries from the benchmark and evaluated the
throughput of these queries using JDBC and Queryll.

Of the queries in the Rice TPC-W implementation, all the queries involving
updates were removed. Queryll uses an approach to persistence that is standard
among other ORM tools whereby programmers load table rows into objects,
programmers manipulate the fields of the objects, and the ORM tool will write
the objects’ data back to individual table rows before a transaction completes.
Since this technique is already quite pervasive, evaluating update performance
does not provide any new insight into the behaviour of Queryll. Queries making
use of temporary tables, GROUP BY, aggregation functions, and LIKE were also
removed as Queryll does not support these features yet. Of the remaining queries,
many were similar (e.g. reading individual fields from a row in a table), so we
have taken a representative sample of these for the microbenchmark. Table 3 lists
the queries included in the microbenchmark. Each query is given a name, each
query is described briefly, and the hand-written SQL used in the Rice TPC-W
implementation of each query is shown.

We created a 600 MB database in PostgreSQL 8.1.3 [15] by populating the
database using these parameters: the number of items was set to 10000 and the
number of EBs was set to 100. During a run of the benchmark, each query was
run 100 times using random valid parameters to warm the database cache, and
then a measurement was taken of the time needed to execute the query 2000
times using random valid parameters. Each configuration was benchmarked at
least 30 times, with only the last 20 runs included in the final measurement
averages. This was needed to remove the effect of Java dynamic compilation
from the measurements and to further warm the database cache. The database
and the query code were both run on the same machine, a 2.5 GHz Pentium IV
Celeron Windows machine, with 1 GB of RAM (though the benchmark harness
was run using Java’s default maximum heap size of 64 MB).

The results of the benchmark are shown in Table 4. Hand-written SQL queries
are generally faster than the queries generated by Queryll except in the doSub-
jectSearch query. Most of the time differences can be explained by miscellaneous
overhead in the generated Java query code or small differences in query execution
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Table 3. Queries used in the benchmark

getName
Find a specific row in a table using its primary key
SELECT c fname, c lname

FROM customer
WHERE c id = ?

getCustomer
Find a specific row in a table and then join it to two other tables
SELECT ...

FROM customer, address, country
WHERE customer.c addr id = address.addr id AND address.addr co id = coun-

try.co id AND customer.c uname = ?

doSubjectSearch
Find all entries in a table with a field set to a certain value, join these entries to
another table, sort them, and take the first 50
SELECT i.i id, i.i title, a.a fname, a.a lname

FROM item i, author a
WHERE i.i subject = ? AND i.i a id = a.a id ORDER BY i.i title (LIMIT 0,50)

getRelated
Find an entry in a table using its primary key, then follow its five references to other
entries in the same table
SELECT J.i id,J.i thumbnail

FROM item I, item J
WHERE (I.i related1 = J.i id or I.i related2 = J.i id or I.i related3 = J.i id or

I.i related4 = J.i id or I.i related5 = J.i id) and I.i id = ?

at the database. For example, the generated code for the getName query (Table
5) is essentially the same as the hand-written code, but the generated code sends
a commit command to the database separately from its query, reads columns out
from ResultSets by referring to columns by name instead of by index number,
stores results in intermediate data structures, and has other additional overhead.
When the hand-written JDBC code was modified to include some of the same
inefficiencies, its running time shot up dramatically to almost match the time
taken by the Queryll queries. This behaviour suggests that even though the
time difference between hand-written queries and Queryll queries are large in
percentage terms, in absolute terms the difference is quite small. Given sloppily
hand-written JDBC code or highly optimized generated Queryll code, the time
differences could be easily reversed.

In fact, the generated code for the doSubjectSearch query was consistently
faster than the hand-written code for the query despite the extra overhead in
the generated code. This fact suggests something unusual with the SQL queries,
but the generated SQL query was essentially the same as the hand-written query,
except that the ordering of the columns was different and each column was given
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Table 4. Benchmark results

Queryll Hand-Written SQL
Query Time (ms) Std Dev Time (ms) Std Dev Difference (ms)

getName 3360 12.3 2053 19.3 1307
with extra processing 3030 18.9 330

getCustomer 7716 141.2 5163 69.1 2552
doSubjectSearch 21450 329.5 22384 25.3 -934

with modified query 20378 18.1 1072
doGetRelated 8124 16.8 3262 10.1 4862

Table 5. SQL queries generated by Queryll

getName
SELECT (A.C FNAME) AS COL0, (A.C LNAME) AS COL1

FROM Customer AS A
WHERE ( ( ((A.C ID) = ?) ) )

getCustomer
SELECT ...

FROM Customer AS A, Address AS B, Country AS C
WHERE ( ( ((A.C UNAME) = ?) ) ) AND A.C ADDR ID = B.ADDR ID AND

B.ADDR CO ID = C.CO ID

doSubjectSearch
SELECT (A.I TITLE) AS COL1, (B.A FNAME) AS COL2, (B.A LNAME) AS

COL3, (A.I ID) AS COL0
FROM Item AS A, Author AS B

WHERE ( ( ((A.I SUBJECT) = ?) ) ) AND A.I A ID = B.A ID ORDER BY
(A.I TITLE)

doGetRelated
SELECT ...

FROM Item AS A, Item AS B, Item AS C, Item AS D, Item AS E, Item AS F
WHERE ( ( ((A.I ID) = ?) ) ) AND A.I RELATED1 = B.I ID AND

A.I RELATED2 = C.I ID AND A.I RELATED3 = D.I ID AND
A.I RELATED4 = E.I ID AND A.I RELATED5 = F.I ID

a column alias. When we changed the hand-written query to match the generated
one, its running time became better than that of the generated queries. We can
only assume that the ordering of the columns somehow caused the database to
execute the automatically generated queries in a slightly more optimal way than
the hand-generated one.

The doGetRelated query is the only query that is significantly slower when
using generated queries instead of hand-written ones. This likely results from the
fact that the generated query is quite different from the original query. While
the original query joins the Item table to itself once, the generated query joins
the Item table to itself five times—one for each reference to another Item row.
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This happens because Queryll does not currently support arbitrary cross joins
between tables. Instead, the Queryll query is written exactly as it is described
in Table 3. When Queryll analyzes the query, it sees one Item entity with five
separate fields referring to five other Item entities, and it rewrites each reference
to be a separate join operation.

Overall, the results show that in most cases, using generated queries instead
of hand-written queries should not cause major performance problems. The use
of generated queries does impose some overhead on the application (as opposed
to the database) because it creates more intermediate data structures and uses
more abstractions. Of course, even hand-written JDBC calls can suffer from
similar overhead if programmers aren’t careful. And much of this overhead can
be reduced by improving the automatic code generation of Queryll.

6 Conclusion

Queryll is a middleware layer that allows Java programmers to access databases
without having to resort to a separate interface language. The query syntax is
consistent with existing Java syntax for searching Java collections. Unlike other
database middleware, the Queryll API can handle both simple and complex
queries. And database queries written using Queryll generally have comparable
performance to hand-written queries even though Queryll provides a much higher
level of abstraction.

7 Future Work

Although Queryll currently supports basic relational algebra, it would be useful
to add aggregation and nested query support to Queryll to allow it to handle the
extended algebra behind SQL. The existing code could also be made more robust
through the addition of more error-checking. Additionally, it would be useful to
formalize Queryll’s query syntax and to rigorously define how it is converted to
SQL. One difficult aspect of this is that since Queryll operates on Java bytecode,
the query syntax needs to be defined in terms of bytecode. But this query syntax
must then be backward translated to the regular Java that programmers would
write.

Overall our success in using bytecode rewriting to add query support to Java
makes us hopeful that the approach will also work well for integrating other
interface facilities into Java. We would like to expand Queryll into a general
bytecode rewriting framework that would allow programmers to plug-in various
behaviours appropriate for different interfacing middleware.
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Abstract. Context-awareness can serve to make ubiquitous applica-
tions deployed for mobile devices adaptive, personalized, and accessible in
dynamically changing environments. Unfortunately, existing approaches
for the provisioning of context information in ubiquitous computing envi-
ronments rarely take into consideration the resource constraints of mobile
devices and the uncertain availability of sensors and service infrastruc-
tures. This paper presents the design, prototype implementation, and
experimental evaluation of Contory, a middleware specifically designed
to accomplish efficient context provisioning on mobile devices. To make
context provisioning flexible and adaptive based on dynamic operating
conditions, Contory integrates multiple context provisioning strategies,
namely internal sensors-based, external infrastructure-based, and dis-
tributed provisioning in ad hoc networks. Applications can request con-
text information provided by Contory using a declarative query language
which features on-demand, periodic, and event-based context queries.
Experimental results obtained in a testbed of smart phones demonstrate
the feasibility of our approach and quantify the cost of supporting con-
text provisioning in terms of energy consumption.

Keywords: Context-awareness, middleware, smart phones, energy con-
sumption.

1 Introduction

Context-awareness is emerging as a promising enabler of various ubiquitous ap-
plications deployed for usage on mobile devices. In principle, mobile devices can
acquire context data through a large variety of sensors embedded in the device
and in the surrounding environment. In practice, making context information
available for usage to applications running on such devices often turns out to be
an ambitious demand [1]. Mobile devices are typically resource-constrained, while
context provisioning is often a complex process consisting of several sequential
and parallel sub-processes, which can lead to significant power consumption and
memory utilization; for example, reasoning algorithms can require large storage
space and complex computations. The integration of sensors in mobile devices
should not compromise portability, usability (e.g., size, weight, design, and aes-
thetics), cost, and lifetime of everyday mobile devices. Some sensors may not be
operative in every environment (e.g., GPS in indoor environments).

M. van Steen and M. Henning (Eds.): Middleware 2006, LNCS 4290, pp. 219–239, 2006.
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Typically, context-aware applications either directly sense and locally process
context data (e.g., Context Toolkit [2]) or rely on external context infrastruc-
tures [3], which collect, process, and disseminate context data of multiple enti-
ties. Additionally, the increasing availability of ubiquitous connectivity, such as
Bluetooth and WiFi, on mobile devices makes feasible a distributed provision-
ing approach, in which devices share context information of different types in
mobile ad hoc networks. These three strategies for context provisioning are all
valuable, but they build upon specific assumptions which might not be always
and constantly verified. In ubiquitous environments, operating conditions of mo-
bile clients can vary widely over time and space. For instance, in resource-rich
environments, powerful context infrastructures can provide applications with re-
quired context data, thus reducing the computational load on single devices.
Conversely, in resource-impoverished environments, devices can rely either on
their own sensors and processing capabilities or on neighboring devices. In or-
der to cope with the dynamism and heterogeneity of such environments, more
flexibility is required in accomplishing context provisioning.

This paper proposes the CONTextfactORY (Contory) middleware for context
provisioning on smart phones. Contory offers an SQL-like interface to generate
context queries, in which applications can specify type and quality of the desired
context items, context sources, push or pull mode of interaction, and other prop-
erties. Contory processes context queries and collects context data by employing
multiple strategies for context provisioning, namely internal sensors-based, exter-
nal infrastructure-based, and distributed provisioning in ad hoc networks. This
approach presents two advantages. First, arranging different context strategies
permits compensating for the temporary unavailability of one mechanism and
coping with dynamic resource availability. Second, combining results collected
through different context mechanisms allows applications to partly relieve the
uncertainty of single context sources and to more accurately infer higher-level
context information. Since smart phones are becoming increasingly interesting
to academia and industry as platforms for realizing the ubiquitous computing
vision, the smart phone was selected as development platform. To assess sys-
tem performance and quantify the energy consumption on smart phones, we ran
experiments in a testbed of Nokia Series 60 and Nokia Series 80 phones. More-
over, to evaluate the practical feasibility of the proposed approach, we built a
prototype application for a sailing scenario.

Core concepts and design principles for the deployment of Contory have been
previously presented in [4]. This paper makes the following contributions: (i)
it presents full design and implementation of a middleware supporting mul-
tiple strategies for context provisioning; (ii) among these strategies, it offers
an infrastructure-less approach to collect context data over mobile ad hoc net-
works; (iii) it describes a middleware and real-world applications implemented
on a smart phone platform; (iv) it provides experimental results that give in-
sights into the performance of smart phones in terms of energy consumption.

The rest of the paper is organized as follows. Section 2 discusses several exist-
ing context provisioning strategies. Section 3 presents requirements and design
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principles at the basis of Contory. Section 4 presents query model, software ar-
chitecture, and programming interface of Contory, while implementation details
are given in Section 5. Section 6 describes experimental results and a prototype
application using Contory. Section 7 discusses related work. The paper concludes
in Section 8.

2 Context Provisioning

Context can be defined as any information that can be used to characterize the
situation of an entity [2]. Context provisioning is the process by which context
information is acquired, processed, and made available for usage. Hereafter, we
refer to context providers as the software components in charge of performing
context provisioning. Sensors integrated in the handheld device and in the en-
vironment, tags and beacons, positioning systems, biosensors on user can be
used to acquire raw context data about the user’s physical and social environ-
ment. Context providers process raw data using mechanisms such as feature
extraction, aggregation, classification, and clustering in order to infer the user’s
context. Finally, the extracted context is made accessible to the application and
other external components.

A large number of approaches have been proposed to support context provi-
sioning. As Fig. 1a shows, a first basic strategy, called internal context pro-
visioning, consists of deploying specialized context providers to be installed
on the device. The integration of these context providers into applications can
lead to increased complexity, loss of generality and reuse, and expensive and
time-consuming application development. Alternatively, context providers can
be organized in libraries, toolkits (e.g., Context Toolkit [2]), frameworks (e.g.,
TEA framework [5]), middleware (e.g., RCSM [6]), thus providing application
developers with uniform context abstractions. However, in many situations, it
is unrealistic to assume that individual mobile devices will constantly carry any
type of conceivable sensor or will be capable of interacting with any type of
sensor embedded in the environment.

A second strategy consists of deploying autonomous context-service com-
ponents, running on remote devices, accessible by multiple applications, and
independent of the application logic. Existing examples are external service
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infrastructures [3] (e.g., Confab [7] and JCAF [8]), and shared servers (e.g., the
Trivial Context System (TCoS) [9]). We call this approach, depicted in Fig. 1b,
external centralized context provisioning. These shared context services
are in charge of discovering suitable context sources and processing, storing, and
disseminating gathered context data. Multiple context providers on different ap-
plications can pull or subscribe to these services to retrieve context information
related to certain context entities. On the one hand, by sharing sensors and
computing resources, this approach reduces the computational load on single
devices and makes applications less tied to a specific sensor platform. On the
other hand, relying on a centralized system presents scalability, extensibility, and
fault-tolerance issues.

A third possibility, albeit rarely considered in this field, is a distributed model
as the one depicted in Fig. 1c. We call this approach external distributed
context provisioning. The key idea is to abstract context provisioning as the
problem of supporting the access to a distributed database where data are pro-
vided by context providers located on the nodes of a Mobile Ad-hoc NETwork
(MANET). Nodes equipped with the necessary sensors can acquire raw context
data, process them, and make them accessible to neighboring nodes. Ubiquitous
connectivity already available on commercial mobile devices enables proximity
networks of this type.

3 Contory Requirements and Design

The deployment of a middleware for context provisioning stems from the neces-
sity to move a number of core data and services for context sensing, management,
and distribution from their multiple instances into a centralized provision of ser-
vices. Requirements for the deployment of Contory were gathered from experi-
ences with a context-based application developed in the DYNAMOS1 Project.
The DYNAMOS application, described in [10], aims to proactively provide mo-
bile users with nearby services that are of interest based on the user’s current
context and needs. The application prototype runs on smart phones and was
specifically designed to target the needs of a community of recreational sail-
boaters. In June and August 2005, we conducted two field trials with sailboats
in which such an application was used by about 30 persons equipped with Nokia
6630 phones and GPS devices.

During the regatta, location-awareness was accomplished by means of GPS
devices connected through Bluetooth (BT) to the phone. Location updates were
encapsulated in events and constantly transmitted over GPRS/UMTS for stor-
age in a remote repository. Collected location traces were fairly discontinuous due
to several disconnection problems. First, several BT disconnections between the
phone and the GPS device occurred (typically one disconnection per hour). Sec-
ond, when a UMTS connection was active and the phone went through 2G/3G
handover, the phone switched off (this did not occur if the phone was set to
1 Dynamic Composition and Sharing of Context-Aware Mobile Services. URL:

http://virtual.vtt.fi/virtual/proj2/dynamos/
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operate only in 2G mode). Additionally, the traffic of events carrying context
updates and going from the phone to the remote repository had to be optimized
and largely reduced, in order to avoid the phone to switch off due to high memory
consumption and network connectivity problems.

Besides these phone-specific issues, these experiences in the real field of ac-
tion helped discover technical problems regarding context sensing and context
management. We found that (i) context provisioning based exclusively on local
sensors is often not reliable enough; (ii) sharing of context information owned
by multiple users can provide useful services to the end-user, enlarge the spa-
tial range of context monitoring, reduce global resource utilization, and permit
coping with sensor unreliability; (iii) external infrastructures should be ready
to cope with frequent user disconnections (e.g., by incorporating prediction or
learning algorithms); and (iv) the client application should be ready to cope
with frequent disconnections from remote repositories.

The design of Contory followed four main guiding principles:

– Flexible and reliable context provisioning: Ideally, context provisioning
should take place without any interruption, e.g., due to hardware faults or
temporary disconnections from context sources. In Contory, multiple con-
text provisioning strategies are made available and can be dynamically and
transparently interchanged based on sensor availability and resource con-
sumption.

– Common querying interface: To formulate requests about heterogenous con-
text items, Contory supports an SQL-like context query language. This com-
mon interface allows applications to specify type and qualifying properties
of the required context data.

– Push and pull access mode: Context-aware applications can interact with
Contory by using either a pull or a push mode; they can submit on-demand
queries or long-running queries (periodic or event-based queries).

– Modularity and extensibility: Contory glues several context provider compo-
nents together. Separation of semantic definition of the provided informa-
tion and availability of modular context providers enhances adaptation to
variable configurations. New sources of context information and processing
algorithms, which will be developed in the forthcoming years, will need to
be easily accommodated in the existing architecture.

4 Contory Middleware Architecture

Contory aims to provide specialized and transparent support for retrieving con-
text items of different types and quality. This section describes core concepts for
the design of Contory, its software architecture, and programming interface.

4.1 Context Items and Context Metadata

The context associated with a certain situation can be expressed as a set of con-
text items, each describing a specific element of the situation. For instance, the
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situation walking outside could be represented by the triplet <noise=medium,
light=natural, activity=walking>. Context items can describe spatial informa-
tion (location, speed), temporal information (time, duration), user status (activ-
ity, mood), environmental information (temperature, light, noise), and resource
availability (nearby devices, device power). In Contory, context data are ex-
changed by means of cxtItem objects. Each cxtItem consists of type (context
category), value (current value(s) of the item), and timestamp (the time at
which the context item had such a value). Optionally, it can have a lifetime
(validity duration), a source identifier (e.g., sensor, infrastructure, and device
addresses), and other metadata information. Types of metadata information
include correctness (i.e, closeness to the true state), precision, accuracy, com-
pleteness (if any or no part of the described information remains unknown), and
level of privacy and trust.

4.2 Context Query Language

From an application’s point of view, Contory mostly acts as a data-retrieval
system to which context-aware applications submit context queries. Although
similar to a database system, the dynamism and fuzziness of context data lead
to important differences. Context sources can provide large amounts of con-
text data, hence some aggregation and filtering functions are required. Context
monitoring is a continuous process, hence not only on-demand queries but also
long-running queries have to be supported. Although different applications have
usually different requirements, rather than deploying application-specific inter-
faces, we abstracted the functionality of several applications into one common
SQL-like context query language. The query template has the following format.

SELECT <context name> [*]

FROM <source>

WHERE <predicate clause>

FRESHNESS <time>

DURATION <duration> [*]

EVERY <time> | EVENT <predicate clause>

The SELECT and DURATION clauses (marked with [*]) are mandatory.
SELECT specifies the type of the requested context item. DURATION specifies
the query lifetime as time (e.g, 1 hour) or as the number of samples that must
be collected in each round (e.g., 50 samples).

Contory aims to offer different levels of transparency to the application de-
veloper. The maximum transparency is achieved when the FROM clause is un-
specified and the middleware autonomously and dynamically selects the context
provisioning mechanism to be employed. Alternatively, the FROM clause offers
to the programmer several ways to control type and characteristics of the con-
text sources to be employed. Context sources can be of three kinds according
to the three context provisioning mechanisms supported: internal sensor-based
(intSensor), external infrastructure-based (extInfra), and distributed context
provisioning in ad hoc networks (adHocNetwork). In the case of adHocNetwork
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provisioning, the FROM clause also tells multiplicity (numNodes) and distance
(numHops) of the context source nodes. For example, the search for suitable con-
text items can involve all nodes that can be discovered (numNodes=all) or the
first k nodes found within a distance lower than j hops (numNodes=k, numHops=j).
Alternatively, the programmer can also specify the destination to which the
query has to be sent. This destination can be the identifier of an entity (e.g., to
know when a friend is nearby) or the coordinates of a region to be monitored
(e.g., next exit on the highway).

WHERE contains filtering predicates expressed using the context item’s
metadata. FRESHNESS specifies how recent the context data must be. Fi-
nally, our query language provides support for long running queries by means of
EVERY and EVENT clauses. These clauses are mutually exclusive. The EVERY
clause allows the application to specify the rate at which context data should be
collected (periodic query). The EVENT clause determines the set of conditions
that must be met at the context provider’s node before a new result is returned
(event-based query).

In the following example, the query returns, for one hour, temperature values
collected from the first 10 nodes found in an ad hoc network within a distance
of at most 3 hops; data are not older than 30 seconds, have accuracy of 0.2 oC,
and are sent every time the average temperature exceeds 25 oC.

SELECT temperature

FROM adHocNetwork(10,3)

WHERE accuracy=0.2

FRESHNESS 30 sec

DURATION 1 hour

EVENT AVG(temperature)>25

4.3 Contory Software Architecture

Fig. 2 depicts the conceptual architecture of Contory. ContextFactory is the core
component of the overall architecture. One ContextFactory is instantiated on
each device and made accessible to multiple applications. Based on the Fac-
tory Method design pattern [11], this design model aims to define an inter-
face for creating objects, but let subclasses decide which class to instantiate.
In our case, the ContextFactory offers an interface to submit context queries,
but lets Facade components (subclasses) decide which ContextProvider com-
ponents (classes) to instantiate. The ContextFactory provides support for (i)
context sensing and communication, (ii) context provisioning and sharing, and
(iii) queries and providers management. In the following, we describe each func-
tionality along with their core architectural components.

Context Sensing and Communication. Context data can be sensed from a
large variety of CxtSources such as external sensors (e.g., a GPS device), inte-
grated monitors (e.g., a power management framework), external servers (e.g., a
weather station). To provide discovery of CxtSources as well as to support com-
munication with them, different types of Reference modules can be available on
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the device. Typically, a Reference mediates the access to a certain communica-
tion module by offering useful programming abstractions. As shown in Fig. 2,
Contory includes four types of References. The InternalReference is specialized
to support communication with sensors integrated in the device. The BTRefer-
ence provides support to discover BT devices and services, and to communicate
with them. The WiFiReference manages communication in WiFi networks, but
also provides abstractions for content-based routing, geographical routing, and
multi-hop communication in ad hoc networks. The 2G/3GReference manages
communications with remote entities over the corresponding network standards
and offers an event-based interface.

Mobile systems can undergo unexpected changes in the level of resource avail-
ability, for example, when a new application is started or when the host moves to
a different network domain. Moreover, in wireless environments, disconnections
and bandwidth fluctuations are common. These issues make necessary the adop-
tion of dynamic resource allocation mechanisms. The ResourcesMonitor com-
ponent is in charge of maintaining an updated view on the status of several
hardware items (e.g., device drivers), on the device’s overall power state, and
on the available memory space. Each time, network, sensors, or device failures
affect the functioning of a communication module, the corresponding Reference
notifies the ResourcesMonitor module. This, in turn, will inform the ContextFac-
tory which will enforce a reconfiguration strategy to take over. For example, if
a BT-GPS device suddenly disconnects, the location provisioning task can be
moved from a LocalLocationProvider (using the BTReference) to an AdHocLo-
cationProvider (using theWiFiReference).

The AccessController module is responsible for controlling the interaction
with external sources and requesters of context items. The AccessController
keeps track of previously connected context sources (such as sensors or devices)
and also of blocked context sources. This list is continuously refreshed so that
only the most recent and the most often accessed sources are kept in memory. If
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the application requires high-security operating mode, every time a new context
source is encountered, it is blocked or admitted based on explicit validation by
the application. In low-security mode, every new entity is trusted.

Context Provisioning and Sharing. CxtProviders are responsible for accom-
plishing context provisioning. Optionally, they can also incorporate reasoning
mechanisms for inferring higher-level context data. A CxtAggregator can be used
to combine context items collected from single or multiple CxtProviders. Alter-
natively, advanced context processing mechanisms can be performed by external
context infrastructures, distributed across remote components or implemented
at the application level.

CxtProviders are of three types. LocalCxtProviders manage the access to lo-
cal sensors which can be integrated in the device or be accessible via BT. These
providers periodically pull sensor devices and report values that match WHERE
and FRESHNESS requirements. InfraCxtProviders are responsible for retriev-
ing context data from remote context infrastructures. AdHocCxtProviders are
responsible for supporting distributed context provisioning in ad hoc networks;
to gather context data from nodes in a MANET, these providers utilize the
BTReference (only for one-hop routing) or the WiFiReference (also for multi-
hop routing). Based on the EVENT and EVERY clauses specification, context
providers offer three modes of interaction: on-demand query, event-based query,
and periodic query.

The CxtRepository module is responsible for storing gathered context informa-
tion, locally or remotely. Only a few recent context data are stored locally, while
complete logs can be stored in remote repositories of context infrastructures.
The CxtPublisher allows publishing context information in ad hoc networks by
means of the BTReference or the WiFiReference. Each time a context item has
to be published, two access modalities can be applied: public access allows any
external entity to access the item, and authenticated access locks the item with
a key that must be known by the requester.

Queries and Providers Management. The QueryManager is responsible
for maintaining an updated list of all active queries and for assigning queries to
suitable Facade components. For each of the three types of context provisioning
mechanisms supported, a corresponding Facade module offers a unified interface
for managing CxtProviders of that specific type. The purpose of utilizing the
Facade design pattern [11] is to abstract the subsystem of CxtProviders to offer
a more convenient (unidirectional) interface to the ContextFactory. The Facade
knows which subsystem classes (i.e., CxtProviders) are responsible for a certain
query and can direct actions or requests of the ContextFactory to the correct
component.

The QueryManager invokes the factory method processCxtQuery(CxtQuery
q) of the ContextFactory to assign the query to one or multiple Facades. The
assignment is done base on the requirements specified in the query’s FROM
clause, based on sensor availability, and in the respect of the active control poli-
cies. For instance, a control policy can specify the maximum level of memory
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and power consumption that should be tolerated at runtime. Control policies are
formulated as contextRules consisting of a condition and an action statements.
Conditions are articulated as Boolean expressions, and the operators currently
supported are equal, notEqual, moreThan, and lessThan. An example of condi-
tion is <batteryLevel,equal,low>. Through and and or operators, elementary
conditions can be combined to form more complex ones. Whenever a condition
is positively verified at runtime, the associated action becomes active and it is
enforced by the ContextFactory. Actions currently supported are reducePower,
reduceMemory, and reduceLoad. The enforcement of these actions can have
different effects such as the switch from a certain provisioning mechanism to an-
other one or the interruption of a query execution. For example, the activation of
the reducePower action can cause the suspension or termination of high energy-
consuming queries (e.g., those using the 2G/3GReference) or the replacement of
WiFi-based multi-hop provisioning with BT-based one-hop provisioning.

Once the query has been assigned to a Facade, in order to avoid redundancy
and keep the number of active queries minimal, the Facade performs query ag-
gregation. This process consists of two sub-processes: query merging and post-
extraction. The Facade first checks whether the new submitted query q1 can be
merged with any other active query q2. If q3 = merge(q1,q2) can be found,
q3 is the new query to be processed. The post-extraction sub-process is applied
to the received results for q3 in order to extract the data matching the original
queries q1 and q2. The merge function implements a simplified version of the
clustering algorithm defined in [12]. This algorithm builds on the definition of
a “distance” metric between queries. The algorithm computes the distance be-
tween each pair of queries and if it is below a certain threshold, the two queries
are put in the same cluster. In our design, for simplicity, we put in the same clus-
ter queries with the same SELECT clause. Once clusters are formed, the merging
is performed by applying clause-specific merging rules, as exemplified below:

q1:

SELECT temperature

FROM adHocNetwork(all,3)

FRESHNESS 10sec

DURATION 1hour

EVERY 15sec

q2:

SELECT temperature

FROM adHocNetwork(all,1)

FRESHNESS 20sec

DURATION 2hour

EVERY 30sec

q3:

SELECT temperature

FROM adHocNetwork(all,3)

FRESHNESS 20sec

DURATION 2hour

EVERY 15sec

Upon the aggregation process has completed, the Facade module either in-
stantiates a new CxtProvider or updates the query parameters of an existing
CxtProvider (e,g., in case the new query has been merged with an already active
query). CxtProviders of different Facades can be assigned to the same query, but
each CxtProvider is assigned only to one (single or merged) query at time.

4.4 Contory Programming Interface

The Contory API shields the programmer from the underlying communica-
tion platforms and context provisioning aspects. To interact with Contory, an
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application needs to implement a Client interface and implements the following
methods:

– receiveCxtItem(CxtItem cxtItem) in order to handle the reception of col-
lected context items;

– informError(String msg) to be called by several Contory modules in case
of malfunctioning or failure;

– makeDecision(String msg) to be invoked by the AccessController to grant
or block the interaction with external entities.

The application can access Contory services through the ContextFactory in-
terface. As shown below, this interface offers methods for submitting and erasing
context queries (line 2 and 3), for publishing or erasing context items (line 4),
and for remotely storing context items (line 5). In order to be eligible to pub-
lish context items and made them accessible to other clients, the publisher must
register and be authenticated (line 6). Likewise, the client can deregister (line
7).

1 public interface ContextFactory {

2 boolean processCxtQuery (CxtQuery query);

3 void cancelCxtQuery (String queryID);

4 boolean publishCxtItem (String cxtItem ,boolean published );

5 void storeCxtItem (CxtItem cxtItem);

6 void registerCxtServer (CxtServer client);

7 void deregisterCxtServer (CxtServer client);

8 }

Different vocabularies are made available to the application developer: (i) the
CxtVocabulary contains context types, context values, and metadata types for
specifying context items and device resources; (ii) the QueryVocabulary contains
parameters for specifying context queries; and (iii) the CxtRulesVocabularycon-
tains operators and actions for specifying control policies.

5 Implementation

Contory has been implemented using Java 2 Platform Micro Edition (J2ME).
Currently, two separate implementations exist: one for Connected Limited De-
vice Configuration (CLDC) 1.0 and Mobile Information Device Profile (MIDP)
2.0 APIs, and one for Connected Device Configuration (CDC) 1.0. The J2ME
platform was selected since it currently represents the most widespread com-
puting platform for personal mobile devices. All software development was done
using Nokia Series 60 and Nokia Series 80 phones. In the following, we provide
specific insights into the implementation of References and distributed context
provisioning. The InternalReference module has not been implemented yet be-
cause no sensors integrated in the phone platform used for the development were
available at deployment time.
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5.1 References Implementation

The BTReference utilizes the Java Specification Request 82 (JSR-82) available
for CLDC. This specification defines a standard set of APIs for BT wireless
technology and specifically targets devices that are limited in processing power
and memory. The specification includes support for (i) discovery (device discov-
ery, service discovery, and service registration), (ii) communication (establishing
connections between BT devices and using those connections for BT communi-
cation), and (iii) device management (managing and controlling these BT con-
nections).

Since no standardized support exists to program ad hoc networks, the
WiFiReference provides device and service discovery, content-based routing,
multi-hop communications in ad hoc networks by means of the Smart Mes-
sages (SM) [13] distributed computing platform. This was specifically designed
for highly volatile networks such as MANETs. We utilize the portable version
of SM [14] implemented for the J2ME CDC platform. An SM is a user-defined
application, similar to a mobile agent, whose execution is sequentially distrib-
uted over a series of nodes using execution migration. The nodes on which SMs
execute are named by properties, called tags, and discovered dynamically using
application-controlled routing. Tags have a name, similar to a file name in a file
system, which is used for content-based naming of nodes. To move between two
nodes of interest, an SM explicitly calls for execution migration. An SM consists
of code bricks, data bricks (mobile data explicitly identified in the program),
and execution control state. To support SM execution, the SM runtime system
runs inside a Java virtual machine and consists of: (i) admission manager that
performs admission control and prevents excessive use of resources by incoming
SMs, (ii) code cache that stores frequently executed code bricks, (iii) scheduler
that dispatches ready SMs for execution on the Java virtual machine, and (iv)
tag space that provides a shared memory addressable by names for inter SM
communication and synchronization. The tag space offers a uniform view of the
network resources in terms of naming and access to resources. We use SM tags
to publish context items in the ad hoc network.

The 2G/3GReference offers support for event-based communication by using
the Fuego middleware [15]. This middleware is implemented in Java and provides
a scalable distributed event framework and XML-based messaging service. This
middleware also runs on mobile phones supporting Java MIDP 1.0.

5.2 Distributed Context Provisioning Using BT and SM

Distributed context provisioning has been implemented using the BTReference
in one-hop ad hoc networks and using the WiFiReference in multi-hop ad hoc
networks. Distributed context provisioning is accomplished in three phases: ini-
tialization, publishing, and execution.

In the BT-based implementation, the initialization phase places the BT device
into inquiry mode and specifies an event listener that will respond to inquiry-
related events. A context item can be published by advertising a context service
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on the BT server (service registration). The server creates a service record de-
scribing the offered context service and adds it to the server’s Service Discovery
Database (SDDB). This is visible and available to external BT entities. The
AdHocCxtProvider first discovers accessible BT devices (in some cases a list of
pre-known devices is used) and then looks for available services on the discovered
devices.

In the WiFi-based implementation, the WiFiReference expresses its willing-
ness to participate in the Contory ad hoc network by exposing the tag “contory”.
In such a way, every time an SM needs to be routed from a certain source to a
certain destination, all nodes in the ad hoc network exposing the “contory” tag
will collaborate with each other to forward the SM towards the destination. To
publish a context item in the ad hoc network, the AdHocCxtPublisher exposes
on the local node a tag whose name contains the type and whose value contains
the value and metadata of the context item (e.g., (temperatureTag :< name =
temperature >, < value = 14oC, 1oC, trusted >)). To discover context items of
interest, the context query is encapsulated in an SM-FINDER that is routed to-
wards nodes exposing the desired context tag (i.e., the tag whose name matches
the SELECT clause of the carried query). To disambiguate between multiple
messages, a unique identifier is associated with each query and with each result.
If no valid result is received within a certain timeout, the query is cancelled. If
nodes exposing context items of the type of interest are discovered, WHERE,
FRESHNESS and EVENTS requirements specified in the query are evaluated. If
positively verified, the value of the context item along with additional metadata
properties are saved in the SM-FINDER which is routed back to the query issuer.
In order to cope with nodes mobility, the SM-FINDER maintains a hopCnt that
indicates how many hops the message has traversed until that moment. When
the SM-FINDER is delivered to the AdHocCxtProvider issuer, if hopCnt>numHops
the receiver discards the result because the CxtPublisher that provided such a
result is out of the range of interest.

6 Evaluation

We evaluated Contory in two phases. We built an experimental testbed of smart
phones and measured response times and energy consumption for different con-
text operations. We then evaluated Contory by building a real-world application
using it. This section presents experimental results and prototype application.

6.1 Experimental Results

The objective of this experimental analysis was to demonstrate the practical
feasibility of the proposed approach, give an insight on the performance of our
prototype implementation, and quantify its cost mostly in terms of energy con-
sumption. Our experimental testbed consisted of a Nokia 6630 phone (Sym-
bian OS 8.0a, 220 MHz processor, WCDMA/EDGE, 9 MB of RAM), a Nokia
7610 phone (Symbian OS 7.0s, 123 MHz processor, GPRS, 9 MB of RAM),
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Table 1. Latency times of basic Contory operations

Entity acts as: Operation Elapsed time (msec)

Avg [90% Conf interval]

ContextProvider createCxtItem 0.078 [0.001]

adHocNetwork, BT-based: publishCxtItem 140.359 [0.337]

adHocNetwork, WiFi-based: publishCxtItem 0.130 [0.006]

extInfra, UMTS-based: publishCxtItem 772.728 [158.924]

ContextRequester createCxtQuery 0.219 [0.001]

adHocNetwork, BT-based, one hop: getCxtItem 31.830 [0.151]

adHocNetwork, WiFi-based, one hop: getCxtItem 761.280 [28.940]

adHocNetwork, WiFi-based, two hops: getCxtItem 1422.500 [60.001]

extInfra, UMTS-based: getCxtItem 1473.000 [275.000]

3 Nokia 9500 communicators (Symbian OS 7.0s, 150 MHz processor, WLAN
802.11b/EDGE, 64 MB of RAM), and a Bluetooth GPS Receiver InsSirf III.

Latency Experiments. Table 1 reports latency times for four main
Contory operations: createCxtItem, publishCxtItem, createCxtQuery, and
getCxtItem. The size of a context query object is 205 bytes, while the size of
a context item varies from 53 bytes (e.g., a wind item) to 136 bytes (e.g., a
location item). For these experiments, we used a lightItem whose size is 136
bytes. CxtItem and cxtQuery objects that are transmitted over UMTS using
the event-based platform are encapsulated in event notifications whose size is
1696 bytes.

On the context publisher side, publishing a context item with the BT-based
mechanism takes much longer than with the WiFi-based mechanism. The reason
for this stems from the BT registering process. With BT, to make an item acces-
sible, this needs to be encapsulated in a DataElement and registered into the BT
ServiceRecord. With SM, this operation corresponds to simply creating a new
SM tag and storing its name and value in the TagSpace hashtable. The variabil-
ity of latency times for publishing a context item in the remote infrastructure is
quite extreme and is due to the high delay variability in UMTS networks.

On the context provider side, adHocNetwork provisioning can be BT-based or
WiFi-based. For the BT case, the latency time reported in the table represents
the time needed to receive a context item, once device and service discovery
has occurred (BT device discovery takes approximately 13 sec and BT service
discovery takes approximately 1.12 sec). For the WiFi case, we ran experiments
using a 2-hops topology with three communicators arranged in a line. The two
latency times reported in the table represent the time needed to retrieve one
context item located at a distance of one or two hops, once the route has been
built. The additional time required to build the route is approximately twice
the corresponding latency value in the table. The break-up analysis for SM
experiments shows that connection establishment accounts for 4-5% of the total
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Fig. 3. Power measurements testbed setup

latency time, serialization for 26-33%, thread switching for 12-14%, and transfer
time for 51-54%. The SM overhead is negligible. Finally, measured latency times
for extInfra vary enormously, ranging from 703 msec up to 2766 msec.

Energy Consumption Experiments. Energy consumption remains one of
the most critical issues that needs to be addressed in application development
on mobile phones. While CPU speed and storage capacity have increased over the
last 10 years, battery energy shows the slowest trend in mobile computing [16].
To measure energy consumption on phones, we inserted a multimeter in series
between the phone and its battery. The testbed setup is shown in Fig. 3. We used
a Fluke 189 multimeter, which was connected to a PC to record the readings.
The meter read current inputs approximately every 500 ms. The precision of
our measurements depends mostly on the precision of the multimeter and the
stability of the voltage on the phone battery. The resistance of the wires was
found to be negligible. The multimeter has an accuracy of 0.75% and precision of
0.15%. The stability of the voltage is important since this is used to compute the
power consumption based on Ohm’s law. We did some preliminary experiments
to measure the voltage on the phone while performing different operations; we
found out that under high load the battery deviated less than 2% from 4.0965
V for the first hour at least. To minimize the impact of the voltage variance,
we ran short experiments and always with a full battery. Given that the shunt
voltage of the meter is 1.8 mV/mA, we calculated that the maximum inaccuracy
of our experiments was approximately 8%. We ran the experiments in an office
environment with background noise due to other mobile phones, wireless LANs,
BT, etc. Even though a noise-free environment would have been desirable, we
ran all experiments in the same spot, thus emulating a daily life scenario with
an almost constant level of background noise.

All experiments were performed from five to ten times. High energy consum-
ing experiments were set to last no longer than 10 min. All numbers hereafter
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Table 2. Energy consumption of different context provisioning mechanisms

Context provisioning method: operation Energy consumption per cxtItem (Joule)

Avg [90% Conf Interval]

adHocNetwork, BT-based: provideCxtItem 0.133 [0.002]

adHocNetwork, BT-based: getCxtItem 5.270 [0.010]

(one-hop and on-demand query, including discovery)

adHocNetwork, BT-based: getCxtItem 0.099 [0.007]

(one hop and periodic query, without discovery)

intSensor, BT-based: getCxtItem 0.422 [0.084]

(periodic query, without discovery)

adHocNetwork, WiFi-based: getCxtItem > 0.906 a

(one hop and periodic query)

adHocNetwork, WiFi-based: getCxtItem > 1.693 a

(two hops and periodic query)

extInfra, UMTS-based: getCxtItem 14.076 [0.496]

(on-demand query)

a
Includes the cost of having back-light switched on.

reported were collected on a Nokia 6630 phone and a Nokia 9500 communicator
(only when WiFi was used). Initially, we measured the cost of different operating
modes when the GSM radio was turned off. When BT is turned off, back-light is
switched on, and display is switched on, the average power consumption is about
76.20 mW. If the back-light is turned off, the consumption decreases to 14.35
mW. A consumption of 5.75 mW is achieved if also the display is turned off.
Turning on BT in page and inquiry scan state increases the power consumption
to 8.47 mW. Turning on Contory as well leads to a power consumption of 10.11
mW. We ran all experiments (except UMTS-based tests) with the GSM radio
off, back-light off, and display off.

Table 2 reports energy consumption results for all three context provisioning
mechanisms. On the provider side, the energy consumption for providing context
items is relatively contained. On the requester side, we distinguish three cases.

For BT-based mechanisms, the cost of processing context queries is mostly
due to the device discovery phase which lasts approximately 13 sec. Once the BT
device is discovered, being periodically notified with context data is fast and the
energy cost is definitely low. Results for intSensor were gathered by connecting
the BT-GPS device to the phone. While the discovery cost is the same for BT-
based intSensor and adHocNetwork, the cost for maintaining a periodic exchange
of data is higher for intSensor. This is due to the larger size of the exchanged data
(GPS-NMEA data are 340 bytes big) and the packet segmentation BT applies.

For WiFi-based provisioning, energy costs are much higher than in the BT
cases. We encountered several problems in running these experiments. Each
time a WiFi connection was established on the communicator inserted in the cir-
cuit, the communicator switched off after less than 30 sec. New smart phones are
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Fig. 4. Power consumption for extInfra
provisioning

Fig. 5. Contory behaviour in the presence
of BT-GPS failure

low-voltage devices operating from a single Lithium-Ion cell. During the startup
phase, the high in-rush current causes the phone’s voltage supply to drop due to
the multimeter’s internal resistance; hence, this drop triggers the internal power
management protection circuit to turn off the phone. However, based on the logs
we gathered, having WiFi connected at full signal (with back light on) drains
a constant current of 300 mA, which leads to an average power consumption of
1190 mW. This also means that having WiFi connected is more than 100 times
more energy-consuming than having BT in inquiry mode.

In the tests for extInfra provisioning, turning on the GSM radio produces an
additional power consumption; this comes in peaks of 450-481 mW and every
50-60 sec. Fig. 4 shows the power consumption for a test in which 5 queries were
sent to the infrastructure over UMTS, every 3 min. The maximum power con-
sumption, which corresponds to when the connection is opened and the request
for the item is sent, is 1000 mW. Such a high energy cost is mostly due to the
cost of opening the UMTS connection. Sending and retrieving larger groups of
items in the same time slot largely reduces the energy consumption per item.

To demonstrate how Contory is able to recover from sensor failures by dy-
namically switching from one context provisioning mechanism to another, we
simulated a GPS failure. As Fig. 5 shows, initially the phone is retrieving loca-
tion data from a GPS device connected through BT. After 155 sec, we caused
a GPS failure by manually switching off the GPS device. As a reaction, Con-
tory switches from sensor-based provisioning to ad hoc provisioning and starts
collecting location data from a neighboring device. Later on, the GPS device
becomes available again. Once the GPS device is discovered, Contory switches
back to sensor-based provisioning. The cost in terms of power consumption of
the switches is due mostly to the BT device discovery: this varies from 163 mW
up to 292 mW.

Experiments Summary. These experimental results confirmed the practical
feasibility of our approach. The combined use of different context provisioning
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strategies can bring several benefits. First, it allows to cope with failures of
sensing devices by dynamically replacing one context strategy with another.
Second, as each context provisioning strategy guarantees different performance
at different costs, the possibility of flexibly switching from one mechanism to
another permits optimizing the utilization of computing and communication
resources at run time.

6.2 Sailing Application Prototype

Using the Contory API, we re-implemented the DYNAMOS sailing applica-
tion [10] and add more context-based services. The use of Contory permitted to
decouple the application implementation from underlying communication mod-
ules (e.g., the BT JSR-82, the Fuego Core event-based framework, the SM plat-
form), from the repository system, and from sensor technology. The implementa-
tion of common services such as connecting BT sensors or communicating with
the remote repository was accomplished by simply instantiating context query
objects in few lines of code. Moreover, Contory offered support to: (i) extend
the application’s context monitoring range by collecting region-specific obser-
vations through ad hoc networks and making those data available to remote
clients through the infrastructure support; (ii) share context information about
multiple entities and across multiple devices;(iii) combine information from mul-
tiple context sources to enhance context estimation. In the following, we show
two services that have been integrated into the previous DYNAMOS application
and make use of these features.

WeatherWatcher: It allows users to retrieve weather information in a certain
geographical region (e.g., the user wants to know the weather in the prox-
imity of a guest harbor to visit). Weather information consists of tempera-
ture, wind, speed, humidity, atmospheric pressure, etc. In a sailing scenario,
weather conditions represent an important element for selecting the sailing
route, but as this type of information can change very quickly, the informa-
tion owned by boats currently sailing in such a region is often more reliable
than the one provided by official weather stations. Once the user has issued
a weather request, if the target region is not dense enough or too far away
to support multi-hop ad hoc network provisioning, the query is sent to the
remote infrastructure. The infrastructure checks if any WeatherWatcher of
users currently sailing in that region has recently provided weather informa-
tion and returns this information to the requester. Fig. 6 shows the screen
interface for this application.

RegattaClassifier: During a regatta competition, this service constantly pro-
vides an updated classification of the current winner of the regatta. Virtual
checkpoints can be arranged along the route that the boats will take during
the competition. Each time a boat reaches a checkpoint, the RegattaClas-
sifier running on the phone’s participant (see Fig. 7) communicates to the
infrastructure location and speed of the boat (collected using GPS sensors).
The infrastructure processes this information and provides each participant
with an updated classification and additional statistics of the competition.
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Fig. 6. WeatherWatcher screenshots Fig. 7. RegattaClassifier screenshots

7 Related Work

As discussed in Section 2, most research projects investigating context support on
mobile devices use sensor-based or infrastructure-based approaches. Approaches
exploiting the communication support offered by ad hoc networks have rarely
been employed for collecting dynamically changing context data. Our middle-
ware differentiates from these approaches by making use of multiple provisioning
mechanisms and by integrating a distributed approach deployed in ad hoc net-
works.

Our distributed context provisioning mechanism resembles work done to ac-
cess data stored in sensor networks (e.g., Cougar [17], TinyDB [18]). However,
these works consider only stationary sensors, whereas in our distributed model,
there are both stationary and moving context providers. Furthermore, in sensor
networks properties and data produced by nodes are known at the deployment
time, while in MANETs properties and context data differ over time as nodes
of different types move across the physical space. Declarative queries are also
one of the preferred ways of accessing sensor data [19], [20]. We specialized our
query language to offer support for expressing both type and quality of requested
context items, and to support long running queries.

Few research projects have focused on implementing practical context support
on mobile phones. The ContextPhone [21] is an open-source prototyping platform
built on the Series 60 phone platform. It can be used to sense, process, store,
and transfer context data. The blackboard-based framework of Korpipää [22]
implements a ContextManager which provides a publish-subscribe mechanism
and a database for context data on mobile devices. However, in both works the
context sensing relies on information locally available on the device or through
BT sensors, whereas in Contory, we provide flexible access to various types of
internal and external sensors. According to the classification of Section 2, these
works implement an internal sensor-based provisioning mechanism.

8 Conclusions

This paper presented Contory, a middleware specifically deployed to enable
easy development of context-aware applications on mobile phones. Our approach
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provides high flexibility in supporting context provisioning by integrating several
context strategies, namely internal sensors-based, infrastructure-based, and dis-
tributed provisioning in ad hoc networks. Additionally, Contory offers a unified
SQL-like interface for specifying context queries. Using Contory allows context-
aware applications to collect context information from different sources without
the need to uniquely and continuously rely on their own sensors or on the pres-
ence of an external context infrastructure. We demonstrated the feasibility of
our approach by deploying Contory in an experimental testbed of smart phones
and quantifying its cost in terms of energy consumption. We also used Contory
to implement a prototype application for a sailing scenario. Future directions in
the development of Contory will focus on providing more efficient and reliable
context provisioning in mobile ad hoc networks.
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Abstract. Service-oriented architectures, and notably Web Services, are becom-
ing an incontrovertible paradigm for the development of applications in perva-
sive computing environments, as they enable publishing and consuming hetero-
geneous networked software and hardware resources. Combined with Semantic
Web technologies, in particular ontologies, Web services’ descriptions can be un-
ambiguously and automatically interpreted in open pervasive computing environ-
ments, where agreement on a single common syntactic standard for identifying
service semantics cannot be assumed. Nevertheless, efficient matching of seman-
tic Web services to effectively automate the discovery and further consumption
of networked resources remains an open issue, which is mainly attributable to the
costly underlying semantic reasoning. After analyzing the cost of ontology-based
semantic reasoning, which is at the heart of the matching process, we propose a
solution towards efficient matching of semantic Web services. We have further in-
corporated our solution into a service discovery protocol aimed at open pervasive
computing environments that integrate heterogeneous wireless network technolo-
gies (i.e., ad hoc and infrastructure-based networking). Experimental results show
that our solution enables better response times than of classical syntactic-based
service discovery protocols.

1 Introduction

The pervasive computing vision is increasingly enabled by the large success of wireless
networks and devices. In pervasive computing environments, heterogeneous software
and hardware resources may be discovered and integrated transparently towards as-
sisting the performance of daily tasks. Still, realizing this vision requires middleware
support for dynamic and automated discovery and composition of software and hard-
ware resources that populate the pervasive computing environment. Service-oriented
architectures [11], and particularly Web Services1, have proved to be an appropriate
architectural paradigm offering middleware support for pervasive computing environ-
ments. Indeed, Service-Oriented Architecture (SOA) is an architectural style that aims
at the development of highly autonomous, loosely coupled systems that are able to com-
municate, compose and evolve in open, dynamic and heterogeneous environments such
as pervasive computing environments [5]. Web Services are then one of the realizations

1 http://www.w3.org/2002/ws/
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of this architectural style. Using Web Services, each networked resource is abstracted
as a service that is described in a declarative manner using the Web Services Descrip-
tion Language (WSDL) and is accessible by means of standard protocols such as the
Simple Object Access Protocol (SOAP) on top of Internet protocols (HTTP, SMTP).
Furthermore, Web Services have already been used in pervasive environments and have
proved to be efficient when deployed on mobile, resource-constrained devices [7].

Abstracting software and hardware resources of the pervasive computing environ-
ment as Web services allows having a homogeneous vision of heterogeneous resources.
Resources can then be discovered based merely on their WSDL interfaces. However,
while using Web Services allows addressing substantially the heterogeneity issue in
terms of technologies of service implementation, another issue remains, which is
syntactic heterogeneity. Indeed, WSDL-based service discovery relies on the syntac-
tic conformance of the required interfaces with the provided ones, for which common
understanding is hardly achievable in open pervasive computing environments. A solu-
tion to this issue can be provided by introducing semantics into the service description.
Combined with Semantic Web technologies2, notably ontologies, for the semantic de-
scription of the services’ functional and non-functional features, Web services can be
automatically and unambiguously discovered and consumed in open pervasive comput-
ing environments. Specifically, ontology-based semantic reasoning enables discovering
networked services whose published provided functionalities (or capabilities) match
a required functionality, even if there is no syntactic conformance between them. A
number of research efforts have been conducted in the area of semantic Web service
specification, which have led to the development of various semantic service descrip-
tion languages, e.g., OWL-S3, WSDL-S4, WSMO5, SWSO6. In this context, we have
developed the Amigo-S service description language [2], which is specifically aimed at
services in pervasive computing environments.

Building upon the features of Amigo-S that supports specifying services in rich, open
pervasive computing environments, this paper focuses on associated middleware sup-
port for effectively enabling the discovery of networked Amigo-S services. Specifically,
we introduce a dedicated Service Discovery Protocol (SDP) that enables advertising and
discovering services in pervasive environments according to the semantics of networked
services and of sought functionalities. This is to be contrasted with traditional SDPs that
support the discovery of services according to syntactic interface descriptions, and thus
assume worldwide knowledge and agreement about service interfaces. The key contri-
bution of our work then comes not only from introducing an SDP for the discovery of
semantic Web services in pervasive environments, but also from the fact that our SDP
offers performance that makes it appropriate for use in highly dynamic networked en-
vironments populated by resource-constrained, wireless devices. The latter issue is a
major challenge due to the performance and resource costs of ontology-based seman-
tic reasoning. This has led us to introduce a solution to lightweight semantic matching

2 http://www.w3.org/2001/sw/
3 OWL-S: Semantic Markup for Web Services. http://www.daml.org/services/owl-s
4 WSDL-S: http://lsdis.cs.uga.edu/projects/meteor-s/wsdl-s/
5 WSMO: Web Services Modeling Ontology. http://www.wsmo.org/
6 SWSO: Semantic Web Service Ontology. http://www.daml.org/services/swsf/1.0/overview/
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of Web services towards the actual exploitation of semantic Web services in pervasive
environments.

The next section provides an overview of semantic Web service technologies, and
introduces Amigo-S and an associated matching relation for semantic Web services
in pervasive environments. Based on Amigo-S, we present a solution to lightweight
semantic matching of networked services (Section 3). Our solution optimizes ontology-
based semantic reasoning, which is at the heart of the matching process. Furthermore,
we propose a classification of service advertisements, towards efficient access and re-
trieval of services within cooperating service directories deployed on the network. We
have further integrated our solution in the Ariadne service discovery protocol [12] ex-
tending it to S-Ariadne (i.e., Semantic-Ariadne), which is aimed at pervasive computing
environments, for hybrid wireless networks combining ad hoc and infrastructure-based
networking (Section 4). Experimental results show that S-Ariadne enables better re-
sponse times than of classical service discovery protocols, and is further more scalable
(Section 5). Finally, we summarize our contribution and sketch perspectives for our
work (Section 6).

2 Semantic Web Services for Pervasive Computing

As pointed out in the previous section, semantic Web services can provide an adequate
solution to effective service discovery in open pervasive computing environments. In
this section, we briefly discuss base technologies supporting the provisioning of se-
mantic Web services, and introduce basic elements of our approach for describing and
matching semantic Web services in pervasive environments. We thus discuss semantic
Web services (Section 2.1), the Amigo-S language for the description of pervasive ser-
vices (Section 2.2), our definition of a base semantic matching relation (Section 2.3),
and a study on the cost of semantic service matching (Section 2.4).

2.1 Semantic Web Services

Ontologies may conveniently be exploited to semantically model Web services. Indeed,
while Web services interfaces all have a similar structure, thanks to the WSDL stan-
dard, the semantics underlying these interfaces cannot be inferred from their syntactic
description. Similarly, it cannot be assumed that service providers and consumers will
use worldwide the very same syntactic interface for describing the same service, as
these descriptions are created by different organizations, communities and individuals
all over the world. A natural evolution of Web services description has thus been the
combination of the Semantic Web and Web Services paradigms towards the semantic
representation of the services functional features, leading to Semantic Web Services. A
number of research efforts have in particular been undertaken towards the concretiza-
tion of this paradigm. In this area, various languages have been proposed to describe
semantic Web services, e.g., WSDL-S, OWL-S, WSMO and SWSO.

Among them, OWL-S is the effort directly related to OWL7 (the Ontology Web
Language), which is a W3C recommendation. A service description in OWL-S is com-
posed of three parts : the service profile, the process model and the service grounding.

7 http://www.w3.org/TR/owl-ref/
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The service profile gives a description of a service and its provider. It is generally used
for service publication and discovery. The process model is a representation of the ser-
vice conversation, i.e., the interaction protocol between a service and its client that is
described as a process. The service grounding specifies the information that is neces-
sary for the service invocation, such as the communication protocol, message formats
and addressing information. The OWL-S service grounding is based on WSDL.

2.2 Amigo-S for Pervasive Services

OWL-S and the other languages mentioned above provide adequate solutions for the
description of semantic Web services. However, these languages are primarily aimed at
characterizing stationary services deployed on the core Internet and lack key features
to thoroughly model services to be provisioned in the pervasive computing environ-
ment. Such features include characterizing the specifics of the underlying middleware
platform that vary significantly among networked services. For example, services net-
worked in the pervasive home environment illustrate such diversity, as they span the
home automation, consumer electronics, mobile and personal computing application
domains, and further require middleware-layer bridging to be interoperable [1,4]. An-
other key feature of pervasive services is the need for awareness of context and quality
of service, as these two factors affect decisively the actual user’s experience in perva-
sive environments that vary greatly in resource availability and contextual conditions
[8,10]. Such specifics of pervasive services has led us to introduce the Amigo-S service
description language that meets the requirements of pervasive services.

The key novel features of the Amigo-S language are that it supports heterogeneous
service infrastructures and enables QoS- and context-awareness for service provision-
ing. Amigo-S is an ontology formally specified in OWL; it has been developed as part
of the effort of the IST Amigo project8. The Amigo-S specification incorporates the
OWL-S specification, and extends it by adding new classes and properties. In this way,
we reuse established features of OWL-S and provide a new language that can easily
be used by developers already familiar with OWL-S. In the following, we briefly intro-
duce only the Amigo-S service profile; a more detailed description of Amigo-S may be
found online [2]. In this paper, we mainly exploit the ability of the Amigo-s language
for specifying service functional features, while other aspects of the language, such as
the description of the services’ underlying middleware, as well as the specification of
QoS and context properties can be exploited like in [1,2].

As discussed above, the OWL-S service profile models a service as both a semantic
concept by specifying the service category and a set of semantic IOPEs. In Amigo-S as
well, a service is described with a service profile. However, we assume that a service
may offer a number of capabilities, i.e., specific functionalities offered by the service,
and we explicitly model such capabilities. OWL-S actually supports multiple profiles
for a service; nevertheless, using a different profile for each capability of a service does
not allow capabilities to share a set of common attributes, which may globally character-
ize the service. In Amigo-S, each such capability is defined as both a semantic concept
and a set of semantic IOPEs. This enables describing richer services supporting several
capabilities that may be functionally independent or even dependent. For instance a

8 http://www.hitech-projects.com/euprojects/amigo/
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complex capability may be composed of simpler capabilities, each one of which is also
separately accessible. Further, we explicitly model provided capabilities as capabilities
supported by a service, and required capabilities as capabilities needed by a service,
which will be sought on other networked services. This enables support for any service
composition scheme, such as a peer-to-peer scheme or a centrally coordinated scheme.

An example of service profiles as enabled by Amigo-S (restricted to service inputs,
outputs and category) is depicted in the upper part of Figure 1. Along with service
descriptions, the figure includes in its lower part two ontologies representing the con-
cepts employed in the service descriptions. The service on the PDA requires a capability
named GetVideoStream, which belongs to the service category VideoServer, takes as
input a title of a VideoResource and provides as output an actual Stream. The service
on the workstation provides two capabilities, SendDigitalStream and ProvideGame,
which share common attributes such as the workstation resources available to them.
For the former, service category is DigitalServer, input is DigitalResource and output
is Stream, while for the latter, service category is GameServer, input is GameRe-
source and output is Stream. These two capabilities are dependent, as SendDigital-
Stream includes ProvideGame, but are separately accessible. Thus, a peer service (in
other words, a client) may access the former and have the option to access a video re-
source, a sound resource or a game; or access the latter, asking specifically for a game.
The peer service on the PDA asking for a video resource should access SendDigital-
Stream, which also includes GetVideoStream. Making the right choice is supported
by service matching, which is described in the following two sections.

2.3 Semantic Matching Relation

Based on the Amigo-S service specification, we define a matching relation, i.e., Match
(C1, C2), which allows identifying whether capability C1 is equivalent or includes ca-
pability C2, i.e., if C1 can substitute C2 in the provisioning of a service capability
that is semantically characterized by C2 (see the example of SendDigitalStream and
GetVideoStream in Figure 1). The Match relation then constitutes the basis of service
discovery, as seeking a capability characterized by C amounts to discovering any net-
worked service advertising a capability described by N such that Match(N, C) holds.
Additionally, the Match relation may conveniently be exploited to group similar capa-
bilities of networked services towards efficient service discovery, as further presented
in the next section.

Specifically, the Match relation is defined using the function distance(concept1,
concept2), hereafter denoted by d(concept1, concept2), which gives the semantic dis-
tance between two concepts, concept1 and concept2, as given in the classified9 ontol-
ogy to which the concepts belong. Precisely, if concept1 does not subsume concept2
in the ontology to which they belong to, the distance between the two concepts does
not have a numeric value, i.e., d(concept1, concept2) = NULL. Otherwise, i.e., if
concept1 subsumes concept2, the distance takes as value the number of levels that sep-
arate concept1 from concept2 in the ontology hierarchy.

9 Ontology classification is the result of semantic reasoning on ontology specifications. It al-
lows inferring implicit relationships between concepts from the explicit definitions of these
concepts.
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Formally, let the provided capability C1 be defined by the set of expected inputs
C1.In and set of offered outputs C1.Out, and the required capability C2 be defined by
the set of offered inputs C2.In and the set of expected outputs C2.Out. Furthermore, let
the capability C1 define a set of provided properties C1.P , and the capability C2 define
a set of required properties C2.P , where these properties describe all the information
that can be required in the user request such as the service category and non-functional
properties; currently, we only consider the former property. The relation Match is then
defined as:

Match(C1, C2) =∀in′ ∈ C1.In,∃in ∈ C2.In : d(in, in′) ≥ 0 and
∀out′ ∈ C2.Out, ∃out ∈ C1.Out : d(out, out′) ≥ 0 and
∀p′ ∈ C2.P, ∃p ∈ C1.P : d(p, p′) ≥ 0

From the above, the relation Match(C1, C2) holds if and only if all the expected inputs
of C1 are matched with inputs offered by C2, all the expected outputs of C2 are matched
with outputs offered by C1, and all the required properties of C2 are matched with
properties provided by C1.

Furthermore, we define the function SemanticDistance(C1, C2), which gives the
semantic distance between the capability C1 and the capability C2:

SemanticDistance(C1, C2) =
∑n1

i=1 d(C2.Ini, C1.Ini)+∑n2
i=1 d(C1.Outi, C2.Outi)+∑n3
i=1 d(C1.pi, C2.pi)

where n1 is the number of inputs expected by C1, n2 is the number of outputs expected
by C2, and n3 is the number of additional properties required by C2. The semantic dis-
tance between capabilities corresponds to the sum of the distances between the pairs of
related concepts in the advertisement and the request. This allows scoring service adver-
tisements with respect to the requested capability with which they are being compared,
and selecting the advertisement whose description best fits the user’s requirements. An
example of matching semantic service capabilities is shown in the middle part of Figure
1. In the figure, the requested capability GetVideoStream is matched with the provided
capability SendDigitalStream, using the two underlying ontologies describing digital
resources and servers. The relation Match(SendDigitalStream, GetV ideoStream)
holds, and the semantic distance between these capabilities is equal to 3.

2.4 Cost of Semantic Matching

Practically, the semantic matching of service capabilities decomposes in three tasks:

1. Parsing the description of the requested and the provided capabilities;
2. Loading and classifying the ontologies used in both the requested and the provided

capabilities using a semantic reasoner; and
3. Finding subsumption relationships between inputs, outputs and properties of the

requested and provided capabilities in the classified ontologies.

Implementation and evaluation of semantic matching of service capabilities has been
presented in the literature, e.g., see [9]. Results show that matching semantic service ca-
pabilities is a computation-intensive task with high response times compared to classi-
cal syntactic-based service discovery protocols. In particular, results show that the most
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Fig. 1. Describing and matching capabilities of pervasive services

expensive phase in the process of matching semantic service capabilities is that of se-
mantic reasoning (steps 2 and 3 above). As an illustration, Figure 2 shows an evaluation
of the semantic matching of two capabilities using three different semantic reasoners:
Racer10, Fact++11 and Pellet12, which are the most popular semantic reasoning tools.
The two capabilities have 7 inputs and 3 outputs each. The ontology used for the ex-
periment contains 99 OWL classes, i.e., concepts, and 39 properties, i.e., relationships
between the classes. We can notice that for any of the three reasoners, the average time
to match two capabilities is around 4 to 5 seconds, which is much higher than classical
syntactic-based matching of Web services (e.g., around 160 ms for a UDDI registry
[13]). Furthermore, we notice that the time to load and classify ontologies takes from
76% to 78% of the total time for matching using any of the three reasoners.

The above results show that matching semantic Web service capabilities is an expen-
sive task in terms of response time and resource consumption, which is not acceptable
for a service discovery protocol aimed at pervasive computing environments, where
service discovery needs to be efficient enough to ensure service availability despite the
network’s dynamics, and lightweight enough for use by thin, wireless devices. Thus,
in order to enable actual deployment of semantic Web services in pervasive computing
environments, a number of optimizations have to be introduced in the process of match-

10 Racer: http://www.sts.tu-harburg.de/ r.f.moeller/racer/
11 Fact++: http://owl.man.ac.uk/factplusplus/
12 Pellet: http://www.mindswap.org/2003/pellet/
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Fig. 2. Time taken to match a requested and a provided capability

ing semantic service capabilities, particularly, targeting acceptable response times. The
next section introduces such solutions, building upon recent efforts in the area of effi-
cient semantic service matching.

3 Achieving Lightweight Discovery of Semantic Web Services

Lightweight discovery of semantic Web services requires minimizing the overhead due
to semantic reasoning, possibly performing it off-line so that semantic reasoners do
not need to be used when advertising and seeking networked services. Specifically,
optimization can be introduced at two levels. First, at the semantic reasoning level, by
reducing the time spent to infer relationships between concepts in ontologies. Second,
at the service discovery level, by classifying directories of services in a way that reduces
the number of semantic matches performed to answer a user request. As discussed
below (Section 3.1), related optimizations for both ontology-based semantic reasoning
and classification of service advertisements have been proposed in the literature [3,13].
We then propose an effective solution to the discovery of semantic Web services in
pervasive computing environments (Sections 3.2, 3.3).

3.1 Background

In [3], the authors emphasize the need of efficient indexes and search structures for di-
rectories. Towards this goal, they propose to numerically encode service descriptions
given in OWL-S. This is done by numerically encoding ontology class and property
hierarchies by intervals. More precisely, each class (resp. property) in a classified hier-
archy is associated with an interval. Then, each service description maps to a graphical
representation in the form of a set of rectangles defined by the sets of intervals repre-
senting properties combined with the set of intervals representing classes. Furthermore,
for efficient service retrieval, the authors base their work on techniques for manag-
ing multidimensional data being developed in the database community. More precisely,
they use the Generalized Search Tree (GiST) algorithm proposed by Hellerstein in [6]
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for creating and maintaining the directory of numeric services. Combining both encod-
ing and indexing techniques allows performing efficient service search, in the order of
milliseconds for trees of 10000 entries. However, insertion within trees of the previous
size is still a heavy process that takes approximately 3 seconds.

In [13], the authors propose an approach to optimize service discovery in a UDDI
registry augmented with OWL-S for the description of semantic Web services. This ap-
proach is based on the fact that the publishing phase is not a time critical task. Therefore,
the authors propose to exploit this phase to pre-compute and store information about
the incoming services. More precisely, a taxonomy that represents the subsumption re-
lationships between all the concepts in the ontologies used by services is maintained.
Then, each concept C in this taxonomy is annotated with two lists, one to store infor-
mation about inputs of services while the other one is used to store information about
outputs of services. More precisely, for each concept in the taxonomy, these lists specify
to what degree any request pointing to that concept would match the advertisement. For
example, for a particular concept C in the taxonomy, the list storing information about
outputs is represented as [< Adv1, exact >, < Adv2, subsumes >, ...], where Advi

points to a service advertisement in the repository and exact (resp. subsumes) specify
the degree of match between C and the related concept in the corresponding advertise-
ment. A performance evaluation of this approach shows that the publishing phase using
this algorithm takes around seven times the time taken by UDDI to publish a service,
under the assumption that no additional ontologies have to be loaded to the registry. On
the other hand, the time to process a query is in the order of milliseconds. While the
above increases the time spent for publishing service advertisements, it considerably
reduces the time spent to answer a user request compared to approaches based on on-
line reasoning (e.g., see Figure 2). Indeed, the querying phase is reduced to performing
lookups in the hierarchical data structure that represents the classified ontology, and to
performing intersections between the lists that store information about the service ad-
vertisements. Thus, no on-line reasoning is required to answer a user request. However,
the publishing phase still requires semantic reasoning on service descriptions which is
an expensive process in terms of consumed resources.

On the other hand, solutions to reduce the number of matches performed to answer a
user request are generally based on service classification. OWL-S specification provides
the mean of defining hierarchies of service descriptions called profile hierarchies. These
hierarchies are similar to the object-oriented inheritance hierarchies. For instance, when
a new service profile is defined it may be specified as a subclass of an existing profile
class. This allows the new service to inherit all the properties of all the classes specified
in its super-hierarchy of classes. While this approach allows the classification of service
profiles according to the classes from which they inherit, it does not allow considering
possible relationships between service profiles that do not have the same common set
of properties but that still provide similar functional features. Service classification can
also be based on the service category using existing taxonomies such as NAICS13 or
UNSPSC14. However, service categories alone does not give enough information about
the service functionality.

13 http://www.census.gov/epcd/www/naics.html
14 http://www.unspsc.org/
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Using the matching relation defined in the previous section, we propose an efficient
semantic service discovery protocol for pervasive computing environments. Efficiency
is addressed in terms of response time for both the discovery and advertisement of ser-
vice capabilities. Towards this goal, we present below a number of optimizations of the
semantic matching process. First, in order to reduce the time to load and classify on-
tologies, which is the most costly phase in the discovery process, we propose to encode
classified ontologies (§ 3.2). Then, in order to reduce the number of semantic matches
performed in the querying phase we propose to classify capabilities of networked ser-
vices into hierarchies (§ 3.3).

3.2 Encoding Concept Hierarchies

In order to avoid semantic reasoning at runtime we propose to encode classified ontolo-
gies, represented by hierarchies of concepts, using intervals as described in [3]. These
hierarchies represent the subsumption relationships between all the concepts in the on-
tologies used in the directory. The main idea of the encoding is that any concept in a
classified ontology is associated with an interval. These intervals can be contained in
other intervals but are never overlapping. The intervals are defined using a linear inverse
exponential function linKinvexpP (x) = 1

pint( x
k

) + (x mod k) ∗ 1
k ∗ 1

pint( x
k

) , where p

and k are two parameters to be fixed. Regarding the scalability of this encoding solu-
tion, experiments show that for p=2 and k=5, and a system encoding real numbers as
64 bits doubles, the maximum number of entries that we can have on the first level of
the hierarchy is 1071 and the maximum number of levels that we can have on the first
entries of a level is 462 levels. Figure 3 taken from [3], shows an example of encoding
a hierarchy of concepts with intervals.

Fig. 3. Example of encoding a class hierarchy

Under the assumption that the classified ontologies are encoded and that service ad-
vertisements and service requests already contain the codes corresponding to the con-
cepts that they involve, semantic service reasoning reduces to a numeric comparison of
codes. Indeed, to infer whether a concept C1 represented by the interval I1 subsumes
another concept C2 represented by the interval I2, it is sufficient to compare whether I1
is included in I2. In order to ensure consistency of codes along with the dynamics and
evolution of ontologies, service advertisements and service requests specify the ver-
sion of the codes being used. We assume that services periodically check the version of
codes that they are using and update their codes in the case of ontology evolution.
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3.3 Semantic Service Advertisement and Matching

Based on the encoding technique defined in the previous section, we present an algo-
rithm for matching a requested capability with a set of capabilities of networked ser-
vices. Service capabilities could be added or deleted at any time from the existing set
of capabilities. When a request comes, the algorithm tries to find a capability that best
matches the request minimizing the number of semantic matches performed with capa-
bilities of networked services. At a pre-processing phase the algorithm classifies capa-
bilities of networked services and constructs directed acyclic graphs (DAGs) of related
capabilities. These graphs are indexed according to the ontologies being used in the
capabilities that they contain. The relationship between capabilities that we consider to
construct a graph is given by the relation Match and the function SemanticDistance
defined in Section 2.3. Specifically, if both Match(C1, C2) and Match(C2, C1) hold
and SemanticDistance(C1, C2) = SemanticDistance(C2, C1) = 0, then C1 and
C2 will be represented by a single vertex in the graph. For all the other cases where
Match(C1, C2) holds, C1 and C2 will be represented in the graph by two distinct ver-
tices with a directed edge from C1 to C2.

When a new service comes in the network the set of capabilities that it provides are
classified among the existing hierarchies. The algorithm of classifying new capabilities
in the existing hierarchies is described below.

When a request Req arrives, the algorithm first selects among the existing DAGs,
graphs that contain services that are more likely to match the request. This is done us-
ing the indexes given to each graph, which correspond to the set of ontologies used
by the capabilities of that graph. When a graph G is selected the algorithm performs
a matching between the request and the most generic capabilities of this graph. These
capabilities are said to be more generic than other capabilities contained in their sub-
hierarchy because they provide a number of outputs that is greater or equal to the
number of outputs of the other capabilities, and further because their provided out-
puts subsume the outputs of other capabilities (e.g., in Figure 1, the capability Send-
DigitalStream is more generic than the capability ProvideGame). These capabili-
ties correspond to the capabilities represented by vertices of this graph that do not
have predecessors, i.e., the set Roots(G). Similarly, we define Leaves(G) as the set
of vertices in the graph G that do not have successors. If Match between Req and
all the capabilities of Roots(G) does not hold, the group G is filtered out, and an-
other group is selected. Nevertheless, if the matching between the request and a ca-
pability C of Roots(G) holds, i.e., Match(C, Req) holds, we evaluate the semantic
distance between C and Req. If the distance is equal to zero, C is selected, other-
wise the algorithm tries to find a capability C′ from the successors of C such that
SemanticDistance(C′, Req) = Min(SemanticDistance(Ci, Req)), where Ci is a
successor of C. The algorithm for answering a user request is presented in more details
later in this section.

Adding a New Service Advertisement. At a pre-processing phase, a set of DAG
graphs are constructed and maintained. Each time a new service advertisement comes
in the network, the graphs have to be updated with the set of capabilities provided by
the new service. The algorithm of classifying the capabilities of a new service within a
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set of Graphs G1, G2,..., Gn is given below. For each capability Ci provided by the new
service, the algorithm tries to find a graph Gi in which this capability will be integrated
(Steps (1), (2)). A subset of graphs is preselected according to the ontologies being
used by Ci. The algorithm first checks whether Ci can be inserted in the sub-hierarchy
of one of the root nodes of G. This is done by verifying if there exists a node Rooti in
Roots(Gi) such that Match(Rooti, Ci) holds (step (3)). If Match(Rooti, Ci) holds
(step 8), then Ci will have a predecessor in Gi. The next step is to find this node, Ni,
among the successors of the node Rooti, such that the Match(Succ(Ni), Ci) fails, and
to draw an edge from Ci to Ni. Moreover, Ci could have a successor in Gi. Thus, the
algorithm tries to find among the set Leaves(Gi) if there is a node Leafi such that
Match(Ci, Leafi)(step (9)). If Match(Ci, Leafi) holds, then Ci will have a succes-
sor in Gi. The next step is to find this node, Ni, among the predecessors of Leafi such
that Match(Ci, P red(Ni)) fails, and to draw an edge from Ci to Ni (step (11)). On
the other hand, if Match(Rooti, Ci) does not hold (step(4)), Ci will not have a pre-
decessor in Gi. Nevertheless, Ci could have a successor in Gi. Thus, the algorithms
checks whether there is a node Leafi in Leaves(Gi) such that Match(Ci, Leafi)
holds (steps (5), (6) and (7)). These steps are similar to the aforementioned steps (9),
(10) and (11).

input: C1, C2, ..., Cn the set of capabilities of the new service,
G1, G2, ..., Gm the set of existing graphs.

output: G′
1, G

′
2, ..., G

′
k the set of graphs after the insertion of the new capabilities.

InsertCapabilities(capabilities)
Forall the capabilities Ci in C1, ..., Cn do{ (1)

For all the graphs Gi in G1, ..., Gm that use the same ontologies as Ci

until the insertion of Ci do{ (2)
For (Rooti in Roots(Gi)) do{ (3)

If (¬Match(Rooti, Ci)) then{ (4)
For (Leafi in Leaves(Gi)) do{ (5)

If (¬Match(Ci, Leafi)) then (6)
Fail;

Else{ (7)
Test with Predecessors of Leafi

until ¬Match(Ci, P redj(Leafi))
Draw an edge from Ci to Predj+1(Leafi)

}}
}Else{ (8)

Test with Successors of Rooti

until ¬Match(Succj(Rooti), Ci)
Draw an edge from Succj−1(Rooti) to Ci

For (Leafi in Leaves(Gi)) do{ (9)
If (¬Match(Ci, Leafi)) then (10)

Fail;
Else{ (11)

Test with Predecessors of Leafi

until ¬Match(Ci, P redj(Leafi))
Draw an edge from Ci to Predj+1(Leafi)

}}}}}}
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Fig. 4. Example of inserting a capability in a DAG

Figure 4 shows an example of inserting a capability, newC, in a DAG of capabilities, G.
The first step (left part of the figure) is to match newC with capabilities from Roots(G)
to find out whether newC will have a predecessor in G. Indeed, Match(C1, newC)
holds, which means that one of the successors of C1 will be linked with newC, i.e.,
C3. The next step (right part of the figure) is then to find out whether newC will have
a successor in G. This is done by matching the capabilities in Leaves(G) with newC.
Indeed, Match(newC, C7) holds, which means that newC will be linked with one of
the predecessors of C7, i.e., C5.

Answering User Requests. When a user request that contains a set of required capa-
bilities comes, the algorithm below finds out a set of capabilities of networked services
that best match the ones required by the user. More precisely, for each capability Ci

in the user request the algorithm tries to find a graph that may contain capabilities that
match Ci (steps (1) and (2)). A graph Gi is selected if it is indexed with the ontolo-
gies used in the request and if there exist a node Rooti in the set Roots(Gi) such that
Match(Rooti, Ci) holds (step 3). In this case, a node that has the minimal semantic
distance with Ci is selected from the successors of Rooti (step 5).

inputs: a set of capabilities required in the service description C1, C2, ..., Cn

a set of graphs G1, G2, ..., Gm

outputs: a set of capabilities of networked services that match the capabilities given as input

MatchService(requested service)
For all the capabilities Ci required in the service description do{ (1)

For all the graphs Gi in G1, ..., Gm that use the same ontologies as Ci

until Ci is matched do{ (2)
For all Rootj in Roots(Gi) do { (3)

If (¬Match(Rooti, Ci)) then (4)
Try with the next node in Root(Gi)

Else (5)
Return Succ(Rooti) from the successors of Rooti such that
SemanticDistance(Succ(Rooti), Ci) is minimal

}}}

An example of matching a requested capability with capabilities of networked services
is given in Figure 5. In this figure, the requested capability NewC uses the ontology
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Fig. 5. Example of matching a user’s requested capability

O1 in its specification. This allows to filter out the DAG2 as it is indexed with only the
ontology O3. The next step is to match NewC with capabilities from Roots(DAG1)
and Roots(DAG3), i.e., the capabilities C1 and C4. If the matching fails with one of
these capabilities, we can infer that no capability will match newC in the corresponding
graph.

The benefits of using this solution to match user’s required capabilities with capa-
bilities of networked services is to reduce the number of semantic matches performed
to answer a query. Indeed, it is sufficient to perform a semantic match with a subset of
the capabilities of networked services rather than performing a semantic match with all
the capabilities hosted by a directory of services. Furthermore, using the encoding of
classified ontologies allows to reduce the semantic reasoning to a numeric comparison
of codes.

4 S-ARIADNE Service Discovery Protocol

Towards the deployment of our solution in pervasive computing environments, we build
upon the Ariadne middleware15, which introduces a semi-distributed service discovery
protocol for mobile ad hoc networks (MANETs) [12]. According to the design pre-
sented in [12], our discovery protocol, which we call S-Ariadne, relies on a backbone of
directories constituting a virtual network. Directories are dynamically deployed, each
directory performing service discovery in its vicinity. Then, service discovery in the
global network is based on collaboration among deployed directories.

More precisely, S-Ariadne decomposes into a local and a global discovery process.
The local discovery process is performed by each directory. Each directory is then re-
sponsible for:

(i) caching the Amigo-S descriptions of the services available in its vicinity, and classi-
fying the capabilities provided by these services according to the grouping scheme
discussed in Section 3.3, and

(ii) periodically advertising the presence of registered services to the vicinity.

15 http://www-rocq.inria.fr/arles/download/ariadne/
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When a directory receives a service request, specified as an Amigo-S service, it seeks
capabilities of the cached services that semantically match the requested service as
discussed in section 3.3.

To deal with the dynamics of pervasive networks, directories are dynamically and
homogeneously deployed in the network using an on the fly election process. Specifi-
cally, if for a given period of time, a node does not receive any directory advertisement,
the node initiates the election of a directory. The election process is done by broad-
casting an election message in the network up to a given number of hops. Then, nodes
can either accept or refuse to act as a directory, depending on a number of parameters
such as network coverage, mobility and remaining/available resources. This mechanism
allows electing directories with the best physical properties and distributing them effi-
ciently since an election process is launched in the less covered areas. A node acting
as a directory then periodically advertises its presence in its vicinity (i.e., up to a given
number of hops).

The global service discovery process is based on collaboration among elected di-
rectories. However, the efficiency of the discovery process in terms of response time
and generated traffic requires to query directories that are the most likely to cache ser-
vice advertisements that do match the requested service. Towards this goal, we use
directory categorization as introduced in [12], which gives a compact overview of the
directory content. More precisely, we use Bloom filters for summarizing the content
of a directory. The main idea is to compute a vector v of m bits, which corresponds
to a Bloom filter. For any capability C, its semantic description relies on a set of on-
tologies O(C) = {O1, O2, ..., On} to which belong the concepts describing its in-
puts, outputs and properties. Then, for each capability C provided by a networked
service, and stored in a directory, the capability description in terms of used ontolo-
gies is hashed with k independent hash functions. Each ontology is considered in terms
of its URI. The bits of the vector v whose positions are given by the results of the k
hash functions are set to 1, i.e., the bits at position h1(O(C)), h2(O(C)), ..., hk(O(C))
are set to 1. In order to determine whether a directory possibly caches a requested
capability Req using the directory’s Bloom filter, we check whether the bit positions
h1(O(Req)), h2(O(Req)), ..., hk(O(Req)) in the vector are all set to 1. If there is a bit
that is not set to 1, the directory will not contain the required capability. Nevertheless,
if all the bits are set to 1, the directory is likely to contain the required capability, and
a concrete local service discovery is performed in that directory. The probability of a
false positive depends on the parameters k that is the number of hash functions and m
that is the size of the Bloom filter. These values can be chosen so that the probability of
false positive is minimized.

The cooperation between directories is performed by exchanging the Bloom filters
that give an overview of the directories content. The exchange of Bloom filters is done
when new directories are elected and reactively, i.e., requested by another directory,
when the percentage of false positives reaches a given threshold.

According to the deployment policy, each mobile node is associated to at least one
directory. When the mobile node seeks a service characterized by a set of required capa-
bilities, it sends a query message to the directory that is responsible of its network area
(i.e., in its vicinity). The directory performs for each required capability a local service
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Fig. 6. S-Ariadne

discovery, as described in Section 3.3. If the required capabilities are not stored locally,
the directory forwards the request to a subset of directories that are likely to cache ca-
pabilities that match the request. The directories to which the request is forwarded are
selected according to their Bloom filters and additional parameters such as remaining
battery lifetime and the distance between the respective directories.

Figure 6 provides an overview of the S-Ariadne architecture. In the figure, three
nodes have been elected to act as directories. When a service request is issued, the di-
rectory node that is in the vicinity of the service requester, i.e., Directory A, receives the
service request (Step(1)). The directory performs a local service discovery to find capa-
bilities that semantically match the capabilities of the requested service (Step (2)). Ser-
vice advertisements providing these capabilities are returned to the requester. If some
capabilities have not been found locally, another request is sent to remote directories
that are likely to store relevant capabilities according to their summarized description,
i.e., Boom filters (Step (3)). These directories perform a local service discovery (Step
(4)), and return the corresponding service advertisements (Step (5)), which are sent to
the requester (Step(6)).

5 Prototype Implementation and Evaluation

We have implemented a prototype of our solution to efficient matching of semantic
service capabilities as part of the Ariadne service discovery protocol extending it to
S-Ariadne. We have evaluated the impact of introducing semantic service matching in
Ariadne, which originally uses basic WSDL-based syntactic matching of Web services
for the local service discovery. We have performed our evaluations on a Toshiba Satel-
lite notebook with a 1.6 GHz Intel Centrino processor and 512 MB of RAM. In all the
experiments that we performed, we increased the number of services from 1 to 100.
The service descriptions are using 22 different ontologies, and each service description
contains a single provided capability. Figure 7 shows the results of our first experiment,
which evaluates the time to create graphs of services in an empty directory. A scenario
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for this experiment would be realized when a directory leaves the network and when
another one is elected and has to host the set of service descriptions available in its
vicinity. Figure 7 shows three measurements: (1) the time to parse the service descrip-
tions; (2) the time to classify the service capabilities into graphs; and (3) the total time,
i.e., time to parse and create the graphs. From this figure, we can notice that the time to
create the graphs is negligible compared to the time to parse service descriptions, i.e.,
XML parsing time, which is mandatory due to the use of Web services and Semantic
Web technologies.

The results given by the second experiment that we performed are depicted in
Figure 8. This experiment shows the time to insert a new capability in a directory. This
figure shows 3 measurements: (1) the time to parse the new service description; (2) the
time to insert a capability in a directory; and (3) the total time, i.e., the time to parse and
insert the new service description. Results show that the to time to classify a capability
in a set of existing graphs is negligible compared to XML parsing time of the service de-
scription. We also notice that this time is nearly constant. This is due to the fact that the
number of semantic matches performed in the directory in order to insert a capability
depends neither on the total number of services on the directory nor on the number of
graphs. The time to insert a capability depends on the number of capabilities contained
in the graph in which the capability will be inserted. This is due to the fact that graphs
are indexed using the ontologies that are being used in the capabilities’ descriptions,
which allows pre-selecting a subset of graphs that are likely to be appropriate for the
insertion of the new capability. Thus, only a few number of semantic matches are per-
formed in order to insert a capability in a directory. The results of the third experiment

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0  20  40  60  80  100

T
im

e 
(m

s)

No. of Services

Time to parse services
Time to create graphs

Total time

Fig. 7. Time to create graphs

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0  20  40  60  80  100

T
im

e 
(m

s)

No. of Services

Time to insert a service in the graphs 
Time to parse the service request

Total Time

Fig. 8. Time to publish a service advertisement

that we performed are depicted in Figure 9. In this experiment, we evaluate the time to
match a service request with services hosted by a directory. Furthermore, we compare
the time to match a request in a directory where capabilities are classified into a set of
graphs, with the time to match a request in a directory without classification. Results are
given without the XML parsing time of the request description. In this figure, we can
notice that without classification the average overhead for matching is around 50% of
the time to match when the capabilities are pre-classified. Moreover, we can notice that



Efficient Semantic Service Discovery in Pervasive Computing Environments 257

 0

 1

 2

 3

 4

 5

 0  20  40  60  80  100

T
im

e 
(m

s)

No. of Services

Time for optimized matching
Time for non optimized matching

Fig. 9. Time to match a service request

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0  20  40  60  80  100

T
im

e 
(m

s)

No. of Services

Ariadne
S-Ariadne

Fig. 10. Ariadne vs S-Ariadne

the time to match a request in the classified directory is almost constant, which is due to
the graphs indexing and the directory structuring. We can also notice that the response
time to match a required capability, excluding XML parsing time, is in the order of few
milliseconds.

The last experiment that we performed is a comparison of the response time given by
the classical syntactic-based matching performed by Ariadne and the optimized seman-
tic matching performed by S-Ariadne. The results are given in Figure 10. This figure
shows that the response time given by Ariadne is increasing with the number of ser-
vices available in the directory, while S-Ariadne has an almost stable response time,
which is due to the following reasons: (1) using S-Ariadne, the services are parsed
once at the publishing phase and their capabilities are classified, which avoids match-
ing a request with all the services of the directory; (2) due to the numeric encoding
of classified ontologies, the semantic matching performed by S-Ariadne reduces to a
numeric comparison of codes, while using Ariadne the matching is performed by syn-
tactically comparing the WSDL descriptions. We can conclude that, using S-Ariadne,
semantic matching, which allows to leverage the openness of pervasive computing en-
vironments, can be performed more efficiently than classical syntactic matching. Fur-
thermore, thanks to the indexing and classification of service capabilities, S-Ariadne is
more scalable than Ariadne.

6 Conclusion

The pervasive computing vision implies that everywhere around us the environment is
populated with networked software and hardware resources that can be discovered and
integrated towards the realization of our daily tasks. Towards the realization of this vi-
sion, middleware support for the efficient dynamic discovery of software and hardware
resources of the pervasive computing environment is a key requirement. Such middle-
ware support has to deal with the heterogeneity of the networked resources. This can
be partially addressed using service-oriented architectures, and particularly the Web
services paradigm. Indeed, Web services enable having a homogeneous vision and ac-
cess to the heterogeneous networked resources of the environments. Nevertheless, Web
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services discovery and interaction commonly relies on the syntactic conformance of
service interfaces, for which common understanding is hardly achievable in open en-
vironments. The Semantic Web paradigm allows to overcome this limitation by intro-
ducing semantic specification of service functional and non-functional features, which
enables semantic reasoning on Web services capabilities.

Building on semantic Web services, our approach to dynamic service discovery in
pervasive computing environments relies on the Amigo-S language for the semantic
specification of pervasive services, and introduces an efficient matching relation of ser-
vice capabilities, which we have integrated in S-Ariadne extending Ariadne, a semi-
distributed discovery protocol adapted to pervasive computing environments. Our solu-
tion optimizes the costly ontology-based semantic reasoning on one hand, and the num-
ber of semantic matches to be performed to answer a user request on the other hand. The
optimization of the semantic reasoning is based on the encoding of classified concept
hierarchies, which allows to reduce the semantic reasoning to a numeric comparison
of codes, while the optimization of the matching process is based on the classification
of service capabilities into hierarchies of related capabilities. Our results show that S-
Ariadne provide better response time for the semantic matching of service capabilities
than Ariadne, its syntactic ancestor, for the basic syntactic service matching. Further-
more, thanks to the indexing and the structuring of service directories, S-Ariadne is
more scalable than a classical service directory.
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Abstract. Recently, we have seen increasing numbers of denial of service (DoS)
attacks against online services and web applications either for extortion reasons,
or for impairing and even disabling the competition. These DoS attacks have
increasingly targeted the application level. Application level DoS attacks emu-
late the same request syntax and network level traffic characteristics as those of
legitimate clients, thereby making the attacks much harder to be detected and
countered. Moreover, such attacks usually target bottleneck resources such as
disk bandwidth, database bandwidth, and CPU resources. In this paper we pro-
pose server-side middleware to counter application level DoS attacks. The key
idea behind our technique is to adaptively vary a client’s priority level, and the
relative amount of resources devoted to this client, in response to the client’s past
requests in a way that incorporates application level semantics. Application spe-
cific knowledge is used to evaluate the cost and the utility of each request and
the likelihood that a sequence of requests are sent by a malicious client. Based
on the evaluations, a client’s priority level is increased or decreased accordingly.
A client’s priority level is used by the server side firewall to throttle the client’s
request rate, thereby ensuring that more server side resources are allocated to
the legitimate clients. We present a detailed implementation of our approach on
the Linux kernel and evaluate it using two sample applications: Apache HTTPD
micro-benchmarks and TPCW. Our experiments show that our approach incurs
low performance overhead and is resilient to application level DoS attacks.

1 Introduction

Recently, we have seen increasing activities of denial of service (DoS) attacks against
online services and web applications to extort, disable or impair the competition. An
FBI affidavit [32] describes a case wherein an e-Commerce website, WeaKnees.com,
was subject to an organized DoS attack staged by one of its competitors. These at-
tacks were carried out using sizable ‘botnets’ (5,000 to 10,000 of zombie machines) at
the disposal of the attacker. The attacks began on October 6th 2003, with SYN floods
slamming into WeaKnees.com, crippling the site, which sells digital video recorders,
for 12 hours straight. In response, WeaKnees.com moved to a more expensive host-
ing at RackSpace.com. However, the attackers adapted their attack strategy and re-
placed simple SYN flooding attacks with a HTTP flood, pulling large image files from
WeaKnees.com. At its peak, it is believed that this onslaught kept the company offline
for a full two weeks causing a loss of several million dollars in revenue.

M. van Steen and M. Henning (Eds.): Middleware 2006, LNCS 4290, pp. 260–280, 2006.
c© IFIP International Federation for Information Processing 2006
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As we can see from the example above, sophisticated DoS attacks are increasingly
focusing not only on low level network flooding, but also on application level attacks
that flood victims with requests that mimic flash crowds [24]. Application level DoS
attacks refer to those attacks that exploit application specific semantics and domain
knowledge to launch a DoS attack such that it is very hard for any DoS filter to distin-
guish a sequence of attack requests from a sequence of legitimate requests. Two char-
acteristics make application level DoS attacks particularly damaging. First, application
level DoS attacks emulate the same request syntax and network level traffic characteris-
tics as that of the legitimate clients, thereby making them much harder to detect. Second,
an attacker can choose to send expensive requests targeting higher layer server resources
like sockets, disk bandwidth, database bandwidth and worker processes [6][28][32].

As in the case of WeaKnees.com, an attacker does not have to flood the server with
millions of HTTP requests. Instead, the attacker may emulate the network level request
traffic characteristics of a legitimate client and yet attack the server by sending hun-
dreds of resource intensive requests that pull out large image files from the server. An
attacker may also target dynamic web pages that require expensive search operations
on the backend database servers. A cleverly constructed request may force an exhaus-
tive search on a large database, thereby significantly throttling the performance of the
database server.

Problem Outline. There are two major problems in protecting an online e-Commerce
website from application level DoS attacks. First, application level DoS attacks could
be very subtle making it very hard for a DoS filter to distinguish between a stream of
requests from a DoS attacker and a legitimate client. In section 2 we qualitatively ar-
gue that it would be very hard to distinguish DoS attack requests from the legitimate
requests even if a DoS filter were to examine any statistics (mean, variance, etc) on the
request rate, the contents of the request packet headers (IP, TCP, HTTP, etc) and even
the entire content of the request packet itself. Second, the subtle nature of application
level DoS attacks make it very hard to exhaustively enumerate all possible attacks that
could be launched by an adversary. Hence, there is a need to defend against application
level DoS attacks without knowing their precise nature of operation. Further, as in the
case of WeaKnees.com, the attackers may continuously change their strategy to evade
any traditional DoS protection mechanisms.

Our Approach. In this paper we propose middleware for protecting a website against
application level DoS attacks. Our middleware solution carefully divides its operations
between the server’s firewall and application layer. The firewall component of our mid-
dleware is completely application transparent. The application layer component of our
middleware exports an application programming interface (API) to the application pro-
grammers to improve the website’s resilience to application level DoS attacks.

Our DoS protection middleware is functionally different from most traditional DoS
filters. Our mechanism does not attempt to distinguish a DoS attack request from the
legitimate ones. Instead, our mechanism examines the amount of resources expended
by the server in handling a request, rather than the request itself. We use the utility of a
request and the amount of server resources incurred in handling the request to compute
a score for every request. We construct a feedback loop that takes a request’s score as
its input and updates the client’s priority level. In its simplest sense, the priority level
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might encode the maximum number of requests per unit time that a client can issue.
Hence, a high scoring request increases a client’s priority level, thereby permitting the
client to send a larger number of requests per unit time. On the other hand, a low scoring
request decreases a client’s priority level, thereby limiting the number of requests that
the client may issue per unit time. Therefore, application level DoS attack requests that
are resource intensive and have low utility to the e-commerce website would decrease
the attacker’s priority level. As the attacker’s priority level decreases, the intensity of its
DoS attack decreases.

Benefits. Our approach to guard an online service against application level DoS attacks
has several benefits.

1. An obvious benefit that follows from the description of our DoS protection mecha-
nism is that it is independent of the attack’s precise nature of operation. As pointed out
earlier it is in general hard to predict, detect, or enumerate all the possible attacks that
may be used by an attacker.
2. A mechanism that is independent of the attack type can implicitly handle intelli-
gent attackers that adapt and attack the system. Indeed any adaptation of an application
level DoS attack would result in heavy resource consumption at the server without any
noticeable changes to the request’s syntax or traffic characteristics.
3. Our mechanism does not distinguish requests based on the request rate, the packet
headers, or the contents of the request. As pointed out earlier (and discussed in Section
2) it is very hard to distinguish an attack request from the legitimate ones using either
the request rate or the contents of the request.

Contributions. The key contributions of this paper include:

1. We propose a request throttling mechanism that allocates more server resources to
the legitimate clients, while severely throttling the amount of server resources allocated
to the DoS attackers. This is achieved by adaptively setting a client’s priority level in
response to the client’s requests, in a way that can incorporate application level se-
mantics. We provide a simple application programming interface (API) that permits an
application programmer to use our DoS protection mechanism.
2. The proposed solution does not require the clients to be preauthorized. The absence
of preauthorization implies that the server does not have to establish any out of band
trust relationships with the client.
3. Our proposed solution is client transparent, that is, a user or an automated client side
script can browse a DoS protected website in the same way as it browsed an unprotected
website. Our DoS protection mechanisms do not require any changes to the client side
software or require super user privileges at the client. The clients can seamlessly browse
a DoS protected website using any standard web browser that supports HTTP cookies.
All instrumentations required for implementing our proposal can be incorporated on the
server side.
4. We present a detailed implementation of our proposed solution on the Linux kernel
and a concrete evaluation using two sample applications: Apache HTTPD benchmark
[2] and the TPCW benchmark [37] (running on Apache Tomcat [3] and IBM DB2 [20]).
Our experiments show that the proposed solution incurs low performance overhead
(about 1-2%) and is resilient to application level DoS attacks.
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2 Application Level DoS Attacks

In this section, we present two examples of application level DoS attacks. Then, we
discuss existing approaches for DoS protection, highlighting the deficiencies of those
approaches in defending against application level DoS attacks.

2.1 Examples

Example 1. Consider an e-Commerce website like WeaKnees.com. The HTTP requests
that pulled out large image files from WeaKnees.com constituted a simple application
level DoS attack. In this case, the attackers (a collection of zombie machines) sent the
HTTP requests at the same rate as a legitimate client. Hence, a DoS filter may not
be able to detect whether a given request is a DoS attack request by examining the
packet’s headers, including the IP, the TCP and the HTTP headers. In fact, the rate of
attack requests and the attack request’s packet headers would be indistinguishable from
the requests sent by well behaved clients.

Example 2. One could argue that a DoS filter that examines the HTTP request URL
may be able to distinguish DoS attackers that request a large number of image files
from that of the good clients. However, the attackers could attack a web application us-
ing more subtle techniques. For example, consider an online bookstore application like
TPCW [37]. As with most online e-Commerce applications, TPCW uses a database
server to guarantee persistent operations. Given an HTTP request, the application logic
transforms the request into one or more database queries. The cost of a database query
not only depends on the type of the query, but also depends on the query arguments. For
instance, an HTTP request may require an exhaustive search over the entire database or
may require a join operation to be performed between two large database tables. This
makes it very hard for a DoS filter to detect whether a given request is a DoS attack
request by examining the packet’s headers and all its contents. In fact, the rate of attack
requests and the attack request’s packet headers and contents would be indistinguish-
able from those sent by any well behaved client unless the entire application logic is
encoded in the DoS filter. However, this could make the cost of request filtering almost
as expensive as the cost of processing the actual application request itself. Indeed a
complex DoS filter like this could by itself turn out to be a target for the attackers.

2.2 Existing Approaches

Preauthorization. One way to defend from DoS attacks is to permit only preauthorized
clients to access the web server. Preauthorization can be implemented using SSL [30]
or IPSec [25] with an out of band mechanism to establish a shared key between a preau-
thorized client and the web server. Now, any packets from a non-preauthorized client
can be filtered at the firewall. However, requiring preauthorization may deter clients
from using the online service. Also, for an open e-Commerce web site like eBay or
Amazon, it may not be feasible to make an exhaustive list of all clients that should be
authorized to access the service. Further, it would be very hard to ensure all authorized
clients will behave benignly. A DoS attack from a small subset of preauthorized clients
may render the server unusable.
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Challenge Mechanism. Challenge based mechanisms provide an alternative solution
for DoS protection without requiring preauthorization. A challenge is an elegant way to
throttle the intensity of a DoS attack. For example, an image based challenge [24] may
be used to determine whether the client is a real human being or an automated script. A
cryptographic challenge [40] may be used to ensure that the client pays for the service
using its computing power. However, most challenge mechanisms make both the good
and the bad clients pay for the service, thereby reducing the throughput and introducing
inconvenience for the good clients as well. For instance, an image based challenge does
not distinguish between a legitimate automated client script and a DoS attack script.

Network Level DoS Attacks. There are several network level DoS protection mecha-
nisms including IP trace back [33], ingress filtering [13], SYN cookies [4] and stateless
TCP server [18] to counter bandwidth exhaustion attacks and low level OS resource
(number of open TCP connections) utilization attacks. Yang et al.[45] proposes a cryp-
tographic capability based packet marking mechanism to filter out network flows from
DoS attackers. However none of these techniques are capable of addressing application
level DoS attacks. Nonetheless one should keep in mind that the application level DoS
filters only augment the network level DoS filters but do not replace them.

Application Level DoS Attacks. The network layer DoS filters cannot handle applica-
tion level DoS attacks primarily because they lack application level semantics. There
have been some proposals that degrade the image/video quality [15][8][21] when the
server experiences heavy overload. It is to be noted that such techniques are more ef-
fective in protecting the servers from overload than from DoS attacks.

2.3 Threat Model

We assume that the adversary can spoof the source IP address. We also assume that
the adversary has a large but bounded number of IP addresses under its control. If an
IP address is controlled by the adversary, then the adversary can both send and re-
ceive packets from that IP address. We assume that the adversary can neither observe
nor modify the traffic to a client whose IP address is not controlled by the adversary.
However, the adversary can always send packets with a spoofed source IP address that
is not essentially controlled by the adversary. We also assume that the adversary has
large, but bounded amounts of networking and computing resources at its disposal and
thus cannot inject arbitrarily large numbers of packets into the IP network. We assume
that the adversary can coordinate activities perfectly to take maximum advantage of its
resources.

3 Trust Tokens

3.1 Overview

Figure 1 shows a high level architecture of our proposed solution. Our approach al-
locates more server resources to good clients, while severely limiting the amount of
resources expended on DoS attackers. The maximum amount of resources allocated to
a client is represented by the client’s QoS level. We use trust tokens (denoted as TT in
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Fig. 1. Overview Fig. 2. Architecture

Fig. 3. Control Flow

Figures 2 and 3) to encode the QoS level that a client is eligible to receive. Although
our architecture is capable of supporting arbitrary QoS policies, for the sake of sim-
plicity, we characterize a client’s QoS level exclusively by its priority level (a totally
ordered numeric value). A client’s trust token is embedded in a standard HTTP cookie
that is included in all responses from the server to the client. Using the standard cookie
semantics, a legitimate client would include the trust token in all its future requests to
the server. A client presenting a valid trust token to the server would be served at the
priority level encoded in the token. Otherwise, the client’s request would be dropped at
the server’s IP layer or firewall.

A client’s priority level is used to rate limit its requests at the server’s IP layer or
the firewall. We use an IP level packet filter to filter HTTP requests from the clients.
The packet filter uses weighted fair queuing [35] to throttle a client’s request rate based
on the client’s priority level. Hence, requests from attackers attempting to issue a dis-
proportionately large number of requests (relative to their priority level) are dropped at
the IP layer itself. Filtering requests at the IP layer significantly reduces the amount of
processor, memory, network, and disk resources expended on that request.

A client’s priority level is adaptively varied by the application using application spe-
cific semantics and domain knowledge. For this purpose, we provide a simple and flex-
ible API for application programmers. We describe the concrete API with three sample
implementations in Section 3.3. Allowing the application to set a client’s priority level
permits us to incorporate application specific semantics (domain knowledge) and is thus
highly flexible. IP level (firewall) request filtering ensures that illegitimate requests are
dropped before they can consume much of the server’s resources. In this paper we ex-
plore several algorithms which could be used to vary the client’s priority level and study
its effect on the performance of the web server.
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Trust tokens are bootstrapped using an initial trust token issued by the challenge server
when the client first attempts to access the web server. The trust token is encrypted in such
a way that it would be computationally infeasible for a client to undetectably modify the
token. We ensure the priority level of a client is kept up to date; since the priority level of
a client is continuously varied it is very important for the server to retain the most recent
value of a client’s priority level, especially, if the client’s priority level is dropping.

Our proposed solution is client transparent and requires no changes to the client side
software. All our instrumentation is done at the server side thereby making the deploy-
ment very easy. The instrumentation at the server side includes:

Challenge Server. The challenge server poses a cryptographic challenge to a client,
when the client first accesses the website. On correctly solving the challenge, the chal-
lenge server is responsible for initializing the client’s trust token. A valid trust token
allows a client to send requests to the web server. It is important to note that the client
does not have to solve a cryptographic challenge every time it sends a request to the
server. Further, we use an adaptive mechanism wherein the hardness of solving the
challenge depends on the web server’s load. Indeed, when the server is not overloaded,
our system ensures that the client does not expend its computational resources on solv-
ing a challenge before it is granted permission to access the web server.

Server Kernel or Firewall. The IP layer at the server is modified to use the client’s
priority level to filter HTTP requests sent by a client. The priority level is enforced by
fair queuing [35] requests at the IP level. Filtering requests at the IP layer saves a lot
of computing and memory resources that are otherwise expended on the request as it
traverses up the server’s network stack.

Application Server. The application layer at the server is modified to use application
specific rules to update a client’s priority level. The client’s new priority level is com-
puted using a utility based model that considers the set of recent requests sent by the
client and the amount of server resources consumed by these requests.

3.2 Design

In this section, we describe how a trust token is constructed. Then, we describe tech-
niques to use the trust token to defend against application level DoS attacks.

Trust Token. A 24 Byte long trust token (tt) is constructed as follows: tt = 〈prio, tv,
HMK(cip, sip, tv, prio)〉, where cip (4 Bytes) denotes the client’s IP address, sip (4
Bytes) denotes the server’s IP address, tv (4 Bytes) denotes the time at which the trust
token was issued (time is expressed as the number of seconds from 1st Jan 1970), prio
(4 Bytes) denotes the priority level assigned to the client by the server, MK denotes
a secret cryptographic key used by the server and H denotes a keyed pseudo-random
function (like HMAC-MD5 or HMAC-SHA1 [27]). A priority level of zero indicates
that all requests from the client would be dropped by the server.

Client Side. Figure 2 below shows our architecture and Figure 3 shows the operational
usage of the trust token. A legitimate client operates as follows. A client obtains its
token tt when it solves a challenge. The token is stored as a HTTP cookie in the client’s
browser. The client includes the token tt in all its HTTP requests to the server.
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Server Side Firewall. On the server side firewall, we perform two operations. First, we
filter HTTP requests based on the validity of the trust token. Second, if the trust token is
valid, the server extracts the client’s priority level and throttles the client’s request rate
using fair queuing.

The server checks if the packet is a HTTP request and if so, it extracts the HTTP
cookie tt. It validates the trust token tt as follows. A trust token tt is valid if the tt.cip
matches the client’s IP address, tt.sip matches the server’s IP address, and tt.tv is some
time in the past (tt.tv < cur time). If so, the server extracts the priority level (tt.prio)
from tt; otherwise the request is dropped by the firewall.

An adversary may behave benignly until it attains a high priority level and then begin
to misbehave. Consequently, the server would issue a trust token with a lower priority
level. However, the adversary may send an old trust token (with high priority level)
to the server in its future requests. If all responses from the server to the client were
tunneled via the firewall, then the firewall can record the client’s updated priority level.
However, for performance reasons, most application servers are configured in a way that
requests are tunneled via the firewall but not the responses [19]. Under such a scenario,
we prevent a DoS attack by computing the effective priority level as follows.

The server uses the request’s priority level prio, the time of cookie issue (tt.tv)
and the client’s request rate r to compute the effective priority level eprio as follows:
eprio = prio * e−δ∗max(cur time−tt.tv− 1

r ,0), where cur time denotes the current time.
The key intuition here is that if cur time− tt.tv is significantly larger than the client’s
mean inter request arrival time ( 1

r ) then the client is probably sending an old trust token.
The larger the difference between (cur time − tt.tv) and 1

r , the more likely it is that
the client is attempting to send an old token. Hence, we drop the effective priority
level eprio exponentially with the difference between (cur time − tt.tv) and 1

r . Note
that the fair queuing filter estimates the client’s request rate r for performing weighted
probabilistic fair queuing.

Having validated the trust token and extracted its priority level, the server uses eprio
to perform weighted probabilistic fair queuing on all incoming HTTP requests from the
client. Fair queuing limits the maximum request rate from a client to its fair share. Hence,
requests from an attacker attempting to send requests at a rate larger than its fair share
is dropped by the firewall. We set a client’s fair share to be in proportion to its effective
priority level (eprio). Hence, if a client has a low priority level, then only a very small
number of requests from the client actually reach the web server. In the following portions
of this section, we propose techniques to ensure that DoS attackers are assigned low
priority levels, while the legitimate clients are assigned higher priority levels.

Server Side Application Layer. Once the request is accepted by the IP layer packet
filter, the request is forwarded to the application. When the server sends a response to
the client, it updates the client’s priority level based on several application specific rules
and parameters. For this purpose we use a benefit function B(rq) that estimates the
benefit of a client’s request rq. The benefit of a request takes into account the utility
of the request and the resources expended in handling that request. For instance, if
the request rq is a credit card transaction, then the utility of request rq could be the
monetary profit the server obtains from the transaction. We also define a priority update
function G that updates the priority level of a client based on the benefit B(rq).
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In our first prototype, we propose to use a utility based benefit function B(rq) =
F (rt, ut), where rq denotes the client’s request, rt is the time taken by the server to
generate a response for the request rq, and ut denotes the utility of rq. We use a simple
benefit function B(rq) = ut − γ ∗ rt, where γ is a tunable parameter. The response
time rt is used as a crude approximation of the effort expended by the server to handle
the request rq. Observe that in computing the benefit B(rq), the response time rt (that
denotes the effort expended by the server) is subtracted from the request’s utility ut.

The new priority level nprio could be computed as nprio = G(eprio, B(rq)), where
eprio is the current effective priority level of the client. In our first prototype, we use
an additive increase and multiplicative decrease strategy to update the priority level as
follows: If B(rq) ≥ 0, then nprio = eprio + α ∗ B(rq), and nprio = eprio

β∗(1−B(rq)) oth-
erwise. The additive increase strategy ensures that the priority level slowly increases as
the client behaves benignly; while the multiplicative decrease strategy ensures that the
priority level drops very quickly upon detecting a DoS attack from the client.

In summary, we perform request filtering at the server side IP layer or firewall. As
we have pointed out earlier, filtering requests at the firewall minimizes the amount of
server resources expended on them. However, the parameter that determines this fil-
tering process (the client’s priority level) is set by the application. This approach is
highly flexible, since it is possible to exploit application specific semantics and domain
knowledge in computing the client’s priority level.

3.3 Implementation

Client Side. Our implementation neither requires changes to the client side software
nor requires super user privileges at the client. We implement trust tokens using stan-
dard HTTP cookies. Hence, the client can use standard web browsers like Microsoft IE
or FireFox to browse a DoS protected website in the same manner that it browses an
unprotected website. An automated client side script with support for handling HTTP
cookies is assumed; such scripts are commonly used on the web today.

Server Side IP Layer. On the server side, we use NetFilters [1] for filtering requests
at the IP layer. NetFilters is a framework inside the Linux kernel that enables packet
filtering, network address translation and other packet mangling. We use NetFilters to
hook onto packet processing at the IP layer. Given an IP packet we check if it is a HTTP
request and check if it has the tt cookie in the HTTP request header. If so we extract
the trust token tt, check its validity and extract the priority level embedded in the token.
We compute the effective priority level eprio from its priority level prio and the request
rate r from the client. We have implemented a simple weighted probabilistic fair queu-
ing filter to rate limit requests from a client using its effective priority level (eprio).

Server Side Application Layer. We use Apache Tomcat filters to hook on HTTP re-
quest processing before an incoming request is forwarded to the servlet engine. This
filter is used to record the time at which request processing starts. Similarly, a filter
on an outgoing response is used to record the time at which the request processing
ended. This filter provides the application programmers the following API to use ap-
plication specific rules and domain knowledge to update the client’s priority level af-
ter processing a request rq: priority updatePrio (priority oldPrio,
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URL requestURLHistory, responseTime rt), where oldPrio denotes
the client’s priority level before it issued the request rq, requestURLHistory de-
notes a finite history of requests sent from the client, and rt denotes the server response
time for request rq. Additionally, this filter encrypts the trust token tt and embeds it as
a cookie in the HTTP response.

Sample API Implementations. We now describe three sample implementations of our
API to demonstrate its flexibility.

Resource Consumption. In Section 3.2 we presented a technique to update a client’s
priority level based on its request’s response time and utility. Utility of the request can
be computed typically from the requesting URL using application specific semantics
and domain knowledge; note that client supplied parameters are available as part of the
request URL. The response time for a request is automatically measured by our server
side instrumentation.

Input Semantics. Many e-commerce applications require inputs from users to follow
certain implicit semantics. For example, a field that requests a client’s age would ex-
pect a value between 1 and 100. One can use the client supplied parameters (that are
available as a part of the request URL) to estimate the likelihood that a given request
URL is a DoS attack or not. Naive DoS attack scripts that lack complete domain knowl-
edge to construct semantically correct requests (unlike a legitimate automated client
side script), may err on input parameter values.

Link Structure. In many web applications and web servers the semantics of the service
may require the user to follow a certain link structure. Given that a client has accessed
a page P , one can identify a set of possible next pages P1, P2, · · · , Pk along with
probabilities tp1, tp2, · · · , tpk, where tpi denotes the probability that a legitimate client
accesses page Pi immediately after the client has accessed page P . The server could
lower a client’s priority level if it observes that the client has significantly deviated
from the expected behavior. Note that tracking a client’s link structure based behavior
requires a finite history of URLs requested by the client.

While heuristics like Input Semantics and Link Structure can guard the web server
from several classes of application level DoS attacks, one should note that these heuris-
tics may not be sufficient to mitigate all application level DoS attacks. For example, a
DoS attacker may use requests whose cost is an arbitrarily complex function of the pa-
rameters embedded in the request. Nonetheless the Resource Consumption based tech-
nique provides a solution to this problem by actually measuring the cost of a request,
rather than attempting to infer a DoS attack based on the request.

Challenge Server. We have implemented an adaptive challenge mechanism that is similar
to the one described in [40]. Client side implementation of the challenge solver is imple-
mented using Java applets, while the challenge generator and solution verifier at the server
were implemented using C. Although using Java applets is transparent to most client side
browsers (using the standard browser plug-in for Java VM), it may not be transparent to
an automated client side script. However, a client side script can use its own mechanism
to solve the challenge without having to rely on the Java applet framework.
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Our experiments showed that the challenge server can generate about one million
challenges per second and check about one million challenges per second. The chal-
lenge server can generate up to one million trust tokens per second. This rate is pri-
marily limited by the cost of computing a message authentication code (MAC) on a 16
Byte input using HMAC-SHA1 (0.91μs). Given that the challenge server can handle
very high request rates and it serves only two types of requests (challenge generation
and solution verification) it would be very hard for an adversary to launch application
level DoS attacks on the challenge server. Further, one can adaptively vary the cost of
solving the challenge by changing the hardness parameter m. For example, setting the
challenge hardness parameter m = 20 ensures that a client expends one million units
(=2m) of effort to solve the challenge and the server expends only one unit of effort to
check a solution’s correctness.

Our experiments showed that a client side challenge solver using a C program, a Java
applet and JavaScript requires 1 second, 1.1 seconds and 1012 seconds (respectively) to
solve a challenge with hardness m=20. A JavaScript based challenge solver is unfair to
the legitimate clients since the attackers can use any mechanism (including a non-client
transparent C program) to solve the challenge. Therefore, we chose to adopt the client
transparent Java applet based challenge solver whose performance is comparable to that
of a C program based challenge solver.

4 Evaluation

In this section, we present two sets of experiments. The first set of experiments quanti-
fies the overhead of our trust token filter. The second set of experiments demonstrates
the effectiveness of our approach against application level DoS attacks.

Table 1. Overhead

No DoS Protection Pre-auth IPSec Challenge IP level tt Filter App level tt Filter
Mix 1 (in WIPs) 4.68 4.67 (0.11%) 4.63 (1.11%) 1.87 (60%) 4.63 (1.11%) 4.59 (1.92%)
Mix 2 (in WIPs) 12.43 12.42 (0.06%) 4.67 (0.18%) 9.35 (24.8%) 12.37 (0.49%) 12.32 (0.89%)
Mix 3 (in WIPs) 10.04 10.04 (0.03%) 10.00 (0.37%) 6.19 (38.3%) 9.98 (0.61%) 9.91 (1.33%)

HTTPD (in WPPs) 100 100 (0.5%) 71.75 (3.2%) 0.3 (99.7%) 97.5 (2.4%) 96.25 (3.7%)

Table 2. TPCW Servlet Mean Execution Time (ms), Servlet Execution Frequency (percentage)
and Servlet Utility

Servlet Admin Admin Best Buy Buy Exec Home New Order Order Prod Search Shop
Name Req Resp Seller Conf Req Search Prod Disp Inq Detail Req Cart

Latency (ms) 2.87 4666.63 2222.09 81.66 5.93 97.86 2.93 14.41 9.75 0.70 0.88 0.55 0.83
Frequency 0.11 0.09 5.00 1.21 2.63 17.20 16.30 5.10 0.69 0.73 18.00 21.00 11.60

Utility 0 0 3 10 4 0 0 0 2 1 1 0 2

Table 3. Attack Strategies

S1 always attack
S2 behave good and attack after

reaching the highest Priority level

Table 4. Attack Types

T1 request flooding
T2 low utility requests
T3 old tt
T4 invalid tt

Table 5. Applications

A1 Apache HTTPD
A2 TPCW
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All our experiments have been performed on a 1.7GHz Intel Pentium 4 processor
running Debian Linux 3.0. We used two types of application services in our exper-
iments. The first service is a bandwidth intensive Apache HTTPD service [2]. The
HTTPD server was used to serve 10K randomly generated static web pages each of
size 4 KB. The client side software was a regular web browser from Mozilla Fire-
Fox [14] running on Linux. The web browser was instrumented to programmatically
send requests to the server using JavaScripts [29]. We measured the average client side
throughput in web pages per second (WPPs) as the performance metric. We have also
conducted experiments using Microsoft IE running on Microsoft Windows XP. The re-
sults obtained were qualitatively similar to that obtained using FireFox on Linux, amply
demonstrating the portability of our approach.

The second service is a database intensive web transaction processing benchmark
TPCW 1.0 [37]. We used a Java based workload generator from PHARM [31]. We
used Apache Tomcat 5.5 [3] as our web server and IBM DB2 8.1 [20] as the DBMS. We
performed three experiments using TPCW. Each of these experiments included a 100
second ramp up time, 1,000 seconds of execution, and 100 seconds of ramp down time.
There were 144,000 customers, 10,000 items in the database, 30 entity beans (EBs)
and the think time was set to zero (to generate maximum load). The three experiments
correspond to three workload mixes built into the client load generator: the browsing
mix, the shopping mix and the ordering mix. The TPCW workload generator outputs
the number of website interactions per second (WIPs) as the performance metric.

We simulated two types of clients: one good client and up to a hundred DoS attackers
connected via a 100 Mbps LAN to the server. The firewall functionality described in
Section 3.3 is implemented on the server. The good client was used to measure the
throughput of the web server under a DoS attack. The intensity of the DoS attack is
characterized by the rate at which attack requests are sent out by the DoS attackers. We
measure the performance of the server under the same DoS attack intensity for various
DoS filters. Our experiments were run till the breakdown point. The breakdown point
for a DoS filter is defined as the attack intensity beyond which the throughput of the
server (as measured by the good client) drops below 10% of its throughput under no
attack. In the following experiments we show that under application level DoS attacks,
the breakdown point for the trust token filter (tt) is much larger than that for other state
of the art DoS filters.

4.1 Performance Overhead

Table 1 compares the overhead of our DoS filter (‘tt’) with other techniques. ‘pre-auth’
refers to a technique wherein only a certain set of client IP addresses are alone preau-
thorized to access the service. The ‘pre-auth’ filter filters packets based on the packet’s
source IP address. ‘IPSec’ refers to a more sophisticated preauthorization technique,
wherein the preauthorized clients are given a secret key to access the service. All pack-
ets from a preauthorized client are tunneled via IPSec using the shared secret key. The
‘pre-auth’ and ‘IPSec’ filters assume that all preauthorized clients are benign. Recall
that the trust token approach does not require clients to be preauthorized and is thus
more general than ‘pre-auth’ and ‘IPSec’. Nonetheless, Table 1 shows that the overhead
of our trust token filter is comparable to the overhead of the less general ‘pre-auth’ and
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‘IPSec’ approaches. The cryptographic challenge mechanism has significantly higher
overhead than the other approaches since it requires both the good and the bad clients
to solve cryptographic puzzles each time they send a HTTP request to the server.

We also experimented with two implementations of the trust token filter: ‘tt-ip’ uses
an IP layer implementation of the trust token filter, while ‘tt-app’ uses an application
layer implementation of the same. ‘tt-ip’ offers performance benefits by filtering re-
quests at the IP layer, while ‘tt-app’ offers the advantage of not modifying the server
side kernel. Table 1 shows that the overhead of these two implementations are compara-
ble; however, in section 4.2 we show that ‘tt-ip’ offers better resilience to DoS attacks.
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4.2 Resilience to DoS Attacks

In this section, we study the resilience of our trust token filter against application level
DoS attacks. We characterize an attack scenario along three dimensions: attack strategy
S (Table 3), attack type T (Table 4) and application A (Table 5). The attack scenarios
include all the elements in the cross product S × T × A. For example, a scenario
〈S1, T 2, A1〉 represents: always attack using low utility requests on
Apache HTTPD. Note that these attacks cannot be implemented using standard well-
behaved web browsers. Nonetheless, an adversary can use a non-standard malicious
browser or browser emulators to launch these attacks.

For experimental purposes, we have assigned utilities to different TPCW servlets
based on the application’s domain knowledge (see Table 2). For HTTPD we assign
utilities to the static web pages as follows. We assume that the popularity of the web
pages hosted by the server follows a Zipf like distribution [44]. We assign the utility of
a request to be in proportion to the popularity of the requested web page. A legitimate
client accesses the web pages according to their popularity distribution. However, DoS
attackers may attempt to attack the system by requesting unpopular web pages. In a
realistic scenario, low popularity web pages are not cached in the server’s main memory
and thus require an expensive disk I/O operation to serve them. Further, the adversary
may succeed in thrashing the server cache by requesting low popularity web pages.

Trust token filter is resilient to the always attack strategy: 〈S1, T 1, A1〉 and
〈S1, T 1, A2〉. Figures 4 and 5 show the performance of our trust token filter under
the attack scenarios 〈S1, T 1, A1〉 and 〈S1, T 1, A2〉 respectively. For preauthorization
based mechanisms this experiment assumes that only the good clients are preauthorized.
In a realistic scenario, it may not be feasible to a priori identify the set of good clients,
so the preauthorization based mechanism will not always be sufficient. If a bad client
always attacks the system (strategy S1) then performance of the trust token filter is
almost as good as the performance of preauthorization based mechanisms (‘pre-auth’
and ‘IPSec’). This is because, when a client always misbehaves, its priority level would
drop to level zero, at which stage all requests from that client are dropped by the server’s
firewall. Note that with 64K attack requests per second all the DoS filters fail. The
average size of our HTTP requests was 184 Bytes; hence, at 64K requests per second it
would consume 94.2 Mbps thereby exhausting all the network bandwidth available to
the web server. Under such bandwidth exhaustion based DoS attacks, the server needs
to use network level DoS protection mechanisms like IP trace back [33][45] and ingress
filtering [13].

Trust token filter is resilient to application level DoS attacks: 〈S1, T 2, A1〉 and
〈S1, T 2, A2〉. Table 2 shows the mean execution time for all TPCW servlets. Some
servlets like ‘admin response’ and ‘best seller’ are expensive (because they involve
complex database operations), while other servlets like ‘home’ and ‘product detail’
are cheap. Figures 6 and 7 show an application level attack on HTTPD and TPCW
respectively. In this experiment we assume that only 10% of the preauthorized clients
are malicious. Figures 6 and 7 show the inability of network level filters to handle
application level DoS attacks and demonstrate the superiority of our trust token filter.
One can also observe from figures 6 and 7 that HTTPD can tolerate a much larger
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attack rate than TPCW. Indeed, the effectiveness of an application level DoS attack on
a HTTPD server serving static web pages is likely to be much lower than a complex
database intensive application like TPCW.

Several key conclusions that could be drawn from Figures 4, 5, 6 and 7 are as fol-
lows: (i) ‘IPSec’ and ‘pre-auth’ work well only when preauthorization for all clients
is acceptable and if all preauthorized clients are well behaved. Even in this scenario,
the performance of ‘tt-ip’ is comparable to that of ‘IPSec’ and ‘pre-auth’. (ii) Even if
preauthorization for all clients is acceptable and a small fraction (10% in this example)
of the clients is malicious, then ‘IPSec’ and ‘pre-auth’ are clearly inferior to the trust
token filter. (iii) If preauthorization for all clients is not a feasible option then ‘IPSec’
and ‘pre-auth’ do not even offer a valid solution, while the trust token filter does. (iv)
The challenge based mechanisms incur overhead on both good and bad clients and thus
significantly throttle the throughput for the good clients as well, unlike the trust token
filter that selectively throttles the throughput for the bad clients.

4.3 Attacks on Trust Token Filter

In Section 4.2 we have studied the resilience of the trust token filter against DoS attacks.
In this section, we study attacks that target the functioning of the trust token filter.

Additive increase and multiplicative decrease parameters α and β: 〈S2, T 1, A1〉
and 〈S2, T 1, A2〉. Figures 8 and 9 show the throughput for a good client for various
values of α and β using applications HTTPD and TPCW respectively. Recall that α and
β are the parameters used for the additive increase and multiplicative decrease policy
for updating a client’s priority level (see Section 3). The strategy S2 attempts to attack
the trust token filter by oscillating between behaving well and attacking the application
after the adversary attains the highest priority level. The figures show that one can obtain
optimal values for the filter parameters α and β that maximize the average throughput
for a good client. Note that the average throughput for a client is measured over the
entire duration of the experiment, including the duration in which the adversary behaves
well to obtain a high priority level and the duration in which the adversary uses the high
priority level to launch a DoS attack on the web server. For HTTPD these optimal
filter parameters ensure that the drop in throughput is within 4-12% of the throughput
obtained under scenario 〈S1, T 2〉; while the drop in throughput for TPCW is 8-17%.
These percentiles are much smaller than the drop in throughput using preauthorization
or challenge based DoS protection mechanisms (see Figures 6 and 7).

Figure 10 shows the average client throughput when the adversary is launching a
DoS attack on the web server. When the application is under a DoS attack, large values
of α and β maximize the throughput for a good client. Note that a large α boosts the
priority level for good clients while a large β penalizes the bad clients heavily. This
suggests that one may dynamically vary the values of α and β depending on the server
load.

Server resource utilization parameter γ: 〈S2, T 2, A1〉 and 〈S2, T 2, A2〉. Figures 11
and 12 show the average throughput for the good clients under the scenario 〈S2, T 2,
A1〉 and 〈S2, T 2, A2〉 respectively. These experiments show the effect of varying the
trust token filter parameter γ. Recall that we use the parameter γ to weigh a request’s
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Fig. 13. 〈S2, T3, A1〉

response time against the request’s utility (see Section 3). If γ is very small, the filter
ignores the response time which captures the amount of server resources consumed by
a client’s request. On the other hand, if γ is large, the utility of a request is ignored. This
would particularly harm high utility requests that are resource intensive. For instance,
a high utility request like ‘buy confirm’ has a response time that is significantly larger
than the median servlet response times (see Table 2). The figures show that one can
obtain optimal values for the filter parameter γ that maximizes the average throughput
for a good client. The optimal value for parameter γ ensures that the drop in throughput
for HTTPD and TPCW is within 7-11% of throughput measured under scenario 〈S1,
T 2〉.
Attacking the trust token filter using old trust tokens: 〈S2, T 3, A1〉 and
〈S2, T 3, A2〉. Figures 13 and 14 shows the resilience of our trust token filter against
attacks that use old trust tokens. An attacker uses strategy S2 to behave well and thus
obtain a token with high priority level. Now, the attacker may attack the server using this
high priority old token. These experiments capture the effect of varying the trust token
filter parameter δ, which is used to penalize (possibly) old trust tokens. A small value
of δ permits attackers to use older tokens while a large value of δ may result in rejecting
requests even from well behaving clients. The figures show that one can obtain optimal
values for the filter parameter δ that maximize the average throughput for a good client.
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Using the optimal value for parameter δ we observed that the drop in throughput for
HTTPD and TPCW is within 3-7% of throughputs measured under scenario 〈S1, T 2〉.
Attacking the filter using invalid (spoofed) trust tokens: 〈S1, T 4, A1〉 and
〈S1, T 4, A2〉. Figure 15 shows the effect of attacking the trust token filter by send-
ing invalid cookies for both HTTPD and TPCW. Note that if the verification process for
the trust token were to be expensive, then an attacker can launch a DoS attack directly
on the verification process itself. We have already shown in Table 1 that the overhead
of our trust token filter is comparable to that of the network layer DoS filters. This
experiment shows that the drop in throughput on sending invalid tokens is compara-
ble to sending packets with invalid authentication headers using IPSec. Observe from
the figure that the drop in throughput for the IP layer implementation of the trust to-
ken filter and IPSec is the same for both the applications HTTPD and TPCW. Observe
also that the throughput for the application layer implementation of the trust token filter
(‘tt-app’) is significantly poorer than the IP layer implementation (‘tt-ip’). Also, the ap-
plication layer implementation for HTTPD and TPCW show slightly different impact
on the throughput primarily because Apache HTTPD filters (written in ‘C’) are faster
than Apache Tomcat filters (written in ‘Java’).

5 Discussion

5.1 Limitations and Open Issues

In this paper, we have so far assumed that one client IP address corresponds to one
client. However, such an assumption may not hold when several clients are multiplexed
behind a network address translation (NAT) router or a HTTP proxy. In the absence of a
DoS attack there is no impact on the legitimate clients behind a NAT router or a HTTP
proxy. However, a DoS attack from a few malicious clients may result in the blockage
of all requests from the NAT router’s or the HTTP proxy’s IP address.

A closer look at the client-side RFC 1631 for the IP NAT [12] shows that client-side
NAT routers use port address translation (PAT) to multiplex multiple clients on the same
IP address. PAT works by replacing the client’s private IP address and original source
port number by the NAT router’s public IP address and a uniquely identifying source
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port number. Hence, one can modify the trust token as: tt = 〈prio, tv, HMK(cip, cpn,
sip, tv, prio)〉, where cip denotes the IP address of the NAT router and cpn refers to
the client’s translated port number as assigned by the NAT router.

However, HTTP proxies do not operate using port address translation (PAT). One
potential solution is to deploy a trust token filter at the HTTP proxy. The trust token filter
at a HTTP proxy gets application specific priority updates for a client’s request from
the web server. While the web server may not know the set of requests that originated
from one client, the HTTP proxy can aggregate priority updates of all requests on a per-
client basis. It can use this per-client priority information to filter future HTTP requests
from its clients. While such a solution retains client anonymity from the web server, it
requires cooperation from the HTTP proxies. An efficient proxy transparent solution to
handle application level DoS attacks is an open problem.

5.2 Related Work

Several past papers have addressed network level DoS attacks [4][33][13][18][45].
These techniques are useful in defending a server against network level bandwidth ex-
haustion attacks. However, the lack of application semantics and domain knowledge
render network level DoS filters incapable of handling application level DoS attacks.
Several tools have been proposed to perform preauthorization based DoS protection
[25][30][26]. Our experiments show that even if preauthorization based techniques were
feasible, an application level DoS attack by a small fraction of malicious preauthorized
clients can jeopardize the system. Several authors have proposed challenge based mech-
anisms for DoS protection [24][40][22][36][41][39][11]. Our experiments show that the
inability of a challenge based mechanism to selectively throttle the performance of the
bad clients can significantly harm the performance for the good clients. Crosby and
Wallach [10] present DoS attacks that target application level hash tables by introduc-
ing collisions. Section 2 provides a more detailed discussion on the above mentioned
DoS protection mechanisms.

Recently, several web applications (including Google Maps [17] and Google Mail
[16]) have adopted the Asynchronous JavaScript and XML (AJAX) model [42]. The
AJAX model aims at shifting a great deal of computation to the Web surfer’s com-
puter, so as to improve the Web page’s interactivity, speed, and usability. The AJAX
model heavily relies on JavaScripts to perform client-side computations. Just as in
the AJAX model, we use JavaScripts to perform client-side computations for handling
HTTP cookies and solving cryptographic challenges. Recent surveys indicate that at
least 97% of the client browsers support JavaScript and Java [43][38].

Jung et al. [23] characterizes the differences between flash crowds and DoS attacks.
The paper proposes to use client IP address based clustering and file reference charac-
teristics to distinguish legitimate requests from the DoS attack requests. An adversary
can thwart IP address based clustering by employing a DDoS attack wherein the zombie
machines are uniformly distributed over several IP domains. File reference character-
istics may not be sufficient to mitigate application level DoS attacks since the cost of
serving a request may be a complex function of the parameters embedded in the request.
Siris et al. [34] suggests using request traffic anomaly detection to defend against DoS
attacks. We have shown in Section 2 that an application level DoS attack may mimic
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flash crowds, thereby making it hard for the server to detect a DoS attacker exclusively
using the request traffic characteristics.

Several papers have presented techniques for implementing different QoS guarantees
for serving web data [7][9][5]. A summary of past work in this area is provided in [21].
These papers are not targeted at preventing DoS attacks and do not discuss application
level DoS attacks.

6 Conclusion

In this paper we have proposed a middleware to protect a website against application
level DoS attacks. We have developed a trust token filter that allocates more resources
to the good clients, while severely restricting the amount of resources allocated to the
DoS attackers. Our approach works by adaptively setting a client’s priority level in re-
sponse to the client’s requests, in a way that incorporates application level semantics.
Our DoS protection mechanism is proactive, client transparent, and capable of mitigat-
ing application level DoS attacks that may not be known a priori. We have described a
concrete implementation of our proposal on the Linux kernel and presented a detailed
evaluation using two workloads: a bandwidth intensive Apache HTTPD benchmark and
TPCW (running on Apache Tomcat and IBM DB2). Our experiments demonstrate the
advantages of the trust token filter over other network level DoS filters in defending
against application level DoS attacks.
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mer intern at IBM Research. At Georgia Tech, Mudhakar Srivatsa and Ling Liu were
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Abstract. The security of modern networked applications, such as the
information infrastructure of medical institutions or commercial enter-
prises, requires increasingly sophisticated access control (AC) that can
support global, enterprise-wide policies that are sensitive to the history
of interaction. The Law-Governed Interaction (LGI) mechanism supports
such policies, but so far only for asynchronous message passing commu-
nication. This paper extends LGI to synchronous communication, thus
providing advanced control over this important and popular mode of
communication. Among the novel characteristics of this control are: the
regulation of both the request and the reply, separately, but in a coor-
dinated manner; regulated timeout capability provided to clients, in a
manner that takes into account the concerns of their server; and enforce-
ment on both the client and server sides.

Keywords: Access-control, Security, RMI, Synchronous communica-
tion, Law Governed Interaction.

1 Introduction

The economy and security of modern society relies on increasingly distributed
infrastructures and institutions—such as the power grid, the banking system,
transportation, medical institutions, government agencies, and commercial en-
terprises. This trend increases both the importance of access control (AC) tech-
nology and its complexity. The importance of access control is increased because
such critical systems often communicate via the Internet and can no longer
protect themselves by hiding within their local intranet behind their firewalls.
Rather, they now depend on access control to protect them against malicious at-
tacks by regulating the messages exchanged among their people and components
and between them and the outside. Simultaneously, the complexity of access
control is increasing due to the following needs: (a) the need to support increas-
ingly sophisticated policies; (b) the need to regulate the interactions among the
members of large and distributed communities of agents, via communal (overar-
ching) policies; (c) the need to provide for interoperability between policies; and
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(d) the need to organize policies into hierarchies in order to regulate complex
systems such as those that serve enterprises—with their intrinsically hierarchical
governance—and federations of enterprises, as in grid computing.

In previous papers [18,2,3] we have shown how these needs can be addressed
by Law-Governed Interaction (LGI), which is a message-exchange mechanism
that allows an open and heterogeneous group of distributed actors to engage in
a mode of interaction governed by an explicitly specified and strictly enforced
policy, called the law of this group. LGI is a significant generalization of the
conventional concept of access-control. It also represents a radical departure
from conventional AC mechanism in that it employs an inherently decentralized
policy-enforcement technique.

However, LGI has been defined for asynchronous (message passing) commu-
nication, leaving unsupported the wide range of applications that employ syn-
chronous communication—by which we mean here a request-reply type of inter-
action, when the client thread is blocked while waiting for the reply 1. In this
paper we argue that the control of synchronous communication requires different
treatment than that of asynchronous one, particularly when dealing with commu-
nal and stateful policies. This is because there are some special needs that arise
when regulating synchronous communication, which include: (a) the need to con-
trol both the request and the reply parts of a call, separately, but in a coordinated
fashion; and (b) the need to provide clients with a regulated timeout capability,
taking into account the concerns of both the server and the client. This paper
addresses these needs, by extending LGI to support synchronous communication.

The rest of this paper is organized as follows. Section 2 motivates this paper
by explaining some of the needs to generalize access control, particularly for
synchronous communication—illustrating them via a case study, which will be
used throughout the paper. Section 3 provides a brief overview of the concept of
LGI. In Section 4 we describe the architecture of the proposed AC mechanism for
synchronous communication, and we show how it supports the policy introduced
in the case study. Section 5 describes the implementation of this mechanism for
the RMI protocol, giving rise to what we call “Regulated RMI” (or RRMI).
Section 6 discusses related work, and Section 7 concludes this paper.

2 On the Need for a Generalized Access Control
Mechanism

We elaborate here on several needs of modern computing for a generalized AC
mechanism. We start with a brief discussion of the need for more expressive
1 The term “synchronous communication” as used here is not to be confused with

the notion of “synchronous send”, which requires the sender to wait for an acknowl-
edgment of receivership before proceeding further in its computation; our definition
assumes an exchange of payload information both at the request and at the reply
time. Among the communication protocols supporting this type of synchronous com-
munication are SunRPC, JAX-RPC, CORBA, DCOM, and Java RMI; the latter has
been chosen as a starting point for the proof of concept implementation in this paper.



Generalized Access Control of Synchronous Communication 283

policies, for communal policies, and the need for decentralization; these proper-
ties apply to both asynchronous and synchronous communication equally, and
they are already supported for message-passing communication in the previous
version of LGI. We then discuss in greater detail the special needs of synchronous
communication, namely the need to control both the request and the reply parts
of a call, and the need to provide clients with a regulated timeout capability. We
will motivate and start these discussions with a simple case study.

2.1 A Pay-Per-Service Interaction: A Case Study

In order to illustrate the types of policies we have in mind for the regulation of
synchronous communication, consider a large, geographically distributed hospi-
tal, whose management decided that all internal services—such as drug acquisi-
tion (from internal pharmacies), printing, file-services, record databases, etc.—
would operate as cost centers. This means that services need to be paid with
internal currency, made available to various clients in their e-wallets. More specif-
ically, the requests for such services and the budgeting of these requests are to
be regulated by the following policy, to be called PPS for “pay-per-service”.

1. An agent that plays the role of a budget officer can provide any amount
of currency to any agent in the enterprise, to be maintained in the
e-wallet of that agent.

2. Each service request must carry a payment, which is to be deducted from
the e-wallet of the client. When the service has been carried out suc-
cessfully, this payment is to be deposited in the e-wallet of the server.
(A service is considered successful if it does not terminate with an ex-
ception.)

3. A client can cancel a service while it is being handled by the server,
incurring a penalty that amounts to a fraction f of the price of a nor-
mally completed service. This penalty is to be payed to the server, while
the rest of the original payment is to be returned to the client.

Note that policies of this kind can be used for budgetary control of systems,
whether or not the budget has any monetary connotation.

2.2 The Need for More Expressive Policies

While the conventional access control mechanisms are still largely based on the
access control matrix model, often upgraded into “role-based AC” (RBAC) [21],
the limitations of this model have been long recognized in the context of commer-
cial [7] and clinical [1] applications. These limitations are also becoming increas-
ingly apparent in other application domains. We point out here two important,
and closely related, features that are missing in the traditional AC model.

One such feature is sensitivity to the history of interaction, which gives rise to
the so called stateful, or dynamic policies. Our example policy PPS is stateful
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in this sense, as one’s ability to make service requests depends on the amount of
currency in its e-wallet, which, in turn, depends on previous service requests it
made. Throughout this paper, the state representing the history of interaction
which is relevant to the policy at hand is called control state. The control state
may include, among other things, the e-wallets of the agents subject to PPS
policy.

The budgetary control in our example is critical in financial systems, but
it is important in other kinds of systems as well. Other types of stateful poli-
cies include, in particular, dynamic separation of duties [10] and Chinese-Wall
policies.

Another important feature, missing from traditional AC, is a degree of initia-
tive that a policy can take. Conventional AC policies are limited to permitting
or prohibiting messages. But one often needs to associate other actions with the
sending or receipt of a message, such as sending a copy of the message to some
audit trail server, or changing the state of the sender or receiver if the policy is
stateful, as is required by our PPS policy above. Some of these capabilities have
been introduced into several recent AC models. In particular, the AC model of
Ryutov and Neuman [20] supports policies that can exhibit simple initiatives,
but they do not support stateful policies; the same is true for XACML [12], a
recent AC standard for web-services.

2.3 The Need for Communal Policies

Most conventional AC mechanisms are designed for server-centric policies. Such
a policy is employed by an individual server to regulate the use of own its re-
sources by its clients. Such a policy is usually expressed via Access Control Lists,
or via a formalism like Keynote [6]. The enforcement mechanism for server-
centric policies consists of a reference-monitor that mediates the interactions of
the server with its clients. This reference monitor is usually run by the server
itself, or is closely associated with it.

But the server-centric approach is inadequate for the growing class of applica-
tions where the interactions among the members of a distributed community of
servers and their clients—or a community of peers—is subject to an overarching
communal policy. Our example PPS policy is clearly communal, in particular,
because the content of the e-wallet of an agent effects the ability of that agent
to get services from any server in the AC domain, such as the enterprise.

2.4 The Need for Decentralization

The importance of communal, enterprise-wide policies has been recently recog-
nized by some academic projects [9], as well as by commercial systems such as
IBM-Tivoli [15], and by XACML [12]. They all employ a centralized reference
monitor to mediate all interaction between agents in the enterprise, subject to a
given communal policy. This reference monitor is often replicated, for the sake
of scalability. But none of these mechanisms and models support fully stateful
policies—and for a good reason. As argued in [2], it is hard to scale global state-
ful policies through the use of standard replication techniques because a state
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change sensed by one replica of the reference monitor may have to be propagated
atomically to all other replicas.

We believe, therefore, that for an AC mechanisms to support communal and
stateful policies in a scalable manner, it needs to be decentralized. As we shall see
in Section 3, such decentralization can be accomplished efficiently and scalably
by associating with every agent x a private reference monitor, called controller,
that mediates all the interactions of x with other members of the community
governed by the policy at hand. This controller also maintains the local control
state of agent x, which reflect the history of its interaction with the rest of the
community in question. It is this control state which would maintain the e-wallet
of x under the PPS policy above.

2.5 The Need to Regulate Both the Request and the Reply Parts
of a Call

Conventional access control mechanisms for synchronous communication regu-
late only the request step of a call, leaving the reply unregulated. Here we will
argue that the reply to a call needs to be regulated as well, in coordination with
the regulation of the request. Of course, regulation of the reply is a post factum
decision, in so far as the execution of the server is concerned. But such regulation
can have two types of effects: (a) it can update the control state, based on the
nature of the reply, or on its timing; and (b) it can control the payload of the
reply itself. The nature of these two types of effects, and the need for them, are
discussed in the following subsections.

Updating the Control State: We have argued that an AC policy often needs
to be sensitive to the history of interaction, as represented by the control state
of the policy. But under synchronous communication such interaction consists
of the reply as well as the request that triggered it. The reply may be important
because it may matter to the policy whether or not the server replied, how long
it took it to reply, and the nature of the reply itself.

An example of such sensitivity of a policy to the reply is provided by the PPS
policy introduced in Section 2. Point 2 of this policy stipulates that payment for
a service should be moved from the e-wallet of the client to that of the server.
But this should happen only upon a successful completion of the service—that
is, when the client receives a non-exception reply from the server. It is obvious
that this policy can be implemented only if the reply is regulated; and if such
reply control is coordinated with the control of the corresponding request.

Controlling the Payload of the Reply: Access control policies are often con-
cerned with what information clients are allowed to access. Often, the sensitive
information disclosed to the clients becomes explicit only at the time of reply,
and not at the time of the request. The reply needs to be regulated in order to
control the payload itself.

To show how this control may be useful, consider an elaboration of policy
PPS of Section 2, via the following additional point:
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Patient record servers may serve three kinds of clients: doctors, who have
access to an entire patient record; researchers, who have access to all the
information within a record, except for the patient name and id; and
financial officers, who are not allowed to see any medical information
within a record.

This part of our policy cannot be enforced at the request time, since the patient
record information is not available at that time. Only after the server replies,
the complete record of the patient is available, and the appropriate fields can be
filtered based on the role of the caller.

2.6 The Need to Regulate Timeouts

Under synchronous communication the client thread is blocked until it gets the
reply. This feature is intended to provide transparency of the network commu-
nication, by making remote calls appear to programmers as local calls [5]. But
this transparency is often hard to maintain in practice because the duration
of a service is unpredictable, due to communication uncertainties, particularly
over WANs; and due to the lack of familiarity with the behavior of the server,
particularly when it belongs to a different administrative domain.

The conventional technique for dealing with such unpredictability is for the
client to terminate a given service call—if it takes too long to complete—simply
by killing the requesting thread. But such an arbitrary, one-sided timeout may
be harmful. The problem is that both the client and the server have stakes in
the service, which might be undermined by its abrupt termination, unless the
termination is done in an orderly manner. The meaning of “orderly” depends on
the application at hand, as we shall see below. But whatever it may be, it ought
to be defined explicitly in the policy regulating the communication, so that it
can be enforced by the AC mechanism, and be visible to both the client and the
server. There are many possible termination (timeout) policies, which may be
suitable in different situations. We will consider two types of such policies below.

Predefined Timeouts: To provide a degree of predictability to the duration of
a service, one can employ a policy under which every call would specify an upper
limit Tmax for the duration of requested service, which would be provided to
the server as a parameter. This would mean that if the reply does not arrive
at the client by the specified limit, the client would regain its control, and the
server will be notified of the termination (assuming that the server implements
proper interfaces that support such notification). This policy benefits the server
as follows: if it knows that the requested service cannot be provided within the
time Tmax, it might decide to decline the request immediately, and not waste
its resources on attempting to provide it. The client would also benefit from this
policy by not having to forcefully kill the thread that issued the call—measure
that can leave the application in an inconsistent state.

Moreover, if the service in question is of a pay-per-service kind, then such
a policy can mandate the return of the payment to the client, if the requested
service has not been provided by the specified limit Tmax. This is appropriate



Generalized Access Control of Synchronous Communication 287

because one can argue that the server does not deserve any payment for its effort,
in this case, because it has been notified a priori of the time limit.

Note that the time in this policy can be strictly local, and the enforcement
can be expressed in either client or server time. Distributed clocks, however, are
often reasonably synchronized (using NTP, GPS, or other mechanisms), thus the
two local times in practice are the same.

Unplanned Timeouts: Sometimes it is desirable to allow the client to interrupt
a call while the call is still in progress. This may be the case if runtime conditions
indicate to the client that the service it has requested is not necessary anymore,
or if the thread that initiated the call needs to regain the control, for whatever
reason. But even if unplanned, such a timeout needs to be done in an orderly
fashion, according to a pre-specified policy.

A policy regarding unplanned timeouts is just what is provided for by Point 3
of the PPS policy in Section 2. This point stipulates that the server—whose
work has been terminated for no fault of its own—be compensated by a speci-
fied fraction of the cost of a normal service; and that the rest of the payment be
returned to the client. Thus, this policy ensures a degree of fairness to both the
client and the server, whenever the client terminates its call. The implementa-
tion of this particular policy under the proposed AC mechanism is presented in
Section 4.1.

3 An Overview of LGI

Broadly speaking, LGI is a message-exchange mechanism that allows an open
and heterogeneous group of distributed actors to engage in a mode of interaction
governed by an explicitly specified and strictly enforced policy, called the “law”
of this group. By “actor” we mean an arbitrary process, whose structure and
behavior is left unspecified. An actor engaged in an LGI-regulated interaction,
under a law L, is called an L-agent (or simply an “agent,” when the identity
of the law does not matter); the messages exchanged under a given law L are
called L-messages; and the group of agents interacting via L-messages is called
an L-community.

LGI thus turns a set of disparate actors, which may not know or trust each
other, into a community of agents that can rely on each other to comply with
the given law L. This is done via a distributed collection of generic components
called private controllers, one per L-agent, which need to be trusted to mediate
all interactions between these agents, subject to a specified law L (as illustrated
in Figure 1).

The private controllers are actually hosted by what we call controller pools—
each of which is a process of computation that can operate several (in the hun-
dreds) private controllers, thus serving several different agents, possibly subject
to different laws2. A prototype of LGI was released in October 2005 [17]; this
2 We often use the term “controller” for either a controller-pool or for a private-

controller—expecting the ambiguity to be resolved by the context.
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Fig. 1. Interaction via LGI: Actors are depicted by circles, interacting across the Inter-
net (lightly shaded cloud) via their private controllers (boxes) operating under law L.
Agents are depicted by dashed ovals that enclose (actor, controller) pairs. Thin arrows
represent messages, and thick arrows represent modification of state.

section provides only a very brief overview of LGI. For more information, the
reader is referred to the LGI tutorial and manual, available through the above
mentioned website, and to a host of published papers.

Agents and their Private Controllers: An L-agent x is a pair x = 〈Ax, TL
x 〉,

where Ax is an actor, and TL
x is its private controller, which mediates the inter-

actions of Ax with other LGI-agents, subject to law L. The role of the controllers
is illustrated in Figure 1, which shows the passage of a message from an actor
Ax to Ay , as it is mediated by a pair of controllers, first by TL

x , and then by
TL

y —both operating, in this case, under the same law.

The Structure and Operations of Private Controllers: Broadly speaking,
a private controller, such as TL

x above, can be described as a triple 〈I,L, Sx〉
(depicted by boxes in Figure 1), where I is a generic interpreter and enforcer
of LGI laws; L is the law under which this particular controller operates; and
Sx is the control state (or, “cState”) of agent x, whose content, semantics, and
dynamic behavior are largely defined by law L. The concept of law is defined in
the following section.

To describe the behavior of a controller, we need to introduce its main fea-
tures. First, a private controller TL

x operates by responding to certain regulated
events that occur at it, which includes, among others: (a) the arrival of various
messages at the controller—messages sent by its own actor Ax to other agents,
and messages sent by others to agent x; and (b) the coming due of an obligation.
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Second, a private controller features a set of primitive operations that are carried
out only if mandated by the law. They include operations on the cState Sx of
the agent in question, and operations that cause messages to be forwarded to
other agents.

A controller TL
x operates sequentially, by reacting to the regulated events

that occur at it, in the order of their occurrence (and in an arbitrary order for
events that occur simultaneously). It reacts to each such event as follows: (a) it
evaluates the ruling of law L for this event, where the ruling is a list of primitive
operations; and (b) it carries out this ruling, by executing all the operations in
it, in the order of their appearance in the ruling, and atomically—before the
controller turns to the next event.

The Concept of Law, and the Semantics of LGI: Our concept of law
differs structurally from the conventional concept of an AC policy (such as that
of XACML) mostly in that it is local—in the sense that an LGI law can be
complied with, by each member of the community subject to it, without having
any direct information of the coincidental state of other members. This locality
is important because it enables the decentralization of law enforcement, and thus
provides for scalability even in the case of stateful policies.

It is important to note that, despite the fact that locality constitutes a strict
constraint on the structure of LGI laws, it does not reduce their expressive
power, as has been proved in [17]. In particular, despite its structural locality,
an LGI law can have global effect over the entire L-community—simply because
all members of that community are subject to the same law—and can, thus, be
used to establish mandatory, community-wide constraints.

The following is an abstract definition of LGI laws:

A law L is a function L(e, s), which returns a list of primitive operations,
called the ruling of the law, for any possible regulated-event e and any
possible control-state s.

Note that the ruling of the law is not limited to accepting or rejecting a message,
but can mandate any number of operations, providing laws with a strong degree
of initiative, as discussed in the introduction. Also, the operations that can be
included in the ruling may update the cState of the agent, thus providing for
stateful policies. Finally, the ruling may impose an obligation on the agent, which
provides a proactive capability.

This definition is abstract in that it is independent of the language used for
specifying laws. We currently use two such languages—one is based on Prolog,
and the other one on Java. But despite the pragmatic importance of a partic-
ular language being used for specifying laws, the semantics of LGI is basically
independent of that language.

On the Basis for Trust Between Members of a Community: In order
for an agent x to trust its peer y to operate under the same law L, it is sufficient
to have the assurance that the following three conditions are satisfied: (a) the
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exchange between x and y is mediated by bona fide private controllers Tx and Ty,
respectively; (b) both controllers operate under law L; and (c) the L-messages
exchanged between x and y are transmitted securely over the network.

The first of these conditions is the hardest to satisfy. LGI ensures this condi-
tion via certification. That is, a given law may require the controllers interpreting
it to authenticate themselves by means of a certificate signed by a specified cer-
tification authority (CA). Such a CA that is willing to certify the controllers as
correct is presumably associated with some reputed organization that manages
and maintains an entire set of controllers.

To ensure condition (b), that is that the interacting controllers Tx and Ty

operate under the same law, LGI adopts the following protocol: a controller Tx

appends an one way hash [19] H of its law to every message it controls. The
controller of the receiving peer, Ty, would accept this as a valid L-message only
if H is identical to the hash of its own law. Of course, such an exchange of hashes
can be trusted only if condition (a) is satisfied.

Finally, to ensure the validity of condition (c) above, the messages sent
across the internet—between actors and their controllers, and between pairs of
controllers—should be digitally signed and encrypted. These conventional but
rather expensive measures can be dispensed with if one is not concerned about
monitoring and spoofing of messages.

4 Regulating Synchronous Communication

As we have already pointed out, synchronous communication differs from asyn-
chronous one in that the former consists of two tightly coupled steps – the
request and the reply – and because the client thread is blocked until it gets the
reply. Conventional AC mechanisms for synchronous communication operate by
regulating only its request part, usually intercepting the request at the server
side, as shown in Figure 2. This is similar to the manner that conventional AC
mechanisms for asynchronous communication operate.

In this paper we propose a generalized regulation mechanism that controls
both the request and the reply separately, but in a coordinated manner, with
respect to both the client and the server. This regulation takes place in four
steps, as depicted in Figure 3. Any request placed by a client is intercepted first
by the LGI-controller associated with the client, then by the controller of the
server. When the server issues the reply, it is intercepted by the controller of
the server, and then by the controller of the client. Each controller enforces the
same communal law L, which can be written to coordinate the treatment of the
reply with the request that triggered it, via the state it maintains.

The implementation of this AC mechanism is discussed in Section 5. In this sec-
tion we will show how this mechanism can be used to implement the PPS policy of
Section 2.1. For this purpose, we will express a law that implements this policy via
a pseudocode; the actual formalization is in the Java-based law language of LGI,
defined in [17]. This pseudocode consist of rules of the following type:

upon 〈event〉 if 〈condition〉 do 〈action〉
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Fig. 3. Regulated Synchronous Communication

Each of these rules has three parts, briefly described below.
The event part of a rule specifies one of the events that may occur at a

controller. Below are the four events which are directly involved in synchronous
communication:

– sentCall: occurs at the controller of the client when a client performs a
request.

– arrivedCall: occurs at the controller of the server when a request arrives at
it.

– sentResult: occurs at the controller of the server after the server initiates
the reply.

– arrivedResult: occurs at the controller of the client when the reply arrives
at it.

The condition part of a rule is an arbitrary expression defined over the
identity of the caller and the callee, the payload of the request or the reply, and
the local control state.

The action part of a rule consists of a list of operations that mandate such
activities as the forwarding of a message or the modification of the control state.
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The modification of the control state is critical because it allows the recording of
the relevant aspects of the history of interaction. In particular, the state can be
used to facilitate the coordination between the control of request and the control
of the reply.

4.1 The Implementation of the PPS Policy

Access to services under our Pay-Per-Service (PPS) policy introduced informally
in Section 2.1 is regulated using a currency consumption scheme. The currency
represents a form of credentials used for regulation purpose, thus the e-wallet
of clients and servers are maintained securely, by their controllers as a form of
state—the control state. The budget officer is recognized as such by having its
controller maintain a role(budgetOfficer) credential in its control state. The
acquisition of this credential and the initial setup of the corresponding state can
be performed using either a digital certificate, an appointment, or a password
scheme.

Figure 4 presents the law implementing the PPS policy. Rules R1 - R4 control
how the currency is distributed among the clients and servers—corresponding
to Point 1 in PPS, Rule R5 - R8 regulates the access to the server according to
the available currency—corresponding to Point 2 in PPS, and Rules R9 - R12
regulate the cancellation of services using an unplanned timeout mechanism
corresponding to Point 3 in PPS.

Rule R1 specifies that everybody can request a replenishment of its currency,
anytime during the interaction, via a getBudget request. R2 prohibits such re-
quests to be served by anybody but a proper budget officer. This is done as
follows: each time an arrivedCall(getBudget) event arrives at a destination
controller, the local control state is looked-up for role(budgetOfficer) creden-
tial. If the local state contains this credential, the target is allowed to handle
the request. If not, a NotBudgetOfficer exception is returned to the caller.
Rule R3 allows the budget officer to reply with a certain currency amount, un-
hindered. Rule R4 retrieves the assigned currency from the reply, and adds it
to the e-wallet of the client. Since this currency constitutes a credential for the
subsequent communication, it should be maintained by the client’s controller in
its state.

Rules R5 to R8 regulate the access of a client to a service, based on the cost
of the service and the amount available in the client’s e-wallet. We assume that
the cost of a service is a fixed amount, denoted by the value serviceCost, while
the name of the service (i.e., remote method, procedure) is represented by the
variable S. The regulation is performed in a combined manner, on the request
as well as on the reply path. In rule R5, each time a client requests a service,
the cost of the service is compared against the e-wallet of the client. If the cost
exceeds the e-wallet amount, an outOfCurrency exception is returned to the
caller. If the client has enough currency, the cost of the service is deducted from
the e-wallet of the client. The state of the client is augmented with an item called
escrow, which binds the cost with the request information (such as request id,
object id, request signature). Finally the request is allowed to propagate. Rule
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R1 upon sentCall(getBudget) : do forwardCall
R2 upon arrivedCall( getBudget) : if role == budgetOfficer

do forwardCall
else

do forwardResult(Exception(NotBOfficer))
R3 upon sentResult(getBudget) : do forwardResult
R4 upon arrivedResult(getBudget) : do addEWallet(method.result)

do forwardResult
R5 upon sentCall( S ) : if eWalletAmnt < serviceCost

do forwardResult(Exception(OutOfCurrency))
else

do removeEWallet(serviceCost)
do addEscrow
do forwardCall

R6 upon arrivedCall(S) : do addEscrow
do forwardCall

R7 upon sentResult( S ) : if method.result is Exception
do removeEscrow
do forwardResult

else
do addEWallet(serviceCost)
do removeEscrow
do forwardResult

R8 upon arrivedResult( S ) : if method.result is Exception
do addEWallet(serviceCost)
do removeEscrow
do forwardResult

else
do removeEscrow
do forwardResult

R9 upon sentCall(cancel) : do forwardCall
R10 upon arrivedCall( cancel ) : if escrow.exists()

do addEWallet(f(serviceCost))
do removeEscrow
do forwardResult
do forwardResult(Exception(Cancelled))

else
do forwardResult(Exception(NoPendingCall))

R11 upon arrivedResult( cancel ) : do forwardResult
R12 upon arrivedResult( S ) : if method.result is Exception(Cancelled)

do addEWallet(serviceCost-f(serviceCost))
do removeEscrow
do forwardResult

Fig. 4. Pay-per-service Law

R6 occurs when the server’s controller detects a service request. In this case, a
similar escrow state is saved in the local state, on behalf of the server. Rule R7
occurs when the server replies to the client. Remember that PPS policy specifies
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that only a successful service is to be paid for; the non-success is determined by
the return of an exception. If such an exception occurs, then the previously setup
escrow is removed without crediting the e-wallet of the server. Otherwise, the
e-wallet is credited with the service cost. Rule R8 performs the corresponding
activity on behalf of the client: if the result was an exception, then the client’s
e-wallet is credited back with the service cost and the escrow state is removed.
Otherwise, the service is considered successful, and the escrow state is simply
removed.

Rules R9 to R12 correspond to the PPS cancellation of service. R9 allows
anybody to cancel a service request. Whenever such a cancellation request is
sensed by the controller of the server, R10 is fired. This rule checks whether the
server has already issued a reply, by checking the escrow state. If this is the case,
the cancellation request cannot be satisfied and a NoPendingCall exception is
returned. If the server is still handling the service, then the cancellation takes
effect: the escrow is removed, the e-wallet of the server is credited with a fraction
of the cost (denoted by the function f(serviceCost)), and two replies are issued
automatically, without the server’s involvement. First, a successful reply to the
cancellation request is issued, followed by an exceptional reply to the cancelled
service (Canceled exception). Rule R11 allows the cancellation reply to reach
the client, while R12 handles the situation of the Canceled exception reply to
a service. This rule is similar to Rule R8 that handles any reply to a service. In
this situation, however, the e-wallet of the client is replenished with the cost of
the service minus the fraction penalty; similarly, the escrow is removed and the
reply propagated to the client.

5 Regulated RMI Implementation

In this section we outline an implementation of the access control model for
synchronous communication applied to Java Remote Method Invocation (Java
RMI or simply RMI). RMI is a mechanism that allows remote procedure calls
between objects located in different Java virtual machines. When a client per-
forms a request, a method is transferred to the server along with its serialized
arguments. When the server answers, the return data (or an exception) is seri-
alized and transferred to the client. The data exchanged in this process consists
of the method name and signature along with the argument or reply objects.

The implementation presented here, called Regulated RMI (or RRMI), is a
modified version of Java RMI and is virtually source-level compatible with it.

This section has three parts. The first part describes the LGI laws that regu-
late RMI communication (also called RMI laws). The second part describes the
changes we introduced in the RMI suite. Finally the performance of RRMI is
discussed.

The Formulation of RMI Laws: In order to provide a fine-grained access
to the information exchanged during an RMI method call, the RMI laws are
written in Java. The use of Java for writing laws and their generic structure
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is described in detail in [17]. The access control rules are expressed in RMI
laws by mapping the events introduced in Section 4 to specific methods, called
event methods. The conditions are represented by Java code operating over the
local state, the method name/signature and the arguments/reply values. The
actions are represented by specific methods that mandate the handling of the
request/reply and the modification of the local state. Each time an event occurs
at the controller, the corresponding event method in the RMI law is invoked.
The computation of such a method, in turn, produces a number of actions to be
carried out by the controller. 3

The RRMI suite: At application level, the RRMI suite is largely compatible
with Java RMI. The only difference between the two suites appears in the ini-
tialization stage, when a security principal is associated with the stub of a caller
and the skeleton of a remote object (or target). The important components of
the RRMI suite are as follows: RRMI has an LGI-enabled transport protocol –
different from JRMP or IIOP; there is a different stub compiler, called LgiRMIC
instead of the standard RMIC compiler; a new registry application, LgiRegistry
regulates the exchange of stubs between applications. Below we discuss these
components.

The JRMP transport protocol is employed in the RMI stub-to-skeleton in-
teraction. In order to enable control over RMI communication, we changed the
transport protocol to our version of LGI-controllable transport layer. As opposed
to JRMP, this new transport layer provides enough in-transit information per-
mitting an adequate control decision based on the method name, its signature,
and runtime arguments.

A control decision in LGI model can be based on the identity of the interacting
principals: the client and the server. In order to perform a principal-based deci-
sion, the caller and the remote object are associated with their own principals.
Since the communication endpoints are the stub and the skeleton, we modified
the RMI compiler in order to allow the association of a principal to each stub
and skeleton. The newly resulted compiler is called LgiRMIC.

We also developed a new registry entity. Our LgiRegistry is an LGI-enabled
repository for stubs that offers LGI control over the propagation and publishing
of remote object stubs.

Due to the nature of the above modifications, our implementation was based
on NinjaRMI [24]. This is an open source RMI implementation developed as
part of the Ninja project at UC Berkeley, and is source-level compatible with
Java RMI.

Figure 5 presents a simple example of source code and the API provided by
RRMI. In this example, PMember represents the principal member object, a
principal subject to LGI regulation. LgiNaming represents the registry used to
bind and lookup the published objects. The example shows the definition of
a remote object, RecordServerImpl. The principal argument of the constructor
establishes the identity of the principal exporting this object. The initialization
3 An example of a formal RMI law implementing the PPS policy is available at:
http://www.moses.rutgers.edu/rrmi/examples/payperservice/ .
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/*remote object code*/
public class RecordServerImpl extends LgiRemoteObject implements RecordServer{

public RecordServerImpl(PMember principal) throws RemoteException{
super(principal);

}
public String getRecord() {

...// specific code
}

}
/*exporting server code*/

PMember callee = new PMember(”http://lawurl”,”controller”,port,”server”).adopt();
LgiNaming Naming = new LgiNaming(callee);
RecordServer rs = new RecordServerImpl(callee);
Naming.rebind(”registry name/object name”, rs);

/*client code*/
PMember caller= new PMember(”http://lawurl”,”controller”,port,”client”).adopt();
LgiNaming Naming = new LgiNaming(caller);
RecordServer rs = (RecordServer) Naming.lookup(”registry name/object name”);
rs.getRecord(); //remote method invocation

Fig. 5. Sample RRMI client-server code

and the actual exporting of the object can be observed in the server code. The
client code shows the initialization of the principal performing remote calls. The
actual stub for the remote object is downloaded from the Naming registry using
the lookup method. This method also attaches the identity of the principal of the
caller to the downloaded stub. After these steps, any remote call will carry –in a
seamless manner–the identity of both the caller and the recipient of the call. It
can be observed that except for the principal initialization and stub downloading,
the rest of the code is source compatible with Java RMI.

RRMI Performance Evaluation: We compared the performance of RRMI
implementation with standard Java RMI/JRMP. The objective of our perfor-
mance tests was to evaluate the overhead introduced by our mechanism com-
pared to raw Java RMI (with no AC ) . We measured the average completion time
for RMI calls in the case of LAN and WAN networks using different scenarios.
The LAN consisted of a 10Mbps Ethernet network connecting two SunUltra10
(440Mhz) workstations. For the WAN scenario, we used an additional Intel Pen-
tium IV (1.5GHz) placed in a 100Mhz Ethernet LAN 25 hops away from the
first LAN. For both scenarios we measured method calls with String and Vec-
tor arguments/return values of various sizes. In the case of Java RMI no access
control was performed, and no security manager/class loader installed. In the
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(a) String Transfer-LAN (b) Vector Transfer-LAN

(c) String Transfer-WAN (d) Vector Transfer-WAN

Fig. 6. RRMI vs. JavaRMI/JRMP Performance Comparison

case of RRMI we provided minimal control with a simple law that retrieved
the method name and one argument and compared them to predefined values.
In both cases, the actual implementation of the remote method was to simply
return the argument.

The results in Figure 6 (a) and Figure 6 (c) show the comparison between the
performance of RRMI and JavaRMI/JRMP when strings of 10, 100, and 1000
characters have been sent over and returned as part of a method call. The graphs
in Figure 6 (b) and Figure 6 (d) show the same comparison when a Vector of
Integers with 10,100, and 1000 items has been sent as an argument and returned
as a result.

While the LAN measurements showed our implementation to be, on average,
2 to 4 times slower than that of Java RMI/JRMP, the overhead in the case of
WAN was 8% for large sets of data. In a LAN, the serialization/deserialization
and marshaling/unmarshalling are, by far, the dominant time-consuming com-
ponent of an RMI call, and our solution requires the additional marshaling and
serialization operations by two controllers. Additionally, Java RMI is optimized
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for communication of strings and small payloads, while RRMI incurs the con-
stant penalty of carrying extra security-related payloads. As observed in Fig-
ure 6 (c) and (d), in the case of SANs or WANs, this disadvantages are offset
by the large communication latency. Given the added value of our mechanism,
the results are very encouraging. At the same time the results prove our imple-
mentation to be comparable or better than RMI/IIOP, as reported in [14], for
both LAN and WAN. We also discovered that the impact of the law complexity
over performance was relatively small in general (tens of μs) thus insignificant
for end-to-end method calls.

6 Related Work

We are not aware of any published proposal to regulate the reply, and none
of the conventional RPC-based middleware implementations provides for such
regulation.

Predefined timeout is not available under Sun RPC, Java RMI [23], and
DCOM [8]. These middlewares rely on the underlining network stream time-
out (which is neither explicit nor predictable). Under CORBA [13,4], a client
can specify a timeout interval, but the server is not informed of it.

A number of researchers addressed the treatment of unplanned timeout, and
various protocols have been proposed for that [16] [22] [11]. These protocols,
however, are hard-wired in the communication mechanisms, and they provide
very little flexibility with respect to the actions that can be taken by the server
or the client, and the effect of these actions.

Moreover, we are not aware of any prior attempt to incorporate timeouts in
any access control mechanism or in any access control decision. In our approach,
the timeout and its handling are made explicit in the access control policy,
thus providing the flexibility required by both the application and by the access
control policy.

7 Conclusions

This paper presented an extension of LGI which allows sophisticated and scal-
able regulation of synchronous communication. The following are the notable
characteristics of the resulting regulation model: (a) it regulates both the re-
quest part and the reply part of a call; (b) the regulation is done both at the
client and at the server side; and (c) it provides control over how the timeout is
handled in a manner that can take into account the concerns of both the client
and the server. The proposed model for access control has been implemented for
Java RMI, giving rise to a mechanism called Regulated RMI (RRMI).

The full power of the proposed mechanism resides in its ability to handle
stateful and communal policies. However, we believe that this mechanism is
useful for access control even under less sophisticated requirements. RRMI can
also be used for the customization of synchronous protocols even when the access
control is not necessary.
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Abstract. XML message filtering systems are used for sifting through
real-time messages to support business data mining and reporting. An
XML message filtering system needs to (a) process registered filter pred-
icates on multiple distributed real-time streams and (b) match and val-
idate the filter results with local data to identify the relevant data that
can be used for higher-level processing. Although efficient real-time fil-
tering schemes exists, the matching phase of the operation where filter
results have to be matched against local data to select those matches
that are relevant to the particular task remains to be expensive as it
requires expensive join operations. In this paper, we present an efficient
middleware (FMware) for filtering and matching XML messages against
locally available data. The proposed operator relies on a novel cluster-
domain matching scheme to reduce the cost of the process. We analyti-
cally study the cost of the proposed middleware and experimentally show
that it adaptively reduces the number of local data accesses and provides
large savings in matching time with respect to cluster-unaware matching.

Keywords: XML messaging, matching with local data, cluster-domain
hashing.

1 Introduction

XML message brokers provide filtering, tracking, and routing services to en-
able processing and delivery of the message traffic within an enterprise. These
tools (e.g. JMS [1] and IBM’s MQSeries [2,3]) listen to (possibly multiple) XML
data streams within an enterprise (or across enterprises) and identify message
data fitting the registered user profiles or filter queries. These messages are then
passed to appropriate business intelligence modules for further processing. Thus,
efficient middleware support for filtering and publish/subscribe services is crit-
ical for effective use of system resources, reducing the messaging delays, and
simplifying the design of enterprise business intelligence systems.

In this paper, we first note that such basic XML document processing tasks
can be off-loaded to a middleware. In fact, there is an increasing number of XML
� This research is funded by NSF grants ITR-0326544 and IIS-0308268.

M. van Steen and M. Henning (Eds.): Middleware 2006, LNCS 4290, pp. 301–321, 2006.
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message process off-loading technologies. Yet, most of these technologies provide
either low-level XML parsing acceleration support [4], (usually proxy-based) pub-
lish/subscribe solutions (e.g. SemCast [5], CoDD [6], NiagaraCQ [7]), message val-
idation through XML-gateways and XML-firewalls (e.g. DataPower [8] and
Sarvega [9]), or purely network-level intelligent message routing solutions [10,11]
which do not go beyond interpreting the request and reply message headers.

Existing work in publish/subscribe middleware focuses on the problem of
routing of data and the filter queries in a way to ensure that right filter results
reach the correct users in the shortest amount of time with minimal resources.
For instance, CoDD [6] uses subscription queries to create a hierarchical tree
structure which disseminates subsets of a data stream to consumers through
loosely-coupled peer nodes. On the other hand, in an enterprise business intel-
ligence context, it is not common that there are thousand of widely distributed
subscribers for filter results. Therefore, routing and dissemination are less criti-
cal in this domain then efficiency in filtering and matching: since large volumes
of data arrives continuously, it is essential that the filtering rate matches the
data arrival rate to prevent the loss of valuable information. Therefore, the col-
lection of query patterns need to be indexed in-memory to enable real-time fil-
tering of the data. The state of the art in XML filtering schemes include YFilter
[12], AFilter [13], TurboXPath [14], and XSQ [15]. Although, thanks to these
in-memory based filtering techniques (relying on state machines, push down au-
tomata, or transducers), the filtering step itself can generally be performed in
real-time (on the order of 100K filter statements), a major remaining challenge
in business context is the impedance mismatch between the in-memory filtering
schemes and the locally relevant data in secondary storage.

1.1 Challenge: Impedance Mismatch Between In-Memory Filtering
Schemes and Locally Relevant Data in Secondary Storage

Consider an enterprise with multiple sales offices and multiple suppliers. Let
us assume that the product shipment office of this enterprise needs to iden-
tify for each sale, (a) the productid of the sold item, (b) number of units sold,
and the (c) appropriate warehouse for product shipment. Let us also assume
that this enterprise is relying on XML messaging for communicating between
the various offices and branches. Without getting into the details of the cor-
responding schema, let us further assume that the XML message filtering sys-
tem can listen to the sales messages (with a registered filter statement of the
form “//productid//unit of sales”) to extract 〈productid, unit of sales〉 infor-
mation for shipment. However, let us further consider the case where the sales
messages arriving from the local sales offices do not contain the warehouseid
information for the products. This is expected in this case, as warehouseid is rel-
evant only to the product shipment office and “//productid//warehouseid”
will only be available locally (possibly at a secondary storage).

Therefore, although in-memory message filtering (such as YFilter [12]) can be
used for extracting “productid//unit of sales” from incoming sales messages,
an efficient middleware is needed for matching these against locally stored data
to identify 〈productid, unit of sales, warehouseid〉 matches (Figure 1).
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Fig. 1. Filtering and matching XML messages against locally available data
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Fig. 2. FMware middleware for filtering and matching messages against local data

1.2 Contributions of This Paper

With the goal of supporting time critical filtering, tracking, and routing services
for enterprises, in this paper we present a novel FMware middleware for ef-
ficient XML message stream filtering and matching against locally stored data
(Figure 2 and Section 2). In particular, we focus on the post-processing phase re-
quired for validation of the message filter results against XML data in secondary
storage and we develop an index-driven CMatch (clustered-matching) operator
for efficient implementation of the FMware middleware.

To reduce the cost of message filtering, in-memory schemes (such as YFilter
and AFilter) rely on structural similarities of the filter statements. When the
matching phase requires access to data in the secondary storage, however, ex-
ploiting structural similarities is not straight-forward. Existing index-structures
(such as [16]), that are used in XML DBMS context, rely on prefix clustering
through an ancestor-descendant interval labeling (Section 3). CMatch operator,
on the other hand, relies on a multi-interval scheme to exploit other structural
clustering opportunities to adaptively reduce accesses to the secondary storage
(Sections 3 and 3.7). In Section 4, we experimentally show that cluster domain
processing not only reduces the matching cost, but knowledge about cluster-
ing power of the data can be exploited by FMware to choose the appropriate
available index for matching.
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2 Overview of the FMware Middleware

Traditional XML filtering systems are concerned with finding instances of a
given set of patterns in a continuous stream of data trees (or XML messages).
More specifically, if {x1, x2, ...} denotes a stream of XML messages, where xi

is ith XML message in the stream, and {q1, . . . , qm} is a set of filter predicates
(described in an XML query language, such as XPath [17] or XQuery [18]) then
an XML filtering system identifies (in real-time) 〈xi, qj , PTij〉 triplets, such that
the message xi satisfies the filter query qj . The set PTij includes each instance
of the query (referred to as path-tuples in [12]) in the message.

In order to enable (a) filtering of XML messages against registered queries
and (b) matching filter results against locally stored data, FMware middleware
needs to interface available filtering engines with data available in secondary
storage. For example, consider the XPath filter statement A[//B]//C. Let us
assume that the XML messages contain enough information to match the A//B
pattern, however the A//C should be verified using local data. Thus, the filter
statement can be split into two parts:

filterStmt = A[//B] and matchStmt = resMsg.A//C,

where resMsg denotes the results for the filter statement filterStmt. Thus, the
stream of filtering results will need to be further matched against the locally
stored data for evaluating the resMsg.A//C relationship.

Definition 1 (Filtering and Matching with Local Data). Let
– the filter&match statement can be split into two sub-filter statements:

filterStmt for filtering on XML message stream and matchStmt for local
data,

– resMsg denotes the stream of message filtering results, where each result,
rmsgi, is a tuple (as in [12]) of nodes satisfying conditions specified in
filterStmt,

Loc.Data

SOAP (XML) Msg.Stream

Filter&Match Statement

\
\

m

n
\\

matchStmt

\

filterStmt

\\

\\

\\
structural

θ
join

RresLoc
m n

m n

=resMsg

(a) Splitting a statement (b) Corresponding structural join

Fig. 3. (a) A sample, tree-structured, filter statement which requires filter results from
incoming messages matched against local data and (b) the corresponding structural
join operation that needs to be performed efficiently
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sorted(n)

sorted (m)

sorted (m)

m
m n

=

n

Fig. 4. Sort-merge-join based approaches assume that the inputs are structurally sorted
in the joining nodes (m and n); naturally, the output can be sorted on only one of m
or n (sorted on m in this example)

– resLoc denotes the set of tuples, where each result, rlocj ∈ resLoc, satisfies
conditions specified in matchStmt, and

– Θ is a structural condition between node nodem in rmsg tuples and noden

in rloc tuples.

The filtered and matched result, R, consists of a stream of pairs, 〈rmsgi, rlocj〉,
where nodei,m ∈ rmsgi and nodej,n ∈ rlocj satisfy the condition Θ (Figure 3).

Broadly speaking, there are two different ways to perform the filtering and
matching with local data task:

– Alternative I (Periodic matches): (a) filterStmt is evaluated on the
XML message stream to identify a batch resMsg Batch of matches. (b)
matchStmt is evaluated on the local data to identify local candidates
resLoc Batch. (c) resMsg Batch and resLoc Batch is joined.

– Alternative II (Streaming matches): Each filter result rmsgi is matched
against the local data using an efficient index structure to locate the local
matches.

The disadvantages of the first alternative is that (a) it is blocking and (b) it
requires explicit materialization of all candidate matches in advance. The second
alternative requires neither blocking nor explicit materialization; however, it is
essential that the matching is performed efficiently.

2.1 Alternatives for Streaming Matching Implementations

Structural relationships within XML data constitute significant information that
has to be used in querying, indexing, and retrieval. Various structural join al-
gorithms are devised for speeding up the processing of queries which involve
ancestor/descendant type of structural relationships.

Structural join algorithms can be classified into two: holistic and binary. Holis-
tic join operators take the entire query and match it against the data as a whole.
Since in a streaming environment data itself is distributed and available in pieces,
such holistic approaches, which are shown to work well for static XML data,
are not applicable. Many existing (binary or holistic) structural join operators,
including TwigStack, PathStack [19], iTwigJoin [20], Stack-Tree-Desc/Anc [21],
EE/EA-Join [22], and TSGeneric [23], are specially designed variants of the stan-
dard sort-merge join algorithm: they require that the ancestor and descendant
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Fig. 5. (a) AD-labeling and (b) ViST-style SES-labeling of the same collection[26]

lists be available in a structurally sorted order before the join operation can be
performed (Figure 4). Consequently, these sort-merge based schemes face the
problems common in traditional sort-merge-joins: (a) they risk being blocking
(for sorting the inputs) or (b) they constrain query plans to only those that
can provide appropriately sorted inputs. Unfortunately, when the filter results
for validation arrive from multiple message queues (with potentially different
message structures and arrival orders) it is not possible to assume that the data
for the corresponding join operation will be structurally sorted in a desirable
manner. Thus, once again, they are not applicable in a filtering and matching
environment.

A natural alternative to sort-merge join based schemes, more suitable for
filtering with unpredictable arrival patterns, is to rely on structural index joins,
where the data nodes (not necessarily structurally sorted) are checked against
a pre-existing index structure which can return required ancestor or descendant
nodes in the data. Index-joins can be performed on unsorted streaming input
data as long as appropriate index structures are available on the local data.
There are a variety of existing index structures, such as B+-trees, XR-trees [16],
XB-trees [19], and R-trees [24,25] that can be used for indexing local data for
efficient evaluation of structural conditions for identifying matching local data.
The cost of this operation, per filtering result, rMsgi in the stream resMsg
is bound by the cost of the index access, which depends on the specific index
structure used; but, generally, it is at least logarithmic in the local database size
(depth of the index structure). When the arrival rate of the filtering results is
high, on the other hand, the performance of existing index structures may not
be sufficient (we experimentally evaluate this in Section 4). Therefore, for such
operators to be useful in a real-time data filtering and matching middleware,
they need to be implemented efficiently. In the next section, we propose a novel
clustered matching approach addressing the needs of the FMware middleware.

3 Cluster Support for Efficient Indexed Matching

To implement structural matching (or join) operations efficiently, most index
structures, such as B+-trees, XR-trees [16], XB-trees [19], and R-trees [24,25],
assume an ancestor/descendant (AD) labeling scheme [22,27] which assigns
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intervals to nodes such that descendant nodes have intervals that are contained
within the intervals of the ancestor nodes. The AD interval of an XML node
ni clusters all descendants of ni based on their common prefixes up to ni (Fig-
ure 5(a)). Therefore, the ancestor/descendant relationship can be checked using
containment or enclosure (= containment−1) predicate on intervals. This renders
interval-based AD labeling very common in implementation of structural joins.

3.1 Clustering Power and Precision

Since there is a one-to-one correspondence between the data nodes and the
intervals, given an XML document, the number of interval labels assigned to
it by an AD-based schemes is the same as the number of nodes in the data
(Figure 5(a)). In contrast, in order to reduce the number of intervals that need
to be considered, structure-encoded-sequence (SES) [28,29,26] based approaches
try to further cluster structurally related nodes. They achieve this by using
labeling schemes (such as Prufer sequences [29]) that can capture more than
the ancestor/descendant relationships1. For example, Figure 5(b) shows ViST
style [26] SES-labeling: each node nodei is assigned a sequence seqj and an SES
interval nodei.ses = (sj , ej). Once again, resulting intervals are either disjoint or
contained within each other. However, as shown in Figure 5(b), some nodes with
the same label are clustered under the same SES-label. For instance, the SES
label [2, 7] in Figure 5(b) clusters two nodes in the original data (Figure 5(a)),
both with tag D. Note that these two nodes tagged2 D are also on similar paths
on both trees. In other words, each structure-encoded interval clusters multiple
data nodes. Based on this example, we can state that SES labels have higher
cluster power than the AD labels.

Definition 2. Clustering Power of an SES-label (cps(ses, l, d)). The clus-
tering power, cps(ses, l, d), of an SES-label, ses, in a given data source, d, for
the labeling scheme l is the number of nodes with this SES label. �
Since clustering applies to nodes with the same tags, given a data collection and
a labeling scheme, we can also define the clustering power of a given tag:

Definition 3. Clustering Power of a Tag (cpt(τ, l, d)). The clustering power,
cpt(τ, l, d), of tag τ in a given data source, d, for the labeling scheme l is the
average clustering power of the all SES labels corresponding to those nodes with
tag τ . �
Clearly using SES-labels of the nodes, as opposed to their AD-labels during
matching can reduce the number of index checks that have to be performed.

1 There are a number of SES-labeling schemes. For instance, PRIX [29] uses Prüfer se-
quences, while [28] and other covering index based schemes consider path sequences.
Details of SES-labeling processes have been omitted. Please refer to [28,29,26] for
more details on SES-labeling schemes.

2 A tag is the element name, attribute name, or the value associated with the XML
node.
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cleaning phase: the faulty candidate nodes produced by the SES-based index scan are
eliminated using AD-labels and (b) implementation of CMatch: nodes in resMsg are
first matched against indexed nodes using an SES-index, then candidates are cleaned
using AD-labels; explained in Section 3

Furthermore, knowledge about the clustering powers of SES-labels and individ-
ual tags can enable the optimizer to decide whether a cluster-enabled scheme is
likely to be effective (by reducing the number of inputs to consider) for a given
matching condition. Thus we can benefit from the inherent clustering power of
the SES-labels to reduce the number of times the existing index is accessed.
However, this reduction in the number of index accesses do not come for free.

Unfortunately, SES-labels arenotasprecise asAD-labels in capturing structural
relationships. In particular, unlike AD-labels, where ancestor(nodei, nodej) ↔
contains(nodei.ad, nodej .ad), SES-labels satisfy only one direction of the impli-
cation: ancestor(nodei, nodej) → contains(nodei.ses, nodej .ses). Thus, a query
of the form “find all nodes with SES-labels contained within the SES label of a given
node,” might return more nodes than the descendants of the given node. Thus, al-
though SES-labels can be used for clustering to reduce the number of disk accesses,
to eliminate false retrievals thatmay result fromtheuse of clustering, thefilter-and-
matchoperationwouldneeda cleaningphase, basedon the (unclustered)AD-labels
(Figure 6(a)).

3.2 CMatch Operator for Multi-labeled Matching and Cleaning

To enable both efficient and correct operation, FMware middleware relies on a
multi-labeling scheme which uses SES-labels for clustering and AD-labels to
prevent false retrievals. A Multi-Interval (MI) label combines the AD and SES
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interval labels. Formally, the MI-label of nodei with AD-label nodei.ad and SES-
label nodei.ses is nodei.mi = (nodei.ad, nodei.ses). FMware assigns MI-labels
to each data node in the (global) XML data through exchange of structural
information between distributed FMware entities.

Figure 6 provides an overview of the CMatch operator with which the
FMware middleware implements clustered index matching in the SES domain
followed by an AD-domain cleaning phase: the faulty candidate nodes produced
by the SES-based index scan are eliminated: to reduce the number of accesses
to the index, inputs are clustered based on their SES labels and the index is ac-
cessed only once for each SES label. Since SES-based index access is not enough
by itself to ensure correctness of the results, a symmetric, non-blocking CClean
operator is used for cleaning the results from false hits.

Figure 6 shows the detailed implementation of the CMatch operator. The two
complementary halves (cluster-domain index access and cluster-enabled clean-
ing) of the CMatch operator are described next.

3.3 Cluster-Domain Index Access (Steps 1,2)

As shown in Step 1 of Figure 6(b), the CMatch operator first identifies unique
SES-labels observed in the input stream of filtering results. These unique labels
are then used for accessing an index structure to fetch the matching nodes. (Step
2 of Figure 6(b)). The details of these steps are as follows:

(Step 1. SES-clustering of Filter Results). The stream of inputs, resMsg,
is passed through a newSES label identifier, which identifies unique SES labels
in the input nodes and pushes each unique SES label encountered in the stream
into a queue, uniqueSESqueue. In our implementation, this process of unique
SES identification is piggy-backed on the SES-hashing process used for cleaning,
discussed later in Section 3.4.

(Step 2. SES-clustered Access to the Local Database). Using an existing
SES index, the unique SES labels in the uniqueSESqueue are compared
against the matching condition Θ (more specifically Θses) to identify candidate
matches. The individual Θses matching operations are performed by the SES
index-access threads that are available in a thread pool. For each sesnew in
the uniqueSESqueue, the SES index is accessed only once (i.e., the search
key, seskey , is equal to sesnew). The index returns a stream, C(seskey), of
candidates, where

C(seskey) = {〈seskey, rlocj〉| (Θses(seskey, nodej,n.ses) = true) ∧ (nodej,n ∈ rlocj)}.

Given a search key, seskey, each candidate in this stream is a multi-interval
label of the matching nodes. Each candidate is also marked with the search
key, seskey; this is used in the second phase of the algorithm for the AD-based
cleaning operation which will clean false hits.

Note that multiple SES-index scan threads pipe their results into a single
stream, C. Therefore, this stream contains results for different SES labels (po-
tentially interleaved due to simultaneously outputting index scan threads).
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Fig. 7. Symmetric, non-blocking cleaning operator (CClean), explained in Section 3.4

3.4 AD-Based Cleaning (Step3)

The AD-based cleaning operator (Step 3 of Figure 6(b)) matches the candidates
(C) returned by SES index lookup with the original results in the message filter
stream (resMsg) based on their SES labels used for index accesses and performs
AD-based cleaning on Θ (more specifically Θad) to remove faulty candidates.
Thus, the result in the output stream, R, consists of pairs, 〈rmsgi, rlocj〉, where
nodei,m ∈ rmsgi and nodej,n ∈ rlocj satisfy the condition Θad:

R = {〈rmsgi, rlocj〉 | (rmsgi ∈ resMsg) ∧ (〈seskey, rlocj〉 ∈ C) ∧
(ni,m.ses = seskey) ∧ /*match for SES-clustering*/
(Θad(nodei,m.ad, nodej,n.ad) = true)} /*AD-based cleaning*/

Therefore, simultaneously with the SES-based index access by the CMatch
operator, the original stream of filter results (resMsg) are passed to a symmetric,
non-blocking operator for AD-based cleaning (Step 3 of Figure 6(b)).

Before the AD-conditions can be checked for cleaning, however, resMsg and
C have to be matched based on the SES search key, seskey, used for accessing
SES clustered index. Unfortunately, neither of the streams is sorted or clustered
on these SES values. In resMsg, results with the same SES values may be far
apart from each other depending on how resMsg has been computed prior to
being passed to this operator. Similarly, since multiple SES-index access threads
(each performing a separate index access with a different search key, seskey) are
writing onto the same stream C, the candidates are not likely to be clustered on
the seskey values to be used for cluster-based matching.

Overview of the CClean Operator. The key for efficient cleaning, there-
fore, is symmetric non-blocking matching of tuples ni,m ∈ resMsg and
〈seskey , rlocj〉 ∈ C, based on the condition, (ni,m.ses = seskey). Figure 7 shows
the overview of the cluster-enabled cleaning operator, CClean. The two left and
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right input streams (LStr = resMsg and RStr = C) to the operator are streams
of multi-interval labels. Each candidate element in RStr is also annotated with
the SES-based search key, seskey , used for fetching this candidate from the index.

Since correct candidates must satisfy both Θad(nodei,m.ad, nodej,n.ad) =
true) and ni,m.ses = seskey , inputs to the cleaning operator are clustered, using
hash tables, based on their SES-labels: (a) for the nodes in LStr, the correspond-
ing SES labels and (b) for the candidates in RStr, the search key (seskey) used
for fetching the candidate from the index are used for hashing. For those node
pairs which satisfy the SES equality, the AD condition will be checked for clean-
ing. In a sense, SES labels are used for clustering the input nodes (and their AD
labels), thereby reducing the number of nodes that need to be compared based
on their AD-values.

Most importantly, to prevent the clustering phase itself from becoming a bot-
tleneck, the CClean operator achieves both SES-based clustering and the AD-
based joins simultaneously. To facilitate this, the operator keeps an in-memory
hash structure for each of its input streams. Inputs are inserted into these
hash structures based on their SES-labels:

– Each hash bucket contains inputs that have the same hash(ses) value. Note
that since multiple SES labels may have the same hash value, a bucket may
contain input nodes with different SES labels.

– Partitions in buckets cluster nodes with the same SES.
– To achieve the non-blocking behavior, each stream queries the other one

without waiting for all the data with the same SES label being available.

To prevent duplicate results, timestamps are associated with the inputs being
inserted into hash tables.

Since the in-memory space allocated to each CMatch operator is limited, in
addition to the in-memory hash tables, the operator also maintains disk-based
AD index structures to manage overflow buckets. Note that these index struc-
tures are used for identifying descendants or ancestors, depending on which input
stream they are indexing. Candidate index structures include XR-trees [16] and
R-trees [24,25]. When a new SES label is hashed into a bucket with no empty
partition, a victim partition is selected based on the fullest least-recently-used
principle: the fullest partition that has not been used for the largest duration
of time is selected to be the victim to be pushed onto the disk. In addition,
if a partition becomes full and there is a new AD label to be inserted to that
partition, it is pushed to disk (the physical partitions have a fixed size).

We are now ready to describe the functioning of the cluster-enabled hash-
based cleaning operator, CClean, depicted in Figure 7 in detail.

CClean Algorithm. Figure 7 demonstrates the implementation and the op-
eration of the symmetric, non-blocking CClean operator. The operator is non-
blocking in that input streams are queued and processed as they are received.
It is also symmetric in that the operator consumes and processes both its input
streams, LStr and RStr, simultaneously. The inputs to the operator are two
streams, LStr and RStr, of multi-interval labeled nodes (LStr = resMsg and
RStr = C).
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(Step 1.) Data from both input streams are queued for insertion into the corre-
sponding hash tables based on the corresponding SES labels as described above.
A time-stamp that specifies the insertion time, called insertion time-stamp, is
associated with each element in the hash table. These insertion time-stamps are
used to prevent duplicate results. The insertion process is carried out by threads
that are available in the corresponding insertion-thread pools.

(Case 1): If there is already a partition in the corresponding hash table with
the SES label and the partition is not full, then the input is time-stamped and
inserted into the partition. If the partition is already full, the partition is pushed
to the disk, along with the new (time-stamped) input. The preempted partition
is made available as a free partition.

(Case 2): If there is no partition in the corresponding hash bucket with the SES
label of the input, then an empty partition is allocated. If there is also no empty
partition, then a victim partition is pushed to the disk (into the disk-based index
structures) and the partition is allocated for this SES. The input is time-stamped
and inserted into the partition.

(Step 2.) Hashed or indexed inputs on both sides are pushed into the respective
query queues to initiate AD-join queries on the other stream. These queries are
executed by the query threads that are available in the query-thread pools. Each
query thread initiates a query on the other stream:

1. If the corresponding SES partition is found on the in memory hash table of
the other stream, the thread first performs an in-memory AD-join based on
the AD condition, Θad.

2. The thread, then, consults an SES bitmap which specifies whether the cor-
responding SES partition is in the disk or not:
(a) if the SES partition is found on the disk, the appropriate AD range query

is performed on the index structure corresponding to the given SES label.
(b) if the partition is not on the disk either, the AD-join is not performed

as there are no matches.

In order to prevent duplicate results, only those pairs of inputs, lin and rin,
whose insertion time-stamps satisfy the following condition are included in the
output stream:

1. if the input, for which the query is initiated, is from the LStr stream, then
tslin > tsrin, where ts denotes the insertion time-stamp.

2. if the input, for which the query is initiated, is from the RStr stream, then
tsrin ≥ tslin.

For each pair of matching lin and rin, the concatenated multi-interval list
〈lin, rin〉 is inserted into the output. �
Dynamic Hash Bucket Allocation. In CClean, nodes are hashed into the
buckets based on SES-labels. All nodes having the same SES label are mapped
into the same partition of the same bucket. If the variation in the clustering
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power of individual SES-labels in the data is extremely high (Section 3.1), it is
possible that some buckets will be extremely full whereas others are relatively
empty. Thus, instead of allocating fixed size buckets, CClean allocates memory
to the hash buckets dynamically and goes to the disk only after all memory
allocated for the cleaning task has been consumed. In our implementation, we
are allocating memory dynamically to each bucket on per-need basis. Note that
random hashing of the SES-labels ensures that the utilization of the in-memory
pages is not low due to SES-labels with very low clustering powers.

Complexity of the CClean Operator. If during CClean, data is found in the
in-memory hash tables, the cost of search is negligible. Otherwise, a search has
to be done in the corresponding overflow structure. In the following discussion of
the complexity of the CClean operator, for simplicity, we will consider the worst
case where all insertions and searches go to disk.

Let I = |resMsg| be the number of input elements, Suniq be the set of unique
SES labels in resMsg, and C = |C| be the number of candidates returned by
index accesses. Let also r ∈ resMsg and c ∈ C be two input nodes. Ignoring
in-memory hash tables, nodes r and c will both require disk access and initiate
searches in the opposite structure.

Insertion cost: The insertion cost of input r ∈ resMsg is determined by the
number of nodes in resMsg, with the SES label sr = r.ses, that are already
received and indexed. In particular, if we denote the number of nodes in resMsg
with SES label sr, I(sr), the worst case insertion cost of r is O(log(I(sr))). Thus,
the total insertion cost for elements in resMsg can be computed as

O
(∑

s∈Suniq I(s) × log(I(s))
)

.

The insertion cost of the candidate c ∈ C with the corresponding SES search
key kc is, on the other hand, determined by the number of candidate nodes
with the same SES key, kc, already received in C. If the number of nodes in C
with SES-based search key kc is C(kc), then the worst case insertion cost of c is
O(log(C(kc))). Since search keys are unique SES labels in resMsg, the total inser-
tion cost for elements in C can be computed as O

(∑
s∈Suniq C(s) × log(C(s))

)
.

Thus, in the worst case, the insertion costs

O
(∑

s∈Suniq I(s) × log(I(s)) + C(s) × log(C(s))
)

.

Search cost: Ignoring the in-memory hash tables, the overall worst case search
cost (in terms of disk accesses) is

O
(∑

s∈Suniq I(s) × log(C(s)) + C(s) × log(I(s))
)
.

Total cost: Based on these, we can compute the total CClean cost as

O
(
2× ∑

s∈Suniq (I(s) + C(s)) × max{log(C(s)), log(I(s))}
)
.

If an SES label in resMsg clusters a large number of nodes or returns a
large number of candidates, this label is likely to impose high cleaning cost.
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Nevertheless, index structures that maintain these intermediary nodes are likely
to be smaller (and more efficient) than a large AD-index.

3.5 Complexity of the CMatch Operator

Since the clustering effect of the SES-labels reduces the number of requests that
are sent to the SES index structure, higher clustering rates of SES-labels in the
input stream would help the performance of the CMatch.

Cluster-domain index scan cost: Since the SES-domain index structure is
accessed only once for each unique SES-label in the input, using the same nota-
tion as before, the access cost to the index structure could be written as

O
(∑

s∈Suniq SES index access cost
)

.

AD-based cleaning cost: In Section 3.4, we computed the CClean operator
used for AD-cleaning process as

O
(
2× ∑

s∈Suniq (I(s) + C(s))max{log(C(s)), log(I(s))}
)
.

Here, I(s) = I × rps(s, l, d), where rps denotes the relative clustering power
of SES labels (in the data collection d and using labeling scheme l), as defined
in Section 3.1. C(s) = match(κ, s) is the number of matches contained in the
SES-interval s.

Total cost: We can compute the worst case overall cost (in terms of disk ac-
cesses) of the CMatch as the sum of the cluster-domain scan and AD-based clean-
ing costs given above. Since the two streams to CClean are processed in parallel,
allocating independent resources to them would reduce the overall cleaning time.
Similarly, since CClean is pipelined and non-blocking, cluster-domain index scan
and AD-based cleaning phases can be performed in parallel. Thus, mostly, the
observed execution time is only the maximum of the two phases, not their sum.

3.6 CMatch Versus AD-Only Matching

If the index scan was performed in the AD-domain rather than in the SES-
domain, the total access cost to the existing AD index structure would be

O
(∑

s∈Suniq I(s) × AD index access cost
)

.

Since, for AD-only match, there is no need for cleaning, this is also the total cost
of the AD-only match operation. One major advantage of CMatch (versus AD-
only match) is that for a given SES label, s, the index structure is accessed only
once for CMatch, whereas the index is accessed I(s) times for AD-only matches
(see equations above) Furthermore, since SES indexes are more compact than
AD indexes, it is likely that searches on the existing SES index structures will
be faster than searches on the AD index structures.

However, the CMatch operator has an AD-based cleaning overhead that has
to be accounted for. Computation of the size of in-memory space needed to
hold incoming inputs and candidates is trivial using the statistics described
above. However, when the in-memory space is not large enough, CClean operator
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Fig. 8. Per-input choice between CMatch and AD-only index match in FMware

needs to use disk-based structures. Comparing the worst case CClean cost and
the AD-only match cost, we see that cluster-domain scan followed by cleaning
is worthwhile as long as the accesses to clustered intermediary structures are
cheaper than scans on the large AD index structure.

3.7 Per-Query and Per-SES Adaptation in FMware

Given a matching statement with two query tags, based on the cost models and
statistics presented above, we can estimate whether CMatch or AD-only match
will cost less. One can also choose between different SES-labeling schemes based
on the clustering rates they provide. We refer to this as per-query adaptation.
Note that, it is also possible to consider each node in the input stream indi-
vidually based on CMatch or AD-only match on a per-input basis (Figure 8).
Furthermore, if the expected number of candidates is large, cluster-domain pro-
cessing provides further opportunities. In the next section, we show that the
FMware middleware benefits from both alternatives, based on available statis-
tics.

4 Experimental Evaluation

In this section, we experimentally evaluate the effectiveness of cluster-domain
matching, by comparing performances of CMatch and AD-only match. In par-
ticular, we show that the CMatch exploits available (per matching) task memory
significantly better than an AD-only match, especially when the clustering pow-
ers of the nodes are high. We also show that the relative performances of CMatch
and AD-only index join follow the cost patterns discussed earlier in the paper,
thus it is possible to choose between CMatch and AD-only match, case-by-case,
based on easy to collect statistics.

4.1 Setup

The operators presented here have been implemented in Java and ran on Redhat
7.2 Linux workstations, with 1.8 GHz Pentium IV processor. For the AD- and
SES- index structures, we used B-tree implementation of BerkeleyDB [30]. The
overflow data in CClean is indexed on disk.
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Table 1. MQ1-MQ6 are the various matching queries used for comparing CMatch
and AD-only match. CMatch can exploit available memory significantly better than
AD-only index match, especially when the clustering powers are high.

AD:SES(Cl Pow) AD:SES Matching Buffer(MB) Performance Indicators Time(ms.)
InStream LocalDB Operator Total (BT+HT+OT) #BScan Cand #Omiss Exper.Tot. Per Msg. Avg.

• No Clustering: AD-only matching is expected to perform better
MQ1 1:1 5821:5280 ADMatch 1.11MB (1.11+0+0) 1 n/a n/a 498 498ms

(1) CMatch (1+0.1+0.01) 1 5821 ∼22K ∼87K ∼87K ms = 87s
ADMatch 2.1MB (2.1+0+0) 1 n/a n/a 455 455ms
CMatch (1+ 1+ 0.1) 1 5821 8 941 941ms

• Very Low Clustering Power: AD-only or CMatch
MQ2 5821:5280 1:1 ADMatch 1.11MB (1.11+0+0) 5821 n/a n/a 558 0.096ms

(1.1) CMatch (1+0.1+0.01) 5280 1 ∼22K ∼86K 14.77ms
ADMatch 2.1MB (2.1+0+0) 5821 n/a n/a 554 0.095ms
CMatch (1+ 1+ 0.1) 5280 1 8 490 0.085ms

• High Clustering Power: CMatch is expected to perform better
MQ3 222:1 2:1 ADMatch 1.011MB (1.011+0+0) 222 n/a n/a 182 0.82ms

(222) CMatch (1+0.01+0.001) 1 2 411 443 1.99ms
ADMatch 1.11MB (1.11+0+0) 222 n/a n/a 220 0.99ms
CMatch (1+0.1+0.01) 1 2 8 65 0.29ms

MQ4 12897:1 4:2 ADMatch 2.1MB (2.1+0+0) 12897 n/a n/a ∼ 6K 0.465ms
(12897) CMatch (1+1+0.1) 1 4 ∼17K ∼172K 13.33ms

ADMatch 3.2MB (3.2+0+0) 12897 n/a n/a ∼ 6K 0.465ms
CMatch (1+2+0.2) 1 4 8 722 0.056ms

• High Clustering Power: CMatch is expected to perform better
MQ5 463:224 5821:5280 ADMatch 1.011MB (1.011+0+0) 463 n/a n/a ∼30K 64.8ms

(2.07) CMatch (1+0.01+0.001) 224 2 ∼1K ∼1K 2.16ms
ADMatch 1.11MB (1.11+0+0) 463 n/a n/a ∼ 30K 64.8ms
CMatch (1+0.1+0.01) 224 2 8 115 0.25ms

MQ6 12897:1 5821:5280 ADMatch 1.11MB (1.11+0+0) 12897 n/a n/a ∼900K 69.78ms
(12897) CMatch (1+0.1+0.01) 1 5790 ∼82K ∼506K 39.23ms

ADMatch 2.1MB (2.1+0+0) 12897 n/a n/a ∼900K 69.78ms
CMatch (1+ 1+ 0.1) 1 5790 ∼17K ∼190K 14.73ms

We compared the AD-based index match and the CMatch operators under
varying conditions. Both AD-only match and CMatch operator implementations
are non-blocking and pipelined for fair comparison. Note that AD-only match
does not need a cleaning phase. Table 1 provides a diverse set of matching con-
ditions, selected for inclusion here as they illustrate the behavior of the CMatch
under various matching characteristics. The table reports the following param-
eters:

– AD:SES, denotes the number of unique SES and AD labels in the inputs,
– Cl Pow, denotes the clustering power of the SES labels in the input stream,
– Cand, is the number of candidates generated by cluster-domain index scan,
– Buffer, denotes the buffer allocated for each operator (more specifically, BT

is buffers for B-tree, HT is hash table size, and OT is buffers for overflow-
index trees),

– #BScan, denotes the number of accesses to existing (AD or SES) indexes,
– #Omiss is the number of misses from the overflow-index tree buffers
– Exper.Tot. is the execution time for the entire experiment
– Per Msg. Avg. is the average time (per message) required for matching. This

is what we would like to have as small as possible.

In these experiments, we report results based on ViST-style SES-labels [26] and
traditional Dietz style AD-labels [27]. As the local as well as streaming data, we
used fragments of the DBLP XML data from [31].
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Buffers are allocated (and varied) in such a way that AD-based matching and
CMatch operators get to use the same amount of memory:

buf AD Btree︸ ︷︷ ︸
AD only index match

=

1MB︷ ︸︸ ︷
buf SES Btree+mem Hash Table +

0.1×mem Hash Tables︷ ︸︸ ︷
buf overflow index︸ ︷︷ ︸

CMatch

Since the index structures for SES-labels tend to be smaller than the index-
structures for AD-labels, to evaluate the worst case behavior for the CMatch
operator, we significantly constrain the available buffer (1-3MB per CMatch op-
erator). This also reflects the situation observed in practice, where there are
multiple filter-and-match operations to be processed in FMware middleware
and where the available buffer has to be shared among CMatch operations.

Finally, in the setup we used, the cost of each page miss was around 10ms
and the access and processing cost for hits in the buffers was around 0.01ms.

4.2 Experiment Results

Table 1 compares CMatch against AD-only matching for queries with different
characteristics, including degrees of clustering of the involved tags and degree of
expected candidates that need to be cleaned. Table 1 also presents results under
constrained and non-constrained buffer availabilities for each query.

(MQ1). In this case, the input nodes in the filtered message stream have no
clustering power. Since SES-based clustering is not applicable, as expected, AD-
only match is relatively faster (though both alternatives are costly and realtime
filtering and matching may not be applicable).

(MQ2,MQ3,MQ4). In these cases, the input stream of filtered nodes have
some clustering power. On the other hand, for all three cases, the number of
matching nodes in the local databases (and thus the candidates returned by the
index accesses) are low.

In all three cases, the costs of the CMatch operator depends on whether the
hash table is large enough for the required cleaning operation: If the hash table
used during the cleaning phase is large enough to balance the expected number of
hash misses with the savings from the access to the large B-tree index structures,
then even a very low 1.1 clustering power can lead to savings. Note that in
all three cases, the amount of hash-space allocated was less than the amount
of buffer allocated for the AD-based index structures; in other words, when
the clustering power is non-negligible CMatch uses the available memory more
effectively than AD-only matching. Furthermore, the degree of saving increases
predictably with the clustering power of the filtered nodes.

(MQ5). In this case, the clustering power of the nodes in the input stream is
non-negligible (∼2) and the number of relevant nodes in the local index structure
is relatively high. However, the number of candidates returned by SES scan for
cleaning is relatively low.
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The clustering power (∼2) of the input stream ensures that the number of
index scans for CMatch is only half of those of AD-only match. Thus leads to
significant savings even with a relatively small hash table.

(MQ6). In this case, the clustering power of the nodes in the input stream,
the relevant number of nodes in the local database, as well as the number of
matching candidates that are returned by the SES-scan are all high.

Due to its clustering power, CMatch provides significant savings, even when it
has to rely on disk-resident trees in the cleaning phase. Note that since the index
structures (used for efficient access to the overflow buckets) are significantly
smaller than the B-trees used for AD-only matches, CMatch is able to provide
better results even when the number of overflow-index access is significantly
larger than the number of AD-index accesses.

Summary and Discussions: The experiment results show that

– cluster-domain processing helps the performance of FMware by significantly
reducing the total number of disk accesses to the local index structure; and

– CMatch exploits available memory very effectively. In the experiments, in-
creasing the buffer available for the AD index did not help reduce the cost
of AD-only index match, yet when the same amount of increase is provided
to the CMatch, we observed significant reductions in cost.

5 Related Work

In addition to the discussions in the Introduction, here we provide an overview
of the work in adaptive query processing and index supported XML processing.

5.1 Adaptive Query Processing with Relational Data

In the relational domain, continuous query processing with unpredictable data
arrival characteristics has been studied from various angles. Telegraph [32], for
instance, is a dataflow engine which recognizes that cost of the operators, their
selectivities, and the rates at which tuples arrive from the input vary during the
processing of queries. Thus it routes data through operators adaptively, based
on arrival characteristics. Aurora [33,34] focuses on QoS- and memory-aware
operator scheduling and load shedding for coping with transient spikes in data.

Other works, which focus on adaptive query processing for continuous queries
include [35,36,37]. Especially in the distributed relational query processing con-
text, it has been long recognized that variations in the data arrival rates ne-
cessitate special join operator implementations. In particular, XJOIN [38] and
HM-Join [39] are two non-blocking join operators suitable for deployment in sys-
tems where data with, high variable arrival rate, from remote sources have to be
joined. The algorithms rely on symmetric non-blocking hash-joins.

5.2 Index- and Multi-index Support for XML Processing

Structural join schemes sometimes exploit on-the-fly-created index structures
(such as B+ trees or its augmented variations [19,40,16], R trees [24,25]) to
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skip unpromising ancestor (descendant) elements. DataGuides [28], IndexFab-
ric [41], T-Index [42], BLAS [43], FB-Index [44], XJoinIndex [45], APEX [46],
and other covering indices [47], on the other hand, use pre-computed indexes.
A DataGuide [28] is a structural summary of the database, and provides an ef-
ficient mechanism to enumerate matching nodes when a tag path starting from
the root is given as input. T-Index is also tailored to identify nodes matching a
given path template, but paths are not limited to those starting from the root.
IndexFabric indexes trees in a hierarchy of Patricia tries, reducing the number
of disk accesses needed to find paths satisfying a path expression[41]. APEX[46]
is similar to DataGuides and T-Indexes, but it only maintains frequent paths.

[20] notes that a combination of XML indexing methods can be useful for
improving stream-based processing of structural queries, since different schemes
are better for different classes of XML twig patterns. Similarly, in (XDG) [28],
node labels are indexed by a term index T-Index, which gives the sequence of all
nodes with the same label in the XDG. A second index, called P-Index, which
is a path index, is used to determine the instances of a certain rooted tag path
and also to identify the addresses of the physical data locations in an efficient
way. ViST [26] also uses two index structures, namely S-Index (for SES-based
labels) and D-Index (for ancestor-descendent labels). BLAS [43] uses a similar
observation to develop a bi-labeling system for reducing the number of joins.

6 Conclusion

XML message filtering systems may need to match results with local data to
identify those relevant for higher-level processing. We presented a FMware mid-
dleware for performing filtering in the presence of locally stored data which need
to be matched against filter results. The CMatch operator, underlying FMware,
obtains its efficiency from the clustering effect of the structure-encoded labels,
which significantly reduces the number of secondary storage accesses required
for accessing the locally stored data. The operator also has a highly efficient,
non-blocking cleaning phase to remove any spurious results that may have been
created due to the imprecise clustering of structure-encoded labels. We exper-
imentally showed that this approach provides significant savings in filter result
validation time by reducing the total number of disk accesses to the local data.
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5. Papaemmanouil, O., Çetintemel, U.: Semcast: Semantic multicast for content-

based data dissemination. In: ICDE. (2005) 242–253



320 K.S. Candan et al.

6. Anand, A., Chawathe, S.S.: Cooperative data dissemination in a serverless envi-
ronment. In: CS-TR-4562, University of Maryland, College Park. (2004)

7. Chen, J., DeWitt, D.J., Tian, F., Wang, Y.: Niagaracq: a scalable continuous query
system for internet databases. In: SIGMOD. (2000)

8. DataPower: Xs40 XML firewall. http://www.datapower.com/products/ (2006)
9. Sarvega: Xml security gateway. http://www.sarvega.com/xml-guardian-

gateway.html (2006)
10. DataPower: Xs40 XML router. http://www.datapower.com/products/ (2006)
11. Sarvega: Xml context router. http://www.sarvega.com/xml-context.html (2006)
12. Diao, Y., Franklin, M.: Query processing for high-volume xml message brokering.

In: VLDB. (2003)
13. Candan, K., Hsiung, W.P., Chen, S., Tatemura, J., Agrawal, D.: Afilter: Adaptable

xml filtering with prefix-caching and suffix-clustering. In: VLDB. (2006)
14. Josifovski, V., Fontoura, M., Barta, A.: Querying xml streams. The VLDB Journal

14(2) (2005) 197–210
15. Peng, F., Chawathe, S.S.: Xsq: A streaming xpath engine. In: CS-TR-4493, Uni-

versity of Maryland, College Park. (2003)
16. Jiang, H., Lu, H., Wang, W., Ooi, B.C.: XR-Tree: Indexing XML data for efficient

structural joins. In: ICDE. (2003)
17. Xpath. http://www.w3.org/TR/xpath (1999)
18. Xquery. http://www.w3.org/TR/xquery (2006)
19. Bruno, N., Srivastava, D., Koudas, N.: Holistic twig joins: Optimal XML pattern

matching. In: SIGMOD. (2002)
20. Chen, T., Lu, J., Ling, T.: On boosting holism in xml twig pattern matching using

structural indexing techniques. In: SIGMOD. (2005)
21. Al-Khalifa, S., Jagadish, H.V., Koudas, N., Patel, J.M.: Structural joins: A prim-

itive for efficient XML query pattern matching. In: ICDE. (2002)
22. Li, Q., Moon, B.: Indexing and querying XML data for regular path expressions.

In: VLDB. (2001)
23. Jiang, H., Wang, W., Lu, H.: Holistic twig joins on indexed XML documents. In:

VLDB. (2003)
24. Chien, S.Y., Tsotras, V.J., Zaniolo, C., Zhang, D.: Efficient complex query support

for multiversion XML documents. In: EDBT. (2002)
25. Grust, T.: Accelerating XPath location steps. In: SIGMOD. (2002)
26. Wang, H., Park, S., Fan, W., Yu, P.: ViST: A dynamic index method for querying

XML data by tree structures. In: SIGMOD. (2003)
27. Zhang, C., Naughton, J.F., DeWitt, D.J., Luo, Q., Lohman, G.M.: On supporting

containment queries in relational database management systems. In: SIGMOD.
(2001)

28. Bremer, J., Gertz, M.: An efficient XML node identification and indexing scheme.
In: VLDB. (2003)

29. Rao, P., Moon, B.: PRIX: Indexing and querying xml using Prüfer sequences. In:
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Abstract. Many emerging on-line data analysis applications require applying
continuous query operations such as correlation, aggregation, and filtering to
data streams in real-time. Distributed stream processing systems allow in-network
stream processing to achieve better scalability and quality-of-service (QoS)
provision. In this paper we present Synergy, a distributed stream processing mid-
dleware that provides sharing-aware component composition. Synergy enables
efficient reuse of both data streams and processing components, while composing
distributed stream processing applications with QoS demands. Synergy provides
a set of fully distributed algorithms to discover and evaluate the reusability of
available data streams and processing components when instantiating new stream
applications. For QoS provision, Synergy performs QoS impact projection to ex-
amine whether the shared processing can cause QoS violations on currently run-
ning applications. We have implemented a prototype of the Synergy middleware
and evaluated its performance on both PlanetLab and simulation testbeds. The
experimental results show that Synergy can achieve much better resource utiliza-
tion and QoS provision than previously proposed schemes, by judiciously sharing
streams and processing components during application composition.

Keywords: Distributed Stream Processing, Component Composition, Shared
Processing, Quality-of-Service, Resource Management.

1 Introduction

Stream processing applications have gained considerable acceptance over the past few
years in a wide range of emerging domains such as monitoring of network traffic for in-
trusion detection, surveillance of financial trades for fraud detection, observation of cus-
tomer clicks for e-commerce applications, customization of multimedia or news feeds,
and analysis of sensor data in real-time [1,2]. In a typical stream processing application,
stream processing components process continuous data streams in real-time [3] to gen-
erate outputs of interest or to identify meaningful events. Often, the data sources, as well
as the components that implement the application logic are distributed across multiple
sites, constituting distributed stream processing systems (DSPSs) (e.g., [4,5,6,7,8,9]).
Stream sources often produce large volumes of data in high rates, while workload spikes
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cannot be predicted in advance. Providing low-latency, high-throughput execution for
such distributed applications entails considerable strain on both communication and
processing resources and thus presents significant challenges to the stream processing
middleware design.

While a DSPS provides the components that are needed for an application execution,
a major challenge still remains: Namely, how to select among different component in-
stances to compose stream processing applications on-demand. While previous efforts
have investigated several aspects of component composition [6,7] and placement [8] for
stream applications, our research focuses on enabling sharing-aware component com-
position for efficient distributed stream processing. Sharing-aware composition allows
different applications to utilize i) previously generated streams and ii) already deployed
stream processing components. The distinct characteristics of distributed stream pro-
cessing applications make sharing-aware component composition particularly challeng-
ing. First, stream processing applications often have minimum quality-of-service (QoS)
requirements (e.g., end-to-end service delay). In a shared processing environment, the
QoS of a stream processing application can be affected by multiple components that
are invoked concurrently and asynchronously by many applications. Second, stream
processing applications operate autonomously in a highly dynamic environment, with
load spikes and unpredictable occurrences of events. Thus, the component composition
must be performed quickly, during runtime, and be able to adapt to dynamic stream
environments. Third, a DSPS needs to scale to a large number of streams and com-
ponents, which makes centralized approaches inappropriate, since the global state of a
large-scale DSPS is changing much faster than it can be communicated to a single host.
Hence, a single host cannot make accurate global decisions.

Despite the aforementioned challenges, there are significant benefits to be gained
from a flexible sharing-aware component composition: i) enhanced QoS provision (e.g.,
shorter service delay) since existing streams that meet the user’s requirements can be fur-
nished immediately, while the time-consuming process of new component deployment
is triggered only when none of the existing components can accommodate a new request;
and ii) reduced resource load for the system, by avoiding redundant computations and
data transfers. As a result, the overall system’s processing capacity is maximized to meet
the scalability requirements of serving many concurrent application requests.

In this paper we present Synergy, a distributed stream processing middleware that
provides sharing-aware component composition. Synergy is implemented on top of a
wide-area overlay network and undertakes the composition of distributed stream pro-
cessing applications. Synergy supports both data stream and processing component
reuse while ensuring that the application QoS requirements1 can be met. The decision
of which components or streams to reuse is made dynamically at run-time taking into
account the applications’ QoS requirements and the current system resource availabil-
ity. Specifically, this paper makes the following major contributions:

– We propose a decentralized light-weight composition algorithm that can discover
streams and components at run-time and check whether any of the existing compo-
nents or streams can satisfy the application’s request. After the qualified candidate

1 In this paper, we focus on the end-to-end execution time QoS metric, consisting of both pro-
cessing delays at different components and network delays between components.
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components have been identified, components and streams are selected and com-
posed dynamically such that the application resource requirements are met and the
workloads at different hosts are balanced.

– We integrate a QoS impact projection mechanism into the distributed component
composition algorithm to evaluate the reusability of existing stream processing
components according to the applications’ QoS constraints. When a component
is shared by multiple applications, the QoS of each application that uses the com-
ponent may be affected due to the increased queueing delays on the processors
and the communication links. Synergy’s approach is to predict the impact of the
additional workload on the QoS of the affected applications and ensure that a com-
ponent reuse does not cause QoS violations in existing stream applications. Such
a projection can facilitate the QoS provision for both current applications and the
new application admitted in the system.

– We have implemented a prototype of Synergy and evaluated its performance on
the PlanetLab [10] wide-area network testbed. We have also conducted extensive
simulations to compare Synergy’s composition algorithm to existing alternative
schemes. The experimental results show that: i) Synergy consistently achieves
much better QoS provision compared to other approaches, for a variety of appli-
cation loads, ii) sharing-aware component composition increases the number of ad-
mitted applications, while scaling to large request loads and network sizes, iii) QoS
impact projection greatly increases the percentage of admitted applications that
meet their QoS requirements, iv) Synergy’s decentralized composition protocol has
low message overhead and offers minimal setup time, in the order of a few seconds.

The rest of the paper is organized as follows: Section 2 introduces the system model.
Section 3 discusses Synergy’s decentralized sharing-aware component composition ap-
proach and its QoS impact projection algorithm. Section 4 presents an extensive exper-
imental evaluation of our system. Section 5 discusses related work. Finally, the paper
concludes in Section 6.

2 System Model

In this section, we present the stream processing application model, describe the archi-
tecture of the Synergy middleware and provide an overview of its operation. Table 1
summarizes the notations we use while discussing our model.

2.1 Stream Processing Application Model

A data stream si consists of a sequence of continuous data tuples. A stream processing
component ci is defined as a self-contained processing element that implements an
atomic stream processing operator oi on a set of input streams

∑
isi and produces a set

of output streams
∑

osi. Stream processing components can have more than one inputs
(e.g. a join operator) and outputs (e.g. a split operator). Each atomic operator can be
provided by multiple component instances c1, . . . , ck. We associate metadata with each
deployed component or existing data stream in the system to facilitate the discovery
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Table 1. Notations

Notation Meaning Notation Meaning

ci Component li Virtual Link
oi Operator si Stream
ξ Query Plan λ Application Component Graph

Qξ End-to-End QoS Requirements Qλ End-to-End QoS Achievements
pvi

Processor Load on Node vi bli
Network Load on Virtual Link li

rpvi
Residual Processing Capacity on Node vi rbli

Residual Network Bandwidth on Virtual Link li
τci

Processing Time for ci xci,vi
Mean Execution Time for ci on vi

σsi
Transmission Time for si ysi,li

Mean Communication Time for si on li
qt Requested End-to-End Execution Time t̂ Projected End-to-End Execution Time
poi

Processing Time Required for oi bsi
Bandwidth Required for si

process. Both components and streams are named based on a common ontology [11]
(e.g., oi.name = Aggregator.COUNT, si.name = Video.MPEGII.Birthday).

A stream processing request (query) is described by a query plan, denoted by ξ. The
query plan is represented by a directed acyclic graph (DAG) specifying the required
operators oi and the streams sj among them2. The CPU processing requirements of the
operators poi , ∀oi ∈ ξ and the bandwidth requirements of the streams bsj , ∀sj ∈ ξ are
also included in ξ. The bandwidth requirements are calculated according to the user-
requested stream rate, while the processing requirements are calculated according to
the data rate and resource profiling results for the operators [12]. The stream processing
request also specifies the end-to-end QoS requirements Qξ = [q1, ...qm], such as end-
to-end execution time and loss rate. Although our schemes are generic to additive QoS
metrics, we focus on the end-to-end execution time metric denoted by qt, which is
computed as the sum of the processing and communication times for a data tuple to
traverse the whole query plan.

The query plan can be dynamically instantiated into different application component
graphs, denoted by λ, depending on the processing and networking availability. The
vertices of an application component graph represent the components being invoked
at a set of nodes to accomplish the application execution, while the edges represent
virtual network links between the components, each one of which may span multiple
physical network links. An edge connects two components ci and cj if the output of the
component ci is the input for the component cj . The application component graph is
generated by our component composition algorithm at run-time, after selecting among
different component candidates that provide the required stream processing operators
oi and satisfy the end-to-end QoS requirements Qξ.

2.2 Synergy Architecture

Synergy is a wide-area middleware that consists of a set of distributed hosts vi con-
nected via virtual links li into an overlay mesh on top of the existing IP network. Syn-
ergy as a distributed stream processing middleware undertakes the component composi-
tion role to enable stream and component reusability while offering QoS management.

2 In general, there may be multiple query plans that can satisfy a stream processing request.
Query plan optimization however involves application semantics and is outside the scope of
this paper. Thus, in this work we assume the query plan is given.
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Figure 1 shows an overview of our architecture. Synergy leverages the underlying over-
lay network for registering and discovering available components and streams in a de-
centralized manner. In our current Synergy prototype we implement a keyword-based
discovery service [13] on top of the Pastry distributed hash table (DHT) [14]. How-
ever, our middleware can also be integrated with other DHTs, or unstructured over-
lays [15], since discovery is an independent module of our system. Synergy adopts a
fully distributed architecture, where any node of the middleware can compose a dis-
tributed stream processing application. After a stream processing request is submitted
and a query plan is produced, Synergy is responsible for selecting existing streams that
satisfy the query and candidate components that can provide the required operators.

Each Synergy node, denoted by vi, as illustrated in Figure 2, maintains a metadata
repository of active stream processing sessions, streams, and components (including
input and output buffers). Additionally, the architecture of a Synergy node includes the
following main modules: i) a composition module that is responsible for running the
component composition algorithm and uses: ii) a discovery module that is responsible
for locating existing data streams and components; iii) a routing module that routes
data streams between different Synergy nodes; and iv) a monitoring module that is
responsible for maintaining resource utilization information for vi and the virtual links
connected to vi. In the current implementation, the monitoring module can keep track of
the CPU load and network bandwidth. The current processor load pvi and the residual
processing capacity rpvi on node vi are inferred from the CPU idle time as measured
from the /proc interface. The residual available bandwidth rblj on each virtual link lj
connected to vi is measured using a bandwidth measuring tool (e.g., [16]). We finally
use blj to denote the amount of current bandwidth consumed on lj .

2.3 Approach Overview

We now briefly describe the basic operations of the Synergy middleware. A stream
processing application request is submitted directly to a Synergy node vs, if the client
is running the middleware, or redirected to a Synergy node vs that is closest to the
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client based on a predefined proximity metric (e.g., geographical location). Alterna-
tive policies can select vs to be the Synergy node closest to the source or the sink
node(s) of the application. A query plan ξ is produced, that specifies the required op-
erators and the order in which they need to be applied to execute the query. The pro-
cessing requirements of the operators poi , ∀oi ∈ ξ and the bandwidth requirements of
the streams bsj , ∀sj ∈ ξ are also included in ξ. The request also specifies the end-
to-end QoS requirements Qξ = [q1, ...qm] for the composed stream processing appli-
cation. These requirements (i.e., ξ, Qξ) are used by the Synergy middleware running
on that node to initiate the distributed component composition protocol. This protocol

D

C2 C4

C3

O1 O2

C1

S

Fig. 3. Probing example

produces the application component graph
λ that identifies the particular components
that shall be invoked to instantiate the new
request.

To avoid redundant computations, the sys-
tem first tries to discover whether any of the
requested streams have been generated by
previously instantiated query plans, by query-
ing the overlay infrastructure. To maximize the sharing benefit, the system reuses the
result stream(s) generated during the latest possible stages in the query plan. Thus, the
system only needs to instantiate the remaining query plan for processing the reusable
existing stream(s), to generate the user requested stream(s). The system then probes
those candidate nodes that can provide operators needed in the query plan, to deter-
mine: i) whether they have the available resources to accommodate the new applica-
tion, ii) whether the end-to-end latency is within the required QoS, and iii) whether
the impact of the new application would cause QoS violations to existing applications.
Figure 3 gives a very simple example of how probes can be propagated hop-by-hop
to test many different component combinations. Assuming components c1 and c2 offer
operator o1, while components c3 and c4 offer operator o2, and assuming that the com-
ponents can be located at any node in the system, probes will attempt to travel from the
source S to the destination D through paths S → c1 → c3 → D, S → c1 → c4 → D,
S → c2 → c3 → D, and S → c2 → c4 → D. A probe is dropped in the middle
of the path if any of the above conditions are not satisfied in any hop. Thus, the paths
that create resource overloads, result to end-to-end delays outside the requested QoS
limits, or unacceptably increase the delays of the existing applications, are eliminated.
From the successful candidate application component graphs, our composition algo-
rithm selects the one that results in a more balanced load in the system and the new
stream application is instantiated. The detailed operation of Synergy’s sharing-aware
component composition is described in the next section.

3 Design and Algorithm

In this section, we describe the design and algorithm details of our Synergy distributed
stream processing middleware, that offers sharing-aware component composition. Syn-
ergy can i) reuse existing data streams to avoid redundant computations, and ii) reuse
existing components if the new stream load does not lead to QoS violations of the
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existing applications. We first describe the decentralized component composition pro-
tocol, followed by the detailed algorithms for stream reuse and component sharing.
Synergy’s fully distributed and light-weight composition protocol is executed when in-
stantiating a new application.

3.1 Synergy Composition Protocol

Given a stream processing request, the Synergy node first gets the locally generated
query plan ξ and then instantiates the application component graph based on the user’s
QoS requirements Qξ. Figure 4 shows an example of a query plan, while Figure 5
shows a corresponding component composition example. To achieve decentralized,
light-weight component selection, Synergy employs a set of probes to concurrently dis-
cover and select the best composition. Synergy differs from previous work (e.g., [6,13])
in that it judiciously considers the impact of stream and component sharing on both the
new and existing applications. The probes carry the original request information (i.e.,
ξ, Qξ), collect resource and QoS information from the distributed components, perform
QoS impact projection, and select qualified compositions according to the user’s QoS
requirements. The best composition is then selected among all qualified ones, based on
a load balancing metric. The composition protocol, a high level description of which is
shown in Algorithm 1, consists of the following five main steps:

Step 1. Probe creation. Given a stream processing query plan ξ, the Synergy node
vs first discovers whether any existing streams can be used to satisfy the user’s request.
The goal is to reuse existing streams as much as possible to avoid redundant compu-
tations. For example, in Figure 4, starting from the destination, vs will first check if
the result stream (stream s8) is available. If not, it will look for the streams one hop
away from the destination (streams s6 and s7), then two hops away from the destination
(streams s4 and s5) and so on, until it can find any streams that can be reused. We denote
this Breadth First Search on the query plan as identification of the maximum sharable
point(s). The nodes generating the reusable streams may not have enough available
bandwidth for more streaming sessions or may have virtual links with unacceptable
communication latencies. In that case all probes are dropped by those nodes and vs

checks whether there exist components that can provide the operators requested in the
query plan, as if no streams had been discovered. The details about determining the
maximum sharable points and about discovering sharable streams and components are
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Algorithm 1. Synergy composition

Input: query 〈ξ, Qξ, 〉, node vs

Output: application component graph λ
vs identifies maximum sharable point(s) in ξ
vs spawns initial probes
for each vi in path

checks available resources AND checks QoS so far in Qξ AND checks projected QoS impact
if probed composition qualifies

performs transient resource allocation at vi

discovers next-hop candidate components from ξ
spawns probes for selected components

else
drops the received probe

vs selects the most load-balanced component composition λ
vs establishes the stream processing session

described in Section 3.2. Next, the Synergy node vs initiates a distributed probing pro-
cess to collect resource and QoS states from those candidate components that provide
the maximum sharable points. The goal of the probing process is to select qualified
candidate components that can best satisfy ξ and Qξ and result in the most balanced
load in the system. The initial probing message carries the request information (ξ and
Qξ) and a probing ratio, that limits the probing overhead by specifying the maximum
percentage of candidate components that can be probed for each required operator. The
probing ratio can be statically defined, or dynamically decided by the system, based on
the operator, the components’ availability, the user’s QoS requirements, current con-
ditions, or historical measurement data [6]. The initial probing message is sent to the
nodes hosting components offering the maximum sharable points. We do not probe the
nodes that are generating streams before the maximum sharable points, since the over-
head would be disproportional to the probability that they can offer a better component
graph than the one starting after the maximum sharable points.

Step 2. Probe processing. When a Synergy node vi receives a probing message
called probe Pi, it processes the probe based on its local state and on the information
carried by Pi. A probe has to satisfy three conditions to qualify for further propagation:
i) First, vi calculates whether the requested processing and bandwidth requirements poi

and bsj can be satisfied by the available residual processing capacity and bandwidth
rpvi and rblj , of the node hosting the component and of the virtual link the probe came
from respectively. Thus, both rpvi ≥ poi and rblj ≥ bsj have to hold3. ii) Second,
vi calculates whether the QoS values of the part of the component graph that has been
probed so far already violate the required QoS values specified in Qξ. For the end-to-end
execution time QoS metric qt this is done as follows: The sum of the components’ pro-
cessing and transmission times so far has to be less than qt. The time that was needed
for the probe to travel so far gives an estimate of the transmission times, while the

3 In the general case, where other node resources such as memory or disk space are to be taken
into account in addition to the processing capacity, congruent equations have to hold for them
as well.
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processing times are estimated in advance from profiling [12]. iii) Third, vi calculates
the QoS impact on the existing stream processing sessions by admitting this new re-
quest. In particular, the expected execution delay increase due to the additional stream
volume introduced by the new request is calculated. The details about the QoS impact
projection are described in Section 3.3. Similarly, the impact of the existing stream pro-
cessing sessions on the QoS of the new one is calculated. Both the new and the existing
sessions have to remain within their QoS requirements.

If any of the above three conditions cannot be met, the probe is dropped immedi-
ately to reduce the probing overhead. Otherwise, the node performs transient resource
allocation to avoid conflicting resource admissions (overallocations) caused by concur-
rent probes for different requests. The transient resource allocation is cancelled after a
timeout period if the node does not receive a confirmation message to setup the stream
processing application session.

Step 3. Hop-by-hop probe propagation. If the probe Pi has not been dropped, vi

propagates it further. vi derives the next-hop operators from the query plan and ac-
quires the locations of all available candidate components for each next-hop operator
using the overlay infrastructure. Then vi selects a number of candidate components to
probe, based on the probing ratio. If more candidates than the number specified by the
probing ratio are available, random ones are selected, or –if a latency monitoring ser-
vice [17] is available– the ones with the smallest communication latency are selected.
If no candidate components for the next operator are found, a new component has to be
deployed. We choose to collocate this new component with the current one, deploying
it in the same node, if processing resources are available, as this approach minimizes
the communication delay between the two components. Other approaches for choosing
an appropriate location with regards to future needs can also be employed [8,18]. Since
the probe processing checks will take place for the new component as well, possible
resource or QoS violations can be detected. While the resource allocation is transient,
the component deployment is permanent. If the particular application session is not es-
tablished through this path, the newly deployed component might serve other stream
processing sessions.

After the candidate components have been selected, vi spawns new probes from Pi

for all selected next-hop candidates. Each new probe in addition to ξ (including poi and
bsj ), Qξ, and the probing ratio, carries the up-to-date resource state of vi, namely rpvi

and rblj , and of all the nodes the previous probes have visited so far. Finally, vi sends
all new probes to the nodes hosting the selected next-hop components.

Step 4. Composition selection. After reaching the destination specified in ξ, all suc-
cessful probes belonging to a composition request return to the original Synergy node vs

that initiated the probing protocol. After selecting all qualified candidate components,
vs first generates complete candidate component graphs from the probed paths. Since
the query plan is a DAG, vs can derive complete component graphs by merging the
probed paths. For example, in Figure 5, a probe can traverse c10 → c20 → c40 → c60

or c10 → c30 → c50 → c60. Thus, vs merges these two paths into a complete com-
ponent graph. Second, vs calculates the requested and residual resources for the can-
didate component graphs based on the precise states collected by the probes. Third,
vs selects qualified compositions according to the user’s operator, resource, and QoS
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requirements. Let Vλ be the set of nodes that is being used to instantiate λ. We use ci.o
to represent the operator provided by the component ci. The selection conditions are as
follows:

operator constraints : ci.o = oi, ∀oi ∈ ξ,∃ci ∈ λ (1)

QoS constraints : qλ
r ≤ qξ

r , 1 ≤ r ≤ m (2)

processing capacity constraints : rpvi ≥ 0, ∀vi ∈ Vλ (3)

bandwidth constraints : rblj ≥ 0, ∀lj ∈ λ (4)

Among all the qualified compositions that satisfy the application QoS requirements,
vs selects the best one according to the following load balancing metric φ(λ). The
qualified composition with the smallest φ(λ) value is the selected composition.

φ(λ) =
∑

vi∈Vλ,oi∈ξ

poi

rpvi
+ poi

+
∑

lj∈λ,sj∈ξ

bsj

rblj + bsj

(5)

Step 5. Application session setup. Finally, the Synergy node vs establishes the
stream processing application session by sending confirmation messages along the se-
lected application component graph. If no qualified composition can be found (i.e., all
probes were dropped, including the ones without stream reuse), the system node returns
a failure message. If all probes were dropped, apparently the existing components are
too overloaded to accommodate the requested application with the specified QoS re-
quirements, or nodes in the probing path are too overloaded to host components that
need to be deployed. New components can then be instantiated in strategically chosen
places in the network [8,18].

The goal of the described protocol is to discover and select existing streams and com-
ponents to share in order to accommodate a new application request, assuming compo-
nents are already deployed on nodes. This is orthogonal to the policies that might be in
place regarding new component deployment, which is outside the scope of this paper.
Furthermore, Synergy is adaptable middleware, taking into account the current status
of the dynamic system at the moment the application request arrives. Therefore, it does
not compare to optimal solutions calculated offline that apply to static environments.

3.2 Maximum Stream Sharing

Synergy utilizes a peer-to-peer overlay of the nodes in the system for registering and
discovering the available components and streams in a decentralized manner. As was
mentioned in Section 2.2, the current Synergy implementation is built over Pastry [14].
We follow a simple approach to enable the storage and retrieval of the static metadata
of components and streams in the DHT, which include the location (node) hosting the
component or stream. As was described in Section 2.1, each component and stream is
given a name, based on a common ontology [11]. This name is converted to a key, by
applying a secure hash function (SHA-1) on it, whenever a component or stream needs
to be registered or discovered. On the DHT this key is used to map the metadata to a spe-
cific node, with the metadata of duplicated components or streams being stored in the
same node. Configuration changes caused by node arrivals and departures are handled
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gracefully by the DHT. Whenever components are instantiated or deleted, or streams
are generated by new application sessions, or removed because they are not used by
any sessions anymore, the nodes hosting them register or unregister their metadata with
the DHT.

The stream processing query plan ξ specifies the operators oi and streams sj needed
for the application execution. Using a Maximum Sharing Discovery algorithm, the Syn-
ergy node in which the query plan was submitted utilizes the peer-to-peer overlay for
discovering existing streams and components. Since different users can submit queries
that have the same or partially the same query plans, we want to reuse existing streams
as much as possible to avoid redundant computations. The goal of the Maximum Shar-
ing Discovery algorithm is to identify the maximum sharable point(s) in ξ. This is the
operator(s) closest to the destination (in terms of hops in ξ), whose output streams cur-
rently exist in the system and can (at least partially) satisfy the user’s requirements. An
extreme case is that the final stream or streams already exist in the system, which can
then be returned to the user directly without any further computation, as long as the
residual bandwidth and communication latencies permit so. For example in Figure 4 if
s8 is already available in the system, it can be reused to satisfy the new query, incurring
only extra communication but no extra processing overhead. In that case, the maximum
sharable point in ξ is o6 and Synergy will prefer to use no components if possible. If the
final stream or streams are not available, the system node backtracks hop-by-hop the
query plan to find whether preceding intermediate result streams exist. For example, in
Figure 4, if result streams s8 and s7 are not found, but s6 and s5 are already available
in the system, they may be reused to satisfy part of the query plan. By reusing those
existing streams, the Synergy node will prefer to compose a partial component graph
covering the operators after the reused streams, if the resource and QoS constraints
permit so. In that case, the maximum sharable points in ξ are o3 and o4 and only com-
ponents offering operators o5 and o6 will be needed. To discover existing streams and
existing components that might be needed, the peer-to-peer overlay is utilized as was
described.

3.3 QoS-Aware Component Sharing

To determine whether an existing candidate component can be reused to satisfy a new
request, we estimate the impact of the component reuse to the latencies of the existing
applications. An existing component can be reused if the additional workload brought
by the new application will not violate the QoS requirements of the existing stream
processing applications (and similarly the load of the already running applications will
not violate the QoS requirements of the new application). To calculate the impact of
admitting a new stream processing application to the QoS of the existing ones (and
also the impact of the running applications to the potential execution of the one to be
admitted), a Synergy node that processes a probe utilizes a QoS Impact Projection al-
gorithm. This algorithm runs in all nodes with candidate components through which
the probes are propagated. The QoS Impact Projection is performed for all the applica-
tions that use components on those nodes. If the projected QoS penalty will cause the
new or the existing applications to violate their QoS constraints, these components are
not further considered and are thus removed from the candidate set. For example, in



Synergy: Sharing-Aware Component Composition for DSPSs 333

Figure 5, candidate components c10 and c40 are used by existing applications and with
the new stream workload QoS violations are projected. Thus, c10 and c40 are not consid-
ered as candidate components for the operators o1 and o4 respectively. On the contrary,
even though c20 and c39 are used by existing applications, they are still considered as
candidate components for the operators o2 and o3 respectively, because no QoS viola-
tion is projected for them.

The QoS Impact Projection algorithm to estimate the effect of component reuse
works as follows: For each component ci, the node estimates its execution time. This
includes the processing time τci of the component ci to execute locally on the node and
the queueing time in the scheduler’s queue as it waits for other components to com-
plete. The queueing time is defined as the difference between the arrival time of the
component invocation and the time the component actually starts executing. We can
then determine the mean execution time xci,vi for each component ci on the node vi.
We assume a simple application behavior approximated by an M/M/1 queueing model
for the execution time. Our experimental results show that this simplified model can
provide good projection performance. If pvi represents the load on the node hosting
component ci, the mean execution time for component ci on node vi is given by:

xci,vi =
τci

1 − pvi

(6)

The mean communication time ysi,li on the virtual link li for the stream si trans-
mitted from component ci to its downstream component cj is estimated similarly: It
includes the transmission time σsi for the stream si, and also the queueing delay on the
virtual link. If bli represents the load (consumed bandwidth) on virtual link li connect-
ing component ci, the mean communication time ysi,li to transmit stream si through
the virtual link li is then given by:

ysi,li =
σsi

1 − bli

(7)

Given the processing times τci and the transmission times σsi required respectively
for the execution of the components ci and the data transfer of the streams si of an
application, as well as the current respective loads pvi and bli , a Synergy node can
compute the projected end-to-end execution time for the entire application as:

t̂ = maxpath

∑
vi∈Vλ,li∈λ

(
τci

1 − pvi

+
σsi

1 − bli

)
(8)

where the maxpath is used in the cases where the application is represented by a graph
with more than one paths, in which case the projected execution time of the entire
application is the maximum path latency. The processing τci and transmission σsi times
are however easily extracted from the poi and bsi values which are included for the
corresponding operators oi and streams si in the query plan ξ and have been calculated
by combining the user requests with profiling [12]. The current loads pvi and bli are
known locally at the individual nodes. These values are used to estimate the local impact
δ of the component reuse on the existing applications as follows:
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Let
τci

1−pvi
denote the mean execution time required for invoking component ci on

the node vi by the application. After sharing the component with the new application,
the projected execution time would become:

τci

1−(pvi
+τci

) , where (pvi + τci) represents

the new processing load on the node after reusing the component. We can then compute
the impact δ in the projected execution time for the entire application, as the difference
of the projected end-to-end execution time after the reuse, t̂′, from the one before the
reuse, t̂:

δ = t̂′ − t̂ =
τci

1 − (pvi + τci)
− τci

1 − pvi

(9)

The projected impact δ is acceptable if δ+ t̂ ≤ qt, in other words if the new projected
execution time is acceptable. In the above inequality, qt is the requested end-to-end
execution time QoS metric that was specified by the user in Qξ. Similarly to ξ, it is
cached for every application on each node that is part of the application. t̂ is the current
end-to-end execution time for the entire application. t̂ is measured by the receiver of
a stream processing session and communicated to all nodes participating in it using a
feedback loop [15]. This enables the processing to adapt to significant changes in the
resource utilization, such as finished applications or execution of new components. For
an application that is still in the admission process, t̂ is approximated by the sum of the
processing and transmission times up to this node, as carried by the application’s probe.

Equation 9 summarizes the QoS Impact Projection algorithm. A Synergy node has
locally available all the required information to compute the impact δ for all applications
it is currently participating in. This information is available by maintaining local load
information, monitoring the local processor utilization, and caching ξ and Qξ for all
applications it is running, along with their current end-to-end execution times. It uses
the projected application execution time to estimate the effect of the component reuse
on the existing applications, by considering the effects of increased processor load on
the time required to invoke the components.

This projection is performed for all applications currently invoking a component to
be reused, for all applications invoking other components located on the node, and also
for the application that is to be admitted. If the projected impact is acceptable for all
applications, the component can be reused. Otherwise, and if there are no other local
components that can be reused, the probe is dropped.

4 Experimental Evaluation

We now present the experimental evaluation of Synergy, both through our prototype
implementation over the PlanetLab [10] wide-area network testbed, and through simu-
lations. The prototype provided a realistic evaluation. We used simulations in addition
to the prototype, to be able to test larger network sizes.

4.1 Prototype over PlanetLab

Methodology. Our Synergy prototype was implemented as a multi-threaded system of
about 18000 lines of Java code, running on each of 88 physical nodes of PlanetLab. The
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implementation was based on the SpiderNet service composition framework [13]. Uni-
formly across the nodes were instantiated 100 components, with a replication degree
of 5. We used a probing ratio of 10%. Application requests asked for 2 to 4 compo-
nents chosen randomly and for the corresponding streams between the components. We
generated approximately 9 requests per second throughout the system. We generated
queries using a Zipf distribution with α = 1.6, expecting stream processing applications
to follow trends similar to media streaming and web content provision applications [19].
We also experimented with different request distributions in the simulations.

We compared Synergy against two different composition algorithms: A Random al-
gorithm that blindly selected one of the candidates for each application component.
A Composition algorithm (such as [13]), that discarded those component candidates
whose hosting nodes would not have the required processing power or communica-
tion bandwidth to support the request with the specified QoS and among the remaining
candidates it chose the ones that resulted in the minimum end-to-end delay.

Results and Analysis. In this set of experiments we investigated Synergy’s perfor-
mance and overhead in a real setting.

Average Application End-to-End Delay. Figure 6 shows the average application end-
to-end delay achieved by the three composition approaches for each transmitted data
tuple. Synergy offers a 45% improvement over Random and a 25% improvement over
Composition. The average end-to-end delay is in the acceptable range of less than a
second. Reusing existing streams offers Synergy an advantage, since for some of the
requests (fully or partially) only transmission and no processing time is required.

Successful Application Requests. An important metric of the efficiency of a com-
ponent composition algorithm is the number of requests it manages to accommodate
and meet their QoS demands, shown in Figure 7. Synergy successfully accommodates
27% more applications than Composition and 37% more than Random. Random does
not take the QoS requirements into account, thus misassigns a lot of requests. While
Composition takes operator, resource, and QoS requirements into account, it does not
employ QoS impact projection to prevent QoS violations on currently running appli-
cations. This results to applications that fail to meet their QoS demands during their
execution, due to dynamic arrivals of new requests in the system. Synergy’s composi-
tion algorithm manages to increase the capacity of the system and also limit the QoS
violations.
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Discovery 240 188 243
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Fig. 9. Breakdown of average setup time

Protocol Overhead. We show the overhead of the composition protocols which is
attributed to the probe messages in Figure 8. To discover components and streams we
use the DHT-based routing scheme of Pastry, which keeps the number of discovery
messages low, while the number of messages needed to probe alternative component
graphs quantifies our protocol’s overhead. Synergy’s sharing-aware component compo-
sition manages to reduce the number of probes: By being able to discover and reuse
existing streams to satisfy parts or the entire query plan, it keeps the number of can-
didate components that need to be probed smaller. Also important is that the overhead
grows linearly to the number of nodes in the system, which allows the protocol to scale
to larger numbers of nodes. The probing ratio is another knob that can be used to tune
the protocol overhead further [6]. While Random’s overhead could also be tuned to
allow less candidates to be visited, its per hop selections would still be QoS-blind.

Average Setup Time. Table 9 shows the breakdown of the average time needed for
an application setup, for the three composition algorithms. The setup time is divided in
time spent to discover components and streams and time spent to probe candidate com-
ponents. As is shown, the discovery of streams and components is only a small part of
the time needed to set up a stream processing session. The major part of the time is spent
in transmitting probes to candidate components and running the composition algorithm
in them. Sharing streams allows Synergy to save time from component probing, which
effectively results to 32% faster setup time than Composition. The total setup time is
only a few seconds. Having to discover less components balances out the cost of having
to discover streams. Discovering a stream, especially if it is the final output of the query
plan, can render multiple component discoveries unnecessary.

4.2 Simulations

Methodology. To further evaluate the performance of Synergy’s sharing-aware com-
position algorithm we implemented a distributed stream processing simulator in about
7500 lines of C++ code. The network topology fed to the simulator was a transit-stub
topology of 1500 routers, generated by the GT-ITM internetwork topology genera-
tor [20]. We simulated a large overlay network of 500 nodes chosen randomly from
the underlying topology. Nodes and links were assigned processing and communica-
tion capacities from discrete classes, to simulate a heterogeneous system.
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A total of 1000 components were distributed uniformly across the nodes of the sys-
tem, with a uniform replication degree of 5. In other words, 200 unique components and
800 component replicas were instantiated at the nodes. Application requests consisted
of requests for 2 to 10 components chosen randomly and of streams of random rates
transmitted between the components. For each application we set its QoS requirement
30% higher than its projected execution time. We made experiments to investigate both
the performance of Synergy’s composition algorithm and its sensitivity to the parame-
ters mentioned above.

We compared Synergy not only against Random and Composition, but also against
a Greedy algorithm that at each composition step selected the candidate component
that resulted in the minimum delay between the two components. Note, that this does
not necessarily result in the minimum end-to-end delay for the entire application. To
implement this algorithm in a distributed prototype some latency monitoring service
such as [17] would be needed. We included it in the simulations though, as a popular
centralized approach that provides results with low overhead.

Other than the average application end-to-end delay, which includes processing,
transmission, and queueing delays, our main metric for the algorithms’ comparison
was the success rate, defined as the percentage of application requests that get admitted
and complete within their requested QoS limits. This effectively captures the success of
a composition algorithm to provide the requested operators, resources, and QoS.

Results and Analysis. In this set of experiments we investigated the performance of
Synergy’s sharing-aware component composition algorithm for increasing loads.

Scalability. Figure 10 shows the average end-to-end delay of all the applications
that are admitted in the system for increasing application load. Synergy consistently
achieves the minimum average end-to-end delay. Furthermore, it manages to maintain
the average end-to-end delay low, by not admitting more applications than those that
can be supported by the system. This is not the case with Random, Greedy, or the
Composition algorithm which do not employ QoS impact projection. As the number
of deployed and requested applications increases, the probability that existing streams
can be shared among applications increases as well. This gives Synergy an additional
advantage, which explains the slight decline of the average end-to-end delay for large
numbers of application requests.
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Performance Gain Breakdown. To investigate what part of the performance bene-
fit of Synergy can be attributed to QoS Impact Projection and what part to Maximum
Sharing Discovery, we incorporated QoS projection to the Composition algorithm. Fig-
ure 11 shows how Composition together with the QoS projection (“composition + pro-
jection”) compares to Composition and Synergy, in terms of achieved end-to-end delay.
QoS projection improves system performance particularly in high loads. While for 100
requests Composition enhanced with projection offers only 8% lower delay than plain
Composition, that improvement rises to 42% for 500 requests.

System throughput capacity. Figure 12 shows the success rate for increasing request
load. The benefit of sharing-aware component composition is evident, as Synergy is
able to scale to much larger workloads, by reusing existing streams. QoS impact pro-
jection helps Synergy to achieve very high success rates by avoiding to disrupt currently
running applications. Cases of applications that miss their deadlines even with Synergy
can be explained by inaccurate estimations because of the current execution time up-
date frequency, or because of inaccuracies in the approximation of the execution time of
the admitted applications. As expected, random allocation results in poor QoS. Greedy
allocation does not perform well either and the reason is that resources are assigned
hop-by-hop ad hoc, blindly to the applications’ end-to-end QoS requirements. Another
interesting observation is that ensuring that there will be enough resources to run the
admitted applications by eliminating resource violations, as the Composition algorithm
does, does not suffice for these applications to meet their QoS requirements.

In the following set of experiments we kept the number of application requests at
100, which was a reasonable load for all algorithms as Figure 12 demonstrated. We
then investigated the sensitivity of Synergy to various parameters.

Sensitivity to Replication. Figure 13 shows the success rate, as a function of the repli-
cation degree of the components in the system. The success of Synergy’s composition,
as well as its advantage over the other composition algorithms is clear, regardless of
the replication degree of the components. Having more candidates to select from in the
composition process does not seem to affect the QoS of the composed applications.

Sensitivity to QoS Requirements. Figure 14 shows the success rate as a function of the
QoS demands of the applications. Even for very strict requirements, where applications
can only tolerate a 10% of extra delay, Synergy’s QoS impact projection is able to
deliver in-time execution in more than 80% of the cases, whereas the other composition
algorithms (Random, Greedy, Composition) fail in as many as 80% of the requests. As
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QoS requirements become more lax, the performance of those algorithms improves.
Yet, even in the case of a 50% tolerance in the delay, the best of them, Composition,
still delivers 12% less applications within their deadlines than Synergy.

Sensitivity to Popularity of Requests. To investigate how the distribution of user re-
quests affects Synergy’s performance in comparison to the rest of the composition al-
gorithms, we assumed a non-Zipfian distribution of application requests with a varying
percentage of repetitions. Figure 15 shows the average end-to-end delay of all the ap-
plications that are admitted in the system. Synergy utilizes stream sharing and thus
can deliver results for the repeated application requests without extra processing. For
a request repetition factor of 20% Synergy’s Maximum Sharing Discovery algorithm
offers 34% lower average end-to-end delay than Composition. For a repetition factor
of 40% Synergy achieves an improvement of 25% in comparison to load without any
repetitions. Since the rest of the composition algorithms do not offer stream reuse, their
performance is not affected by the repetition in application requests. That is as long as
the repetition factor is not extremely large, which would result in rejecting application
requests due to resource contention.

5 Related Work

Distributed stream processing [4,9] has been the focus of several recent research efforts
from many different perspectives. In [8] and [18] the problem of operator placement
in a DSPS to make efficient use of the network resources and maximize query perfor-
mance is discussed. Our work is complementary, in that our focus is on the effects of
sharing existing operators, rather than deploying new ones. While [8] mentions operator
reuse, they do not focus on the impact on already running applications. [7] describes an
architecture for distributed stream management that makes use of in-network data ag-
gregation to distribute the processing and reduce the communication overhead. A clus-
tered architecture is assumed, as opposed to Synergy’s totally decentralized protocols.
Service partitioning to achieve load balancing taking into account the heterogeneity of
the nodes is discussed in [21], while load balancing based on the correlation of the
load distributions across nodes is proposed in [22]. While a balanced load is the final
selection criterion among candidate component graphs in Synergy as well, our focus
is on QoS provision. The distributed composition probing approach is first presented
in [13,6]. Synergy extends this work by considering stream reuse and evaluating the
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impact of component sharing. Our techniques for distributed stream processing compo-
sition directly apply to multimedia streams [23,15] as well.

Application task assignment has also been the focus of many grid research efforts.
GATES [5] is a grid-based middleware for distributed stream processing. It uses grid
resource discovery standards and trades off accuracy with real-time response. While we
also address real-time applications, our focus is on the composition of the application
component graph. Similarly, work on grid resource management [24] focuses on opti-
mally assigning individual tasks to different hosts, rather than instantiating composite
network applications. Work on resource discovery such as SWORD [25] can assist in
component composition, and is thus complementary to our work.

Component composition has also been studied in the context of web services from
many aspects, such as coordinating among different services to develop production
workflows [26], or providing reliability through replication [27]. Similar problems are
also encountered when providing dynamic web content at large scales [28], or personal-
ized web content [29], the changing and on-demand nature of which render them more
challenging than static content delivery [30]. While we focus on component composi-
tion for stream processing, our techniques may be applicable to other applications with
QoS requirements as well, such as composing QoS-sensitive web services.

6 Conclusion

In this paper we have presented Synergy, a distributed stream processing middleware
that provides sharing-aware component composition. Synergy is built on top of a totally
decentralized overlay architecture and utilizes a Maximum Sharing Discovery algorithm
to reuse existing streams, and a QoS Impact Projection algorithm to reuse existing com-
ponents and yet ensure that the QoS requirements of the currently running applications
will not be violated. Both our prototype implementation of Synergy over PlanetLab and
our simulations of its composition algorithm show that sharing-aware component com-
position can enhance QoS provision for distributed stream processing applications. Our
future work includes the integration of iterative execution of Synergy’s composition
protocol with techniques for application migration. This can enable application adapta-
tion to QoS-affecting changes in the environment, such as a node failure or overload.
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Abstract. Virtual machines (VMs) have recently emerged as the basis for allo-
cating resources in enterprise settings and hosting centers. One benefit of VMs in
these environments is the ability to multiplex several operating systems on hard-
ware based on dynamically changing system characteristics. However, such mul-
tiplexing must often be done while observing per-VM performance guarantees or
service level agreements. Thus, one important requirement in this environment
is effective performance isolation among VMs. In this paper, we address perfor-
mance isolation across virtual machines in Xen [1]. For instance, while Xen can
allocate fixed shares of CPU among competing VMs, it does not currently ac-
count for work done on behalf of individual VMs in device drivers. Thus, the
behavior of one VM can negatively impact resources available to other VMs even
if appropriate per-VM resource limits are in place.

In this paper, we present the design and evaluation of a set of primitives
implemented in Xen to address this issue. First, XenMon accurately measures
per-VM resource consumption, including work done on behalf of a particular
VM in Xen’s driver domains. Next, our SEDF-DC scheduler accounts for aggre-
gate VM resource consumption in allocating CPU. Finally, ShareGuard limits
the total amount of resources consumed in privileged and driver domains based
on administrator-specified limits. Our performance evaluation indicates that our
mechanisms effectively enforce performance isolation for a variety of workloads
and configurations.

1 Introduction

Virtual Machine Monitors (VMMs)1 are gaining popularity for building more agile and
dynamic hardware/software infrastructures. In large enterprises for example, VMMs
enable server and application consolidation in emerging on-demand utility computing
models [2,3]. Virtualization holds the promise of achieving greater system utilization
while lowering total cost of ownership and responding more effectively to changing
business conditions.

Virtual machines enable fault isolation—“encapsulating” different applications in
self-contained execution environments so that a failure in one virtual machine does not

1 We use the terms hypervisor and domain interchangeably with VMM and VM respectively.
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affect other VMs hosted on the same physical hardware. performance isolation is an-
other important goal. Individual VMs are often configured with performance guarantees
and expectations, e.g., based on service level agreements. Thus, the resource consump-
tion of one virtual machine should not impact the promised guarantees to other VMs on
the same hardware.

In this paper, we focus on performance isolation mechanisms in Xen [1], a popular
open source VMM. Xen supports per-VM CPU allocation mechanisms. However, it —
like many other VMMs — does not accurately account for resource consumption in the
hypervisor on behalf of individual VMs, e.g., for I/O processing. Xen’s I/O model has
evolved considerably over time. In the initial design [1] shown in Figure 1a, the Xen
hypervisor itself contained device driver code and provided shared device access. To
reduce the risk of device driver failure/misbehavior and to address problems of depend-
ability, maintainability, and manageability of I/O devices, Xen moved to the architecture
shown in Figure 1b [4]. Here, “isolated driver domains” (IDDs) host unmodified (legacy
OS code) device drivers. Domain-0 is a privileged control domain used to manage other
domains and resource allocation policies.

This new I/O model results in a more complex CPU usage model. For I/O intensive
applications, CPU usage has two components: CPU consumed by the guest domain,
where the application resides, and CPU consumed by the IDD that incorporates the
device driver and performs I/O processing on behalf of the guest domain. However, the
work done for I/O processing in an IDD is not charged to the initiating domain. Consider
a guest domain limited to 30% CPU consumption. If the work done on its behalf within
an IDD to perform packet processing consumes 20% of the CPU, then that domain may
consume 50% of overall CPU resources. Such unaccounted CPU overhead is significant
for I/O intensive applications, reaching 20%-45% for a web server [5].

The key contribution of this paper is the design of a set of cooperating mechanisms
to effectively control total CPU consumption across virtual machines in Xen. There
are a number of requirements for such a system. First, we must accurately measure the
resources consumed within individual guest domains. Next, we must attribute the CPU
consumption within IDDs to the appropriate guest domain. The VMM scheduler must
be modified to incorporate the aggregate resource consumption in the guest domain and
work done on its behalf in IDDs. Finally, we must limit the total amount of work done
on behalf of a particular domain in IDDs based on past consumption history and target
resource limits. For instance, if a particular domain is already consuming nearly its full

(a) I/O Model in Xen 1.0 (b) I/O Model in Xen 3.0

Fig. 1. Evolution of Xen’s I/O Architecture
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resource limits, then the amount of resources available to it in the IDDs must be scaled
appropriately.

The analog of accounting resources consumed on behalf of a guest domain have
come up in scheduling operating system resources across individual tasks
[6,7,8,9,10,11,12], e.g., in accounting for resources consumed in the kernel on behalf
of individual processes. Our work builds upon these earlier efforts, exploring the key
challenges associated with constructing appropriate abstractions and mechanisms in the
context of modern VM architectures. One of the interesting problems in this space is
developing minimally intrusive mechanisms that can: i) account for significant asyn-
chrony in the hypervisor and OS and ii) generalize to a variety of individual operating
systems and device drivers (performance isolation will quickly become ineffective if
even a relatively small number of devices or operations are unaccounted for). To this
end, we have completed a full implementation and detailed performance evaluation of
the necessary system components to enable effective VM performance isolation:

– XenMon: a performance monitoring and profiling tool that reports (among other
things) CPU usage of different VMs at programmable time scales. XenMon in-
cludes mechanisms to measure CPU for network processing in net-IDDs (IDDs
responsible for network devices) on behalf of guest domains.

– SEDF-DC: a new VM scheduler with feedback that effectively allocates CPU
among competing domains while accounting for consumption both within the do-
main and in net-IDDs.

– ShareGuard: a control mechanism that enforces a specified limit on CPU time con-
sumed by a net-IDD on behalf of a particular guest domain.

2 XenMon

To support resource allocation and management, we implemented an accurate moni-
toring and performance profiling infrastructure, called XenMon.2 There are three main
components in XenMon (Figure 2):

– xentrace: This is a lightweight event logging facility present in Xen. XenTrace
can log events at arbitrary control points in the hypervisor. Each event can have
some associated attributes (for instance, for a “domain scheduled” event, the as-
sociated attributes might be the ID of the scheduled domain and the event’s time
stamp). Events are logged into “trace buffers”: shared memory pages that can be
read by user-level Domain-0 tools. Note that xentracewas already implemented
in Xen — our contribution here was to determine the right set of events to monitor.

– xenbaked: The events generated by XenTrace are not very useful on their own.
xenbaked is a user-space process that polls 3 the trace buffers for new events and
processes them into meaningful information. For instance, we collate domain sleep
and wake events to determine the time for which a domain was blocked in a given
interval.

– xenmon: This is the front-end for displaying and logging the data.

2 Our implementation of XenMon has been integrated into the official Xen 3.0 code base.
3 In the current implementation, events are posted via a virtual interrupt instead of periodic

polling.
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Fig. 2. XenMon Architecture

XenMon aggregates a variety of metrics across all VMs periodically (configurable
with a default of 100 ms). For this paper, we only use the CPU utilization and network
accounting facilities (Section 3) of XenMon. Details on all the metrics available from
XenMon and some examples of using XenMon for analyzing CPU schedulers in Xen
are available separately [13].

3 Network I/O Accounting

Recall that one of the challenges posed by the new I/O model in Xen is to classify IDD
CPU consumption across guest domains. This work is focused on network I/O, so we
summarize network I/O processing in Xen. As mentioned earlier, in the IDD model a
designated driver domain is responsible for each hardware device and all guests wishing
to use the device have to share it via the corresponding IDD. The IDD has a “back-end”
driver that multiplexes I/O for multiple “front-end” drivers in guest VMs over the real
device driver. Figure 3 shows this I/O architecture in more detail. Note that for the
experiments reported in this paper, we use Domain-0 as the driver domain.

We briefly describe the sequence of events involved in receiving a packet — the num-
bers correspond to those marked in Figure 3.When the hardware receives the packet (1),
it raises an interrupt trapped by Xen (2). Xen then determines the domain responsible
for the device and posts a virtual interrupt to the corresponding driver domain via the
event channel (3). When the driver domain is scheduled next, it sees a pending interrupt
and invokes the appropriate interrupt handler. The interrupt handler in the driver domain
only serves to remove the packet from the real device driver (4) and hand it over to the
“back-end” driver (5), netback in Figure 3. Note that no TCP/IP protocol processing is
involved in this step (except perhaps the inspection of the IP header).

Fig. 3. I/O processing path in Xen
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It is netback’s responsibility to forward the packet to the correct “front-end” driver
(netfront in Figure 3). The driver domain transfers the ownership of the memory page
containing the packet to the target guest domain, and then notifies it with a “virtual in-
terrupt” (6). Note that this involves no data movement/copying. When the target guest
is next scheduled, it will field the pending interrupt (7). The netfront driver in the guest
will then pass on the packet to higher layers of the networking stack for further process-
ing (8). The transmit path of a packet is similar, except that no explicit memory page
exchange is involved (see [1] for details).

Thus, I/O processing in a net-IDD primarily involves two components: the real de-
vice driver and the back-end (virtual) device driver. One natural approach for more
accurate accounting is to instrument these components for detailed measurements of
all the delays on the I/O path. However, this approach does not scale in Xen for two
reasons: (1) since Xen uses legacy Linux drivers, this would require instrumenting all
network device drivers, and (2) network drivers involve significant asynchronous pro-
cessing, making it difficult to isolate the time consumed in the driver in the context of a
given operation.

We therefore need some alternate heuristics to estimate the per-guest CPU con-
sumption. Intuitively, each guest should be charged in proportion to the amount of I/O
operations it generates. In [5], we used the number of memory page exchanges as an
estimator. However, we found this method to be a rather coarse approximation that does
not take into account what fraction of these page exchanges correspond to sent versus
received packets, and that does not take into account the size of the packets.

Thus, we propose using the number of packets sent/received per guest domain for
distributing the net-IDD CPU consumption among guests. Note that netback is an ideal
observation point: all of the packets (both on the send and receive paths between driver
domain and guest domain) must pass through it. We instrumented netback to provide de-
tailed measurements on the number of packets processed by the corresponding net-IDD
in both directions for each guest domain. In particular, we added XenTrace events for
each packet transmission/reception, with the appropriate guest domain as an attribute.
We then extended XenMon to report this information.

Of course, knowing the number of packets sent and received on a per-domain basis
does not by itself enable accurate CPU isolation. We need a mechanism to map these
values to per-domain CPU consumption in the IDD. In particular, we want to know
the dependence of packet size on CPU processing overhead and the breakdown of send
versus receive packet processing. To answer these questions, we perform the following
two part study.

The Impact of Packet Size on CPU Overhead in Net-IDD: We performed controlled
experiments involving sending packets of different sizes at a fixed rate to a guest VM.
In particular, we fixed the rate at 10,000 pkts/sec and varied the packet size from 100
to 1200 bytes. Each run lasted 20 seconds and we averaged the results over 10 runs.
We repeated the experiments to exercise the reverse I/O path as well – so the VM
was sending packets instead of receiving them. To prevent “pollution” of results due to
ACKS going in the opposite direction, we wrote a custom tool for these benchmarks
using UDP instead of TCP. The other end point for these experiments was a separate
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cessing packets at a fixed rate under differ-
ent packet sizes
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Fig. 5. CPU overhead in Domain-0 for pro-
cessing packets of a fixed size under vary-
ing rates

machine on our LAN. Recall that in all of our experiments, we use Domain-0 to host
the network device driver.

Our results show that CPU consumption in net-IDD does not depend on packet size
as presented in Figure 4. The explanation is as follows: during driver packet process-
ing there is no payload processing or copying; the driver largely deals with the packet
header. For the rest of the I/O path within the net-IDD, there is no data copying (where
CPU processing can depend on packet size) — only the ownership of memory pages
changes to reflect data transfer.

CPU Overhead in Net-IDD for Send vs. Receive I/O Paths: In this experiment, we fixed
the packet size at 256 bytes and varied the rate at which a VM sends or receives pack-
ets. We could thus selectively exercise the send and receive I/O paths within Xen and
measure the resulting CPU overhead in net-IDD. We denote these as Send Benchmark
and Receive Benchmark, respectively. As before, each run lasted 20 seconds and we
averaged results over 10 runs.

Figure 5 presents our experimental results. An interesting outcome of this study is
that the ratio of CPU consumption in net-IDD between send and receive paths is con-
sistently the same for different packet rates. We denote this measured ratio as weight.

To validate the generality of presented results we repeated all of the experiments pre-
sented above for two different hardware configurations: a single CPU Intel Pentium-IV
machine running at 2.66-GHz with a 1-Gbit Intel NIC (SYSTEM-1) and a dual processor
Intel Xen 2.8-GHz with a 1-Gbit Broadcom NIC (SYSTEM-2). For both systems under
test, the CPU consumption in net-IDD does not depend on packet size. Further, for both
system under test, the ratio of CPU consumption in net-IDD between send and receive
paths is consistent for different packet rates:

– SYSTEM-1: weight = 1.1 (standard deviation 0.07);
– SYSTEM-2: weight = 1.16 (standard deviation 0.15).

These results show that the number of packets in conjunction with the direction of
traffic can be reasonably used to split CPU consumption among guests. Concretely,
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let Send/Recv(Domi) denote packets sent/received by net-IDD to/from Domi and
Send/Recv(netIDD) denote the total packets sent/received by net-IDD. Then, we de-
fine the weighted packet count per domain as weight×Send(Domi)+Recv(Domi),
where weight is the ratio of CPU consumption in net-IDD for send versus receive paths.
Similarly, we compute the weighted packet count for net-IDD: wCount(netIDD).
Then we can use the fraction wCount(Domi)/wCount(netIDD) to charge CPU us-
age to Domi.

In the remainder of this paper, we use this weighted count to compute the CPU
overhead in net-IDD for network processing on behalf of different guest domains. This
approach is also attractive because it comes with a compact, portable benchmark that
derives the weight coefficient between send/receive paths automatically for different
systems and different network device drivers. It has the further advantage of being
general to a variety of device drivers and operating systems (e.g., individual device
drivers may be hosted on a variety of operating systems) without requiring error-prone
instrumentation. Of course, it has the disadvantage of not explicitly measuring CPU
consumption but rather deriving it based on benchmarks of a particular hardware con-
figuration. We feel that this trade off is inherent and that instrumenting all possible
device driver/OS configurations is untenable for resource isolation. A variety of mid-
dleware tools face similar challenges, i.e., the inability to modify or directly instrument
lower layers, making our approach attractive for alternate settings as well.

With this estimation of CPU utilization per guest, we now turn our attention to SEDF-
DC and ShareGuard.

4 SEDF-DC: CPU Scheduler with Feedback

Xen’s reservation based CPU scheduler — SEDF (Simple Earliest Deadline First) —
takes its roots in the Atropos scheduler [8]. In SEDF, an administrator can specify the
CPU share to be allocated per VM. However, there is no way to restrict the aggregate
CPU consumed by a domain and by driver domains acting on its behalf. We have ex-
tended SEDF to accomplish this goal.

4.1 Overview

Our modified scheduler, SEDF-DC for SEDF-Debt Collector, periodically receives
feedback from XenMon about the CPU consumed by IDDs for I/O processing on behalf
of guest domains. Using this information, SEDF-DC constrains the CPU allocation to
guest domains to meet the specified combined CPU usage limit.

For each domain Domi, SEDF takes as input a tuple (si, pi), where the slice si

and the period pi together represent the CPU share of Domi: Domi will receive at
least si units of time in each period of length pi. Such specifications are particularly
convenient for dynamically adjusting CPU allocations: we can directly charge the CPU
time consumed by IDDs for Domi by decreasing si appropriately. In CPU schedulers
based on weights, one would need to continuously re-calculate weights of domains to
achieve the same result.

We now describe SEDF-DC’s operation, but limit our description only to places
where SEDF-DC differs from SEDF. SEDF-DC maintains 3 queues:
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– Qr: the queue of runnable domains;
– Qw: the queue of domains that have exhausted their slice and are awaiting the next

period;
– Qb: the queue of blocked domains.

A key concept in SEDF is deadlines. Intuitively, a deadline denotes the absolute time
that a domain should have received its specified share of the CPU. Both Qr and Qw are
sorted by deadlines, making the selection of the next domain to schedule a constant
time operation.

Each domain Di’s deadline is initialized to NOW + pi, where NOW denotes the
current time. Let t denote the feedback interval (set to 500 ms in our current imple-
mentation). Let net-IDD be a driver domain with a networking device that is shared by
Dom1, . . . , Domn. We will simplify the algorithm description (without loss of gen-
erality) by considering a single net-IDD. Using XenMon, we compute the CPU con-
sumption usedIDD

i of net-IDD for network I/O processing on behalf of Domi during
the latest t-ms interval and provide this information (for all domains) to SEDF-DC.

For each domain Domi, the scheduler tracks three values (di, ri, debtIDD
i ):

– di: domain’s current deadline for CPU allocation, the time when the current period
ends for domain Domi.

– ri: domain’s current remaining time for CPU allocation, the CPU time remaining
to domain Domi within its current period.

– debtIDD
i : CPU time consumed by Domi via the net-IDD’s networking process-

ing performed on behalf of Domi. We call this the CPU debt for Domi. At each
feedback interval, this value is incremented by usedIDD

i for the latest t-ms.

Note that the original SEDF scheduler only tracks (di, ri). The introduction of
debtIDD

i in the algorithm allows us to observe and enforce aggregate limits on Domi’s
CPU utilization.

Let a and b be integer numbers and let us introduce the following function a−̂b as
follows:

a −̂ b =
{

0 if a ≤ b
a − b otherwise

We now describe the modified procedure for updating the queues (Qr, Qw, and Qb)
on each invocation of SEDF-DC.

1. The time gotteni for which the current Domi has been running is deducted from
ri: ri = ri − gotteni.

If debtIDD
i > 0 then we attempt to charge Domi for its CPU debt by decreasing

the remaining time of its CPU slice:
– if debtIDD

i ≤ ri then ri = ri − debtIDD
i and debtIDD

i = 0;
– if debtIDD

i > ri then debtIDD
i = debtIDD

i − ri and ri = 0.
2. If ri = 0, then Domi is moved from Qr to Qw, since Domi has received its

required CPU time in the current period.
3. For each domain Domk in Qw, if NOW ≥ dk then we perform the following

updates:
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– rk is reset to sk −̂ debtIDD
k ;

– debtIDD
k is decreased by min(sk, debtk);

– the new deadline is set to dk + pk;
– If rk > 0 then Domk is moved from Qw to Qr.

4. The next timer interrupt is scheduled for min(dh
w + ph

w, dh
r ), where (dh

w, ph
w) and

(dh
r , ph

r ) denote the deadline and period of the domains that are respective heads of
the Qr and Qw queues.

5. On an interrupt, the scheduler runs the head of Qr. If Qr is empty, it selects the
head of Qw.

6. When domain Domk in Qb is unblocked, we make the following updates:
– if NOW < dk then

• if debtIDD
k ≤ rk then rk = rk − debtIDD

k , and debtIDD
k = 0, and Domk

is moved from Qb to Qr;
• if debtIDD

k > rk then debtIDD
k = debtIDD

k − rk and rk = 0.
– if NOW ≥ dk then we compute for how many periods Domk was blocked.

Since Domk was not runnable, this unused CPU time can be charged against
its CPU debt:

bl periods = int

{
(NOW − dk)

pk

}
debtIDD

k = debtIDD
k − rk − (bl periods × sk)

– rk is reset to sk −̂ debtIDD
k . If rk > 0, then Domk is moved from Qb to Qr

and can be scheduled to receive the remaining rk;
– debtIDD

k is adjusted by sk: debtIDD
k = debtIDD

k −̂ sk;
– the new deadline is set to dk + pk

The SEDF-DC implementation described above might have bursty CPU allocation
for domains hosting network-intensive applications, especially when a coarser granular-
ity time interval t is used for the scheduler feedback, e.g., t = 2s. It might happen that
domain Domi will get zero allocation of CPU shares for several consecutive periods
until the CPU debt time debtIDD

i is “repaid”. To avoid this, we implemented an opti-
mization to SEDF-DC that attempts to spread the CPU debt across multiple execution
periods.

We compute the number of times period pi fits within a feedback interval — the
intent is to spread the CPU debt of Domi across periods that happen during the feed-
back interval. We call this the CPU period frequency of domain Domi and denote it as
period freqi:

period freqi = int

(
t

pi

)
If period freqi > 1, then we can spread debtIDD

i across period freqi number of
periods, where at each period the domain is charged for a fraction of its overall CPU
debt:

spread debti = int

(
debtIDD

i

period freqi

)
This optimized SEDF-DC algorithm supports more consistent and smoother CPU

allocation to domains with network-intensive applications.
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4.2 Evaluation

In this section we evaluate SEDF-DC beginning with a simple setup to demonstrate
the correctness of the scheduler and continue with a more complex scenario to illus-
trate SEDF-DC’s feasibility for realistic workloads. All tests were conducted on single
processor Pentium-IV machines running at 2.8-GHz.

In the first experiment, we have a single VM (Domain-1) configured to receive a
maximum of 60% of the CPU; Domain-0 is entitled to the remaining 40%. Domain-1
hosts a Web server, loaded using httperf [14] from another machine. We gradually
increase the load and measure the resulting CPU utilization.

Figure 6a shows the results with the unmodified SEDF scheduler. We see that as the
load increases, Domain-1 consumes almost all of its share of the CPU. Additionally,
Domain-0 incurs an overhead of almost 35% at peak loads to serve Domain-1’s traffic.
Hence, while Domain-1 was entitled to receive 60% of the CPU, it had received a
combined CPU share of 90% via additional I/O processing in Domain-0. We repeated
the same experiment with SEDF-DC, with the results shown in Figure 6b. We can see
that SEDF-DC is able to enforce the desired behavior, keeping the combined CPU usage
of Domain-1 bounded to 60%.
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Fig. 6. Simple SEDF Benchmark

In practice, system configurations are likely to be more complicated: multiple VMs,
each running a different service with different requirements; some VMs may be I/O in-
tensive, others might be CPU intensive and so on. Our next experiment tries to evaluate
SEDF and SEDF-DC under a more realistic setup.

For this experiment, we have two VMs (Domain-1 and Domain-2), each hosting a
web-server. We configure both VMs and Domain-0 to receive a maximum of 22% of
the CPU. Any slack time in the system is consumed by CPU intensive tasks running in a
third VM. Domain-1’s web-server is served with requests for files of size 10 KB at 400
requests/second, while Domain-2’s web-server is served with requests for files of size
100 KB at 200 requests/second. We chose these rates because they completely saturate
Domain-0 and demonstrate how CPU usage in Domain-0 may be divided between guest
domains with different workload requirements. As before, we usehttperf to generate
client requests. Each run lasts 60 seconds.
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We first conduct the experiment with unmodified SEDF to establish the baseline.
Figure 7a shows the throughput of the two web-servers as a function of time. We also
measure the CPU utilization’s of all the VMs, shown in 7b. Note that Domain-1 con-
sumes all of its 22% available CPU cycles, while Domain-2 consumes only about 15%
of the CPU. Even more interesting is the split of Domain-0 CPU utilization across
Domain-1 and Domain-2 as shown in Figure 7c. For clarify, we summarize the exper-
iment in Table 1. The first column shows the average values for the metrics over the
entire run. Domain-1 uses an additional 9.6% of CPU for I/O processing in Domain-0
(42% of overall Domain-0 usage) while Domain-2 uses an additional 13.6% of CPU
via Domain-0 (58% of overall Domain-0 usage). Thus, the combined CPU utilization
of Domains 1 and 2 (the sum of their individual CPU utilization and CPU overhead in
Domain-0 on their behalf) is 29.2% and 27.7% respectively.

0 10 20 30 40 50 60 70
Time (s)

0

100

200

300

400

500

W
e
b
se

rv
e
r 

T
h
ro

u
g
h
p
u
t 

(r
e
q
/s

) Dom-1
Dom-2

(a) Web-server Throughput

0 10 20 30 40 50 60 70
Time

0

5

10

15

20

25

30

35

40

C
P
U

 u
ti

liz
a
ti

o
n
 (

%
)

Dom-0
Dom-1
Dom-2

(b) CPU Utilization

0 10 20 30 40 50 60 70
Time

0

5

10

15

20

25

30

35

40

C
P
U

 u
ti

liz
a
ti

o
n
 (

%
) 

in
 D

o
m

-0

Dom-1
Dom-1 Total
Dom-2
Dom-2 Total

(c) CPU Utilization in Dom-0

Fig. 7. With original SEDF



Enforcing Performance Isolation Across Virtual Machines in Xen 353

Table 1. SEDF-DC in action: metric values averaged over the duration of the run

Metric SEDF SEDF-DC
Dom-1 web-server Throughput 348.06 req/s 225.20 req/s
Dom-2 web-server Throughput 93.12 req/s 69.53 req/s

Dom-1 CPU 19.6% 13.7%
Dom-0 for Dom-1 9.6% 7.7%
Dom-1 Combined 29.2% 21.4%

Dom-2 CPU 14.5% 10.9%
Dom-0 for Dom-2 13.2% 10.6%
Dom-2 Combined 27.7% 21.5%
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We then investigate whether we can limit the system-wide CPU usage of Domain-1
and Domain-2 to their 22% CPU share using SEDF-DC. Figure 8 shows the results
of this experiment. Recall the operation of SEDF-DC: it computes the debt of a VM
(work done by the IDD – in this case Domain-0 – on its behalf), and incrementally
charges it back to the appropriate VM. This is clearly visible in Figure 8c: the combined
utilization’s of both Domain-1 and Domain-2 hover around 22% for the duration of the
experiment. The oscillations result from discretization in the way we charge back debt.

Controlling combined CPU utilization for Domain-1 and 2 does impact the web
servers’ achievable throughput. Since the combined CPU usage of Domain-1 and 2 is
limited to 22% under SEDF-DC—versus the uncontrolled values of 29.2% and 27.7%
under the original SEDF scheduler—there is a drop in throughput as shown in Fig-
ure 8a. The second column of Table 1 gives the average throughput values over the run
for a more concise comparison.

While SEDF-DC is capable of limiting the combined CPU usage across guest do-
mains, it does not explicitly control CPU usage in a driver domain. Note that the split of
the CPU utilization in Domain-0 for Domain-1 and Domain-2 is still unequal. Domain-1
is using 7.7% of CPU via Domain-0 (42% of overall Domain-0 usage) while Domain-
2 is using 10.6% of CPU via Domain-0 (58% of overall Domain-0 usage). We turn
our attention to controlling per-domain IDD utilization using ShareGuard in the next
section.

5 ShareGuard

In the current Xen implementation, a driver domain does not control the amount of
CPU it consumes for I/O processing on behalf of different guest domains. This lack of
control may significantly impact the performance of network services. Such control is
also required to enable SEDF-DC to enforce aggregate CPU usage limits. In this section
we describe ShareGuard: a control mechanism to solve this problem.

5.1 Overview

ShareGuard is a control mechanism to enforce a specified limit on CPU time consumed
by an IDD for I/O processing on behalf of a particular guest domain. ShareGuard peri-
odically polls XenMon for CPU time consumed by IDDs, and if a guest domain’s CPU
usage is above the specified limit, then ShareGuard stops network traffic to/from the
corresponding guest domain.

Let the CPU requirement of net-IDD be specified by a pair (sIDD, pIDD), meaning
that net-IDD will receive a CPU allocation of at least sIDD time units in each period of
length pIDD units (the time unit is typically milli-seconds). In other words, this spec-
ification is bounding CPU consumption of net-IDD over time to CPUshareIDD =
sIDD

pIDD . Let limitIDD
i specify a fraction of CPU time in net-IDD available for network

processing on behalf of Domi such that limitIDD
i < CPUshareIDD. If such a limit

is not set then Domi is entitled to unlimited I/O processing in net-IDD. Let t be the
time period ShareGuard uses to evaluate current CPU usage in net-IDD and perform
decision making. In the current implementation of ShareGuard, we use t = 500 ms.
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Using XenMon, ShareGuard collects information on CPU usage by net-IDD at every
feedback interval, and computes the fraction of overall CPU time used by net-IDD for
networking processing on behalf of Domi (1 ≤ i ≤ n) during the latest t interval. Let
us denote this fraction as usedIDD

i . In each time interval t, ShareGuard determines the
validity of the condition: usedIDD

i ≤ limitIDD
i . If this condition is violated, then Domi

has exhausted its CPU share for network traffic processing in net-IDD. At this point,
ShareGuard applies appropriate defensive actions for the next time interval tdef , where

tdef = t × int

(
usedIDD

i + 1
limitIDD

i

)

ShareGuard performs the following defensive actions:

– Stop accepting incoming traffic to a domain: Since our net-IDDs run Linux,
we use Linux’s routing and traffic control mechanisms [15] to drop/reject traffic
destined for a particular domain. In particular, we use iptables [16] — they
are easily scriptable and configurable from user space. Similar techniques can be
applied in other operating systems that may serve as wrappers for other legacy
device drivers.

– Stop processing outgoing traffic from a domain: As in the previous case, we
can use iptables to drop packets being transmitted from a domain. However,
this will still incur substantial overhead in the IDD because iptables will only
process the packet once it has traversed the network stack of the IDD. Ideally we
want to drop the packet before it even enters the IDD to limit processing overhead.

One approach would be to enforce iptables filtering within the guest domain.
However, ShareGuard does not assume any cooperation from guests so we reject
this option. However, we still have an attractive control point within the net-IDD
where packets can be dropped before entering the net-IDDs network stack: the net-
back driver (see Figure 3). ShareGuard sends a notification to netback identifying
the target domain and the required action (drop or forward). This is akin to setting
iptables rules, except that these rules will be applied within netback.

Whenever netback receives an outbound packet from a domain, it will determine
if there are any rules applicable to this domain. If so, it will take the specified
action. This is both lightweight (in terms of overhead incurred by IDD) and flexible
(in terms of control exercised by IDD).

After time interval tdef , ShareGuard restores normal functionality in net-IDD with
respect to network traffic to/from domain Domi.

5.2 Evaluation

To evaluate the effectiveness of ShareGuard in isolating total domain CPU consump-
tion, we ran the following experimental configuration. Three virtual machines run on the
same physical hardware. Domain-1 and Domain-2 host web servers that support busi-
ness critical services. These services have well-defined expectations for their through-
put and response time. The CPU shares for these domains are set to meet these expec-
tations. Domain-3 hosts a batch application that does some computation and performs



356 D. Gupta et al.

occasional bulk data transfers. This VM supports a less important application that is not
time sensitive, but needs to complete its job eventually.

In our first experiment, we observe overall performance of these three services to
quantify the degree of performance isolation ShareGuard can deliver. We configure
a dual-processor machine as follows: Domain-0 runs on a separate processor and set
to consume at most 60% of the CPU. The second CPU hosts three VMs: Domain-1
and Domain-2 run web servers (serving 10 KB and 100 KB files respectively), and
Domain-3 occasionally does a bulk file transfer. All these VMs have equal share of
the second CPU, 33% each. In this initial experiment, we do not enable ShareGuard
to demonstrate baseline performance characteristics. The experiments were conducted
over a gigabit network, so our experiments are not network limited. In this experiment,
we start a benchmark that loads web servers in Domain-1 and Domain-2 from two
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separate machines using httperf for two minutes. Forty seconds into the benchmark,
Domain-3 initiates a bulk-file transfer that lasts for 40 seconds.

Figure 9 shows the results as a function of time. We can clearly see the adverse im-
pact of Domain-3’s workload on both web servers’ throughput (Figure 9a). Considering
the split of CPU utilization in Domain-0 for the corresponding interval (Figure 9c), we
find that Domain-3 uses between 20% to 30% of CPU for I/O processing in Domain-
0 leaving insufficient CPU resources for I/O processing on behalf of Domain-1 and
Domain-2.

The first column in Table 2 provides a summary of average metric values for the
baseline case where Domain-1 and Domain-2 meet their performance expectations and
deliver expected web server throughput. These metrics reflect Domain-1 and Domain-2
performance when there is no competing I/O traffic issued by Domain-3 in the experi-
ment. Note that in this case the combined CPU utilization in Domain-0 for I/O process-
ing by Domain-1 and Domain-2 is about 50%. Since Domain-0 is entitled to 60% of the
CPU, this means that there is about 10% CPU available for additional I/O processing in
Domain-0.

Table 2. ShareGuard at work: metric values are averaged over the middle 40 second segment of
the runs

Metric Baseline Without ShareGuard With ShareGuard
Dom-1 Web server 329.85 236.8 321.13
Dom-2 Web server 231.49 166.67 211.88

Dom-0 for Dom-1 11.55 7.26 11.9
Dom-0 for Dom-2 37.41 23.9 34.1
Dom-0 for Dom-3 N/A 23.92 4.42

The average metric values for this experiment (without ShareGuard) over the middle
40 second segment (where Domain-1, Domain-2, and Domain-3 all compete for CPU
processing in Domain-0) are summarized in the second column of Table 2. Domain-3
gets 23.92% of CPU for I/O processing in Domain-0, squeezing in the CPU share avail-
able for Domain-1’s and Domain-2’s I/O processing. As a result, there is a significant
decrease in achievable web server throughput: both web servers are delivering only 72%
of their expected baseline capacity.

This example clearly indicates the impact of not controlling IDD CPU consumption
by different guest domains. The question is whether ShareGuard can alleviate this prob-
lem. We repeat the experiment with ShareGuard enabled, and configure ShareGuard to
limit the CPU consumption for Domain-3 in Domain-0 to 5%. Figure 10 shows the
results.

Recall ShareGuard’s operation: every 500 ms it evaluates CPU usage in the IDD;
if a VM is violating its CPU share, it turns off all traffic processing for that VM for
some time. We compute this duration such that over that interval, the average CPU
utilization of the VM within the IDD will comply with the specification. This mode
of operation is clearly visible in Figure 10c. We had directed ShareGuard to restrict
Domain-3’s consumption in Domain-0 to 5%. At t = 40s, ShareGuard detected that
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Domain-3 had consumed almost 30% CPU in Domain-0. Accordingly, it disables traffic
processing for Domain-3 for the next 2.5 seconds, such that the average utilization over
this 3 second window drops to 5%. This pattern subsequently repeats ensuring that the
isolation guarantee is maintained through the entire run.

Comparing Figure 9c and 10c, we see that with ShareGuard, Domain-1 and Domain-
2 obtain more uniform service in Domain-0 even in the presence of Domain-3’s work-
load. This is also visible in the CPU utilization (see Figure 10b). Finally, observe that
the web-server throughput for Domain-1 and Domain-2 improve significantly under
ShareGuard: both web servers deliver the expected throughput.

The third column in Table 2 provides a summary of average metric values over the
middle 40 second segment with ShareGuard enabled. As we can see, CPU consumption
by Domain-1 and Domain-2, as well as web server throughput are similar to the baseline
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case. Web server performance does not degrade in presence of the bulk data transfer in
Domain-3 because CPU processing in the IDD on behalf of Domain-3 is controlled by
ShareGuard.

6 Discussion

All three of the components discussed in this play important, complementary tasks in
enforcing performance isolation. Both SEDF-DC and ShareGuard depend on XenMon
for detailed CPU utilization information. While ShareGuard is only relevant for work-
loads involving network I/O, SEDF-DC is agnostic to the choice of workloads — it
only depends on accurate feedback on CPU utilization from XenMon.

However, SEDF-DC can only enforce guarantees on the aggregate CPU consumption
of a guest and its IDD — it does not consider fair allocation of the driver domain’s
finite CPU resources. ShareGuard can be used to enforce such limits for networking
workloads. Further, ShareGuard works irrespective of the choice of CPU scheduler. An
artifact of Xen’s current CPU schedulers in Xen is that SEDF-DC only works for single
processor systems. ShareGuard, however, supports multi-processor systems as well. We
expect that this limitation will be removed with future releases of Xen.

Finally, ShareGuard is more intrusive in the sense that it actively blocks a VM’s
traffic. In comparison, SEDF-DC is more passive and transparent. Also, as shown in
Section 5, CPU allocation in ShareGuard is more bursty than in SEDF-DC (compare
Figures 8c and 10c). All this underscores the fact that while on its own no single mech-
anism is perfect, working together they form a complete system.

7 Related Work

The problem of resource isolation is as old as time sharing systems. Most of the previous
work in this area has focused on resource isolation between processes in an operating
system or users on a single machine. In these systems, scheduling and resource man-
agement primitives do not extend to the execution of significant parts of kernel code.
An application has no control over the consumption of many system resources that the
kernel consumes on behalf of the application.

Consider network-intensive applications: most of the processing is typically done in
the kernel and the kernel generally does not control or properly account for resources
consumed during the processing of network traffic. The techniques used in ShareGuard
have been inspired by earlier work addressing this problem with respect to receive live-
locks in interrupt based networking subsystems. Mogul et al. [17] restrict the amount
of I/O processing that the kernel does on behalf of user processes. In Lazy Receiver
Processing [9] (LRP), the system uses better accounting information (such as hardware
support for identifying which process an incoming packet is destined to) to improve
resource isolation, e.g., such that packet processing on behalf of one process does not
adversely affect the resource available to other processes.

Some of the ideas motivating LRP were extended to Resource Containers [12]. A re-
source container is an operating system abstraction to account for all system resources
consumed by an activity, where an activity might span multiple processes. Resource
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Containers separate the notion of resource principal from threads or processes and pro-
vide support for fine-grained resource management in operating systems. This distinc-
tion between a protection domain and a resource principal is also visible in Xen’s new
I/O model: a VM (the protection domain) may request service from several different
IDDs, therefore the tracking of its resource usage needs to span across executions of all
these domains.

One limitation of Resource Containers is that they only work for single processor
systems. There does not seem to be any straightforward way of extending the notion
of an activity to span multiple processors. This is further complicated by the fact that
in most operating systems, each CPU is scheduled independently. SEDF-DC scheduler
suffers from the same limitation. However, ShareGuard is both scheduler agnostic and
it fully supports multi-processor systems.

The problem of performance isolation has been actively addressed by multimedia
systems [8,18]. The Nemesis operating system [8] was designed to provide guaranteed
quality of service (QoS) to applications. Nemesis aims to prevent QoS crosstalk that
can occur when the operating system kernel (or a shared server) performs a significant
amount of work on behalf of a number of applications. One key way in which Neme-
sis supports this isolation is by having applications execute as many of their own tasks
as possible. Since a large proportion of the code executed on behalf of an application
in a traditional operating system requires no additional privileges and does not, there-
fore, need to execute in a separate protection domain, the Nemesis operating system
moves the majority of operating system services into the application itself, leading to
a vertically structured operating system. QoS crosstalk can also occur when there is
contention for physical resources, and applications do not have guaranteed access to
the resources. Nemesis provides explicit low-level resource guarantees or reservations
to applications. This is not limited simply to CPU: all resources including disks [19],
network interfaces [20], and physical memory [21] – are treated in the same way.

The networking architecture of Nemesis still has some problems related to the charg-
ing of CPU time to applications. When the device driver transmits packets for an appli-
cation, used CPU time is not charged to the application but to the device driver. Also,
the handling of incoming packets before de-multiplexing it to the receiving application
is charged to the device driver. We observe the same problem in the context of Xen
VMM and the network driver domains, and suggest possible solution to this problem.

Exokernel [22] and Denali [23] provide resource management systems similar to
vertically structured operating systems. The design goal for Exokernel was to separate
protection from management. In this architecture, a minimal kernel — called Exok-
ernel — securely multiplexes available hardware resources. It differs from the VMM
approach in that it exports hardware resources rather than emulates them. VMMs have
served as the foundation of several “security kernels” [24,25,26,27]. Denali differs from
these efforts in that it aims to provide scalability as well as isolation for untrusted code,
but it does not provide any specialized for performance isolation.

Most of the earlier work on VMMs focused on pursuing OS support for isolating
untrusted code as a primary goal. While there is significant work on resource man-
agement in traditional operating systems, relatively less work has been performed in
the context of virtual machines. Waldspurger [28] considers the problem of allocating
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memory across virtual machines; other systems such as Denali [23], HP SoftUDC [2]
and Planetlab vServers [29] have also touched on some of these issues. Our work takes
another step towards a general framework for strict resource isolation in virtual ma-
chines by considering the auxiliary work done on behalf of a guest in privileged or
driver domains.

8 Conclusion and Future Work

Virtualization is fast becoming a commercially viable alternative for increasing system
utilization. But from a customer perspective, virtualization cannot succeed without pro-
viding appropriate resource and performance isolation guarantees. In this work, we have
proposed two mechanisms – SEDF-DC and ShareGuard – that improve CPU and net-
work resource isolation in Xen. We demonstrated how these mechanisms enable new
policies to ensure performance isolation under a variety of configurations and work-
loads.

For future work, we plan to extend these mechanisms to support other resources
such as disk I/O and memory. Work is also underway on a hierarchical CPU scheduler
for Xen: currently Xen ships with two CPU schedulers, but the choice of scheduler
has to be fixed at boot time. We expect that in the future, many more CPU schedulers
will become available (SEDF-DC being among the first), and that having a hierarchical
scheduler that allows the use of different schedulers for different domains depending
on the kinds of applications and workloads that need to be supported will enable more
efficient resource utilization.

We believe that performance isolation requires appropriate resource allocation poli-
cies. Thus, another area for future investigation is policies for efficient capacity planning
and workload management.
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Abstract. As enterprise applications rely increasingly on commodity messaging
middleware, message tracking has become instrumental in testing and run-time
monitoring. However, building an effective message tracking system is challeng-
ing because of the large scale and high message rate of enterprise-wide appli-
cations. To address this challenge, we consider the case of message tracking for
distributed messaging middleware. We desire to record the origin, path, and desti-
nation of every application message while imposing low overhead with respect to
latency, memory and storage. To achieve our goal, we propose a tunable approxi-
mation approach based on Bloom filter “histories.” Our approach is tunable in the
sense that more accurate audit trails may be provided at the expense of storage
space, or, conversely, storage overhead is reduced for applications requiring less
accurate audit trails. We describe the design of the system and demonstrate its
utility by analyzing the performance of a prototype implementation.

1 Introduction

The development of enterprise business applications has increasingly relied on com-
modity messaging middleware for component connectivity and interaction. Because the
enterprise no longer implements the underlying communication framework, message
traceback and audit trails will become an important administrative capability during
development and for monitoring and problem determination at run-time. Past explo-
ration in messaging middleware [5] suggests message rates on the order of thousands
of messages per second, distributed to tens of thousands of clients. On this scale, a
naive logging approach may impose unacceptable overhead and may rapidly exhaust
persistent resources such as disk. Thus, we need an efficient message tracking system
to accommodate high volume of traffic.

In this paper, we consider the specific case of message tracking for publish-subscribe
messaging middleware based on the Java Messaging Service API [4]. We choose to fo-
cus on publish-subscribe, rather than more general messaging (e.g. queuing), because
we believe that the large scale and high message rate of publish-subscribe middle-
ware presents the greatest challenge for message tracking. Given a network of publish-
subscribe message servers we wish to:

– Record the origin, path, and destination of every message routed by the system;
– Support traceback queries for previously sent messages; and
– Impose low runtime overhead with respect to latency, memory footprint, and disk

storage.
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To support tracking for publish-subscribe messaging, we have developed a tunable
approximation approach based on Bloom filters [6], which trades accuracy for low over-
head and efficient use of persistent resources. Our approach is tunable in the sense
that more accurate audit trails may be provided at the expense of more frequent high-
overhead operations (e.g. storing buffers to disk). Conversely, overhead can be reduced
for applications which require less accurate audit trails.

While Bloom filters are often used as an efficient, approximate cache [8, 15], a novel
feature of our approach is the organization of Bloom filters into “histories” which record
an indefinite record of message paths for later query. We present theoretical results
which specify clock synchronization and message jitter limits in order to maintain ac-
curate histories. Similarly, we evaluate a prototype implementation in order to highlight
trade-offs between performance, accuracy, and resource utilization.

The remainder of the paper is organized as follows. In Section 2, we define a tracking
facility in the context of publish-subscribe messaging. In Section 3, we describe the
design and implementation of our system, and analyze the accuracy of our design in
Section 4. In Section 5, we evaluate performance. In Section 6, we describe related
work. We summarize our results and discuss future work in Section 7.

2 Tracking for Distributed Messaging

Messaging middleware is a popular “glue” technology which provides the means for
applications to interact with one another using a variety of interaction patterns. In ad-
dition to proprietary interfaces, most messaging middleware products support the Java
Message Service (JMS) API, which defines messaging services within the Java 2 En-
terprise Edition specification [3]. We focus on the publish-subscribe portion of JMS
although our techniques are readily extended to other distribution patterns and/or other
messaging APIs.

We define a tracking facility for publish-subscribe messaging as follows:

Given the unique ID of a message, the tracking facility will report the origin
of the message, the messaging servers which routed the message, and the set
of clients to which the message was delivered. The message may have been
accepted for delivery at an arbitrary time in the past.

We assume that the tracking facility is queried after a message has been completely
routed. However, our techniques may be used to provide partial tracking information if
earlier queries are necessary.

In the context of JMS, each message has a vendor specific unique ID which is as-
signed when the message has been accepted for delivery. A message has been accepted
for delivery when the “publish” call returns at the publisher. Thus, the JMS message
ID is a valid input to the tracking facility once the “publish” call completes. Although
the message ID is first known to the publisher, we assume that any entity may issue a
traceback query with an appropriate message ID.

The implementation of the tracking facility is divided into two distinct components.
The message tracking component records the routes of messages as they are distributed
through the messaging system. The path reconstruction component uses tracking
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records to reconstruct the complete path of a routed message. While we focus on ef-
ficient message tracking in this paper, we provide a brief description of how path recon-
struction may be implemented in Section 3.3.

3 System Design

We develop our tracking facility as a component in the Gryphon system [1], which is a
robust, highly-scalable messaging system that implements the publish-subscribe portion
of JMS. Gryphon is representative of a large class of middleware routing infrastructures
and consists of an overlay network of messaging brokers, each of which may host one
or more network-connected clients (i.e. publishers and subscribers). A typical publish-
subscribe message is routed as follows:

1. The message is created by the publisher and submitted to the associated broker for
delivery.

2. The broker receives the message and determines (a) which locally attached sub-
scribers (if any) should receive the message, and (b) which neighboring brokers (if
any) should receive the message. It then routes the message to the appropriate local
subscribers and neighboring brokers.

3. Neighboring brokers repeat this process until all appropriate brokers and
subscribers have received the message.

In Gryphon, the network topology forms an arbitrarily connected graph. Routes are
determined by spanning trees so that each broker receives a message from at most one
neighbor. In addition, Gryphon provides ordered links between brokers and we assume
that brokers do not arbitrarily reorder in-flight messages. Failures may require retrans-
mission and hence introduce duplicate messages. For the moment, we assume there are
no duplicate messages. We discuss modifications for handling duplicates in Section 4.3.
Thus, the current discussion assumes ordered, tree-based routing without duplicate mes-
sages.

To facilitate tracking, the JMS ID of each message is augmented with a tuple r =
(p, b, t), where p is the unique ID of the publisher of the message, b is the unique ID
of the broker to which the publisher is attached, and t is a monotonically increasing
time stamp. The time stamp is generated locally by the publisher and may include a
“skew adjustment” as described in Section 3.2. The values for p and b are stored at
the publisher when it connects to a broker. The JMS ID is set by the publisher-side
implementation of the JMS “publish” method.

3.1 Bloom Filter Histories

Each broker maintains one or more local Bloom filter “histories” which are a com-
pressed record of message traffic. Histories consist of both in-memory and persisted
(i.e. stored to disk) data, and are further partitioned according to message sender (as
described in the next section).

A Bloom filter [6] is a data structure for representing a set of n elements called
keys, comprised of an m-bit vector, v, (initialized to zeros) and associated with k hash
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functions whose range is {1, . . . , m}. Let v[i] (1 ≤ i ≤ m) denote the ith element of the
bit vector v. Given k hash functions f1, ..., fk, a Bloom filter supports two operations:

– ADD(r) adds the key r to the set of elements stored in the filter. That is, ADD(r)
sets v[fj(r)] = 1 for j = 1, ..., k.

– CONTAINS(r) returns true if the key r is stored in the filter or false otherwise. That
is, CONTAINS(r) returns true if and only if v[fj(r)] = 1 for each j = 1, ..., k.

Bloom filters are efficient in both speed and size because hash functions typically
execute in constant time (assuming constant key size) and because the set of stored
keys requires no more than m bits of storage. On the other hand, as hash functions may
collide, Bloom filters are subject to false positives. That is, CONTAINS(r) may return
true even if r is not actually stored in the filter. False positives affect the accuracy of the
tracking facility and are discussed in Section 4.

Given a particular accuracy requirement, the capacity, n, of a Bloom filter is a func-
tion of m and k. Adding more keys beyond the capacity will degrade the accuracy of
the filter. Therefore, when a filter reaches its capacity it is stored to disk, and a new filter
is created to record subsequent keys. If a system failure occurs before a filter is stored,
then the contents of the filter are lost. Therefore, to avoid excessive loss when message
rates are low, filters are also periodically stored to disk according to the persistence in-
terval, Tp, which specifies the maximum delay before which the current filter must be
stored.

The in-memory filters and the set of filters stored to disk are paired with indexing
information to form filter histories. That is, a filter history, H , is defined as a sequence
(B1, R1), ..., (Bj , Rj), where each Bi is a Bloom filter, and each Ri is a range of times-
tamps of the form [ts,i, te,i]. The time range associated with each Bloom filter is used
as a query index by the path reconstruction component. A history has at most one in-
memory pair (Bj , Rj), called the current filter, with all other pairs being stored to disk.

Histories have a single operation: ADD(r, t). Given a history H with current filter
(Bj , Rj), the ADD(r, t) operation invokes ADD(r) on Bj and updates Rj to include t
as follows:

Rj =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[t, t] if previous Rj is ∅,
[t, tb] if previous Rj = [ta, tb] and t < ta,

[ta, t] if previous Rj = [ta, tb] and t > tb,

[ta, tb] otherwise.

Given a filter history H and a time stamp t , we define the matching set as the set
M(H, t) of filters such that

M(H, t) = {Bi | (Bi, Ri) ∈ H and t ∈ Ri}.
A matching set determines which filters should be queried when reconstructing the
path of a message. We achieve the required accuracy and efficiency of our system by
carefully managing the size of matching sets as explained in Section 4.

3.2 Message Tracking Component

Message tracking requires that we record JMS messages IDs at various points in the
system. Messages are tracked in three phases. In the publishing phase, a publisher
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generates and sends a message to a local broker. This broker, called the publishing
broker, is responsible for recording the originating publisher for each message. In the
routing phase, the message is tracked at each intermediate broker to which it is for-
warded. Finally, in the delivery phase the message is delivered by one or more brokers
to interested local subscribers. The delivering brokers are required to record the set of
subscribers which receive the message.

State Initialization. A publisher acquires its ID, p, and the broker ID, b, at connection
time. Each publisher also maintains a skew adjustment, δ, which is used to adjust locally
generated timestamps so that they remain within a certain bound relative to the broker’s
clock. The skew adjustment is necessary to bound matching set size, as explained in
Section 4.2. At publisher connection time, δ is initialized to the value tb − tp, where tb
is the current local time at the broker, and tp is the current time at the publishing client.
To correct for clock drift, the value of δ is updated as described below.

Tracking information is only stored at brokers. Specifically, each broker is initialized
with the following state:

– Skew tolerance, Ts, determines the maximum separation between the time stamp
of a message submitted by a local publisher and the broker’s local clock.

– Persistence interval, Tp, determines the persistence interval of each local filter
history.

– Publisher history, HP , is a filter history that is used to record the set of messages
sent by local publishers.

– Routing history, Hb, is a filter history that is used to record the set of messages
originated by each broker b. Thus, a broker maintains multiple routing histories as
discussed later.

– Subscriber history, Hb,s, is a filter history that is used to record messages origi-
nated by broker b and delivered to local subscriber s. A broker maintains multiple
subscriber histories depending on the number of brokers and subscribers.

– Subscriber attachment map, Sm, is a data structure which maintains the local
subscriber membership and a sequence of local timestamps indicating when the
membership last changed. This map is used to reconstruct the set of subscribers
which may have received a message. Although subscribers may arrive or depart
frequently, the set of changes at a particular point in time are assumed to be small.
We assume membership changes (and the time stamp of the change) are stored
reliably to disk.

The skew tolerance, Ts, and the persistence interval, Tp, are local values which may
be different at each broker. However, some care is necessary when choosing these values
as they affect the overall accuracy of the tracking system. We discuss how to determine
the values for Ts and Tp to achieve the desired accuracy in Section 4. In each of the
phases below, we assume that filters are automatically stored to disk when full or when
the persistence interval expires as described in Section 3.1. We also assume that the
Bloom filter parameters m, k, and n are global settings.

Publishing Phase. In the publishing phase, the publishing client creates a message,
assigns an ID, and delivers the message to the broker. The ID is constructed as a tuple
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r = (p, b, t+δ), where δ is the skew adjustment. The broker verifies |tb−(t+δ)| ≤ Ts.
If the message is out of tolerance, then δ is recomputed (e.g. δ = tb−t) and sent back to
the publisher. The broker records the message in the local publisher history by invoking
ADD(r, t + δ) on HP .

Routing Phase. In the routing phase, the local broker extracts the message ID r =
(p, b, t′) and creates the routing history Hb for the originating broker b if it does not
already exist. Then, the broker records the message in Hb by invoking ADD(r, t′) on Hb.

Delivery Phase. In the delivery phase, the local broker extracts the message ID r =
(p, b, t′) and determines the unique IDs of the set of local subscribers s1, . . . , sj which
should receive the message. For each subscriber si, the broker instantiates the subscriber
history Hb,si , if necessary, and stores r in the subscriber history by invoking ADD(r, t′)
on Hb,si . Once each subscriber has been recorded, the message may be delivered.

3.3 Path Reconstruction Component

The path for a given message can be reconstructed by searching the broker network in a
depth- or breadth-first manner. We first describe a basic algorithm for this process, and
then consider optimizations and complexity.

Let r = (p, b, t) be the ID of the message for which we wish to reconstruct a path.
Note that b denotes the ID of the publishing broker where the message originated. We
first initialize the following query state:

– Kr, initially ∅, is the set of brokers that routed the message.
– Ks, initially ∅, is the set of brokers which delivered the message to a subscriber.
– Sr is the set of subscriber IDs to which the message was delivered.
– Ka is the set of brokers to explore and is initialized to {b}.
– Ke is the set of brokers already explored and is initialized to ∅.

Starting from the originating broker b, the algorithm fills Kr, Ks, and Sr using Ka

and Ke as follows:

– While Ka �= ∅:
1. Choose i ∈ Ka and set Ka ← Ka − {i}. Set Ke ← Ke ∪ {i}.
2. If broker i contains the routing history Hb, it searches for the queried message

in this history. Let M(Hb, t) be the matching set for routing history Hb and
time stamp t. If there exists Bj ∈ M(H, t) such that CONTAINS(r) on Bj is
true, then set Kr ← Kr ∪ {i}.

3. Let Sm be the set of subscribers retrieved from the subscriber attachment map
which were attached to broker i at time t. For each subscriber s in Sm:
(a) Let Hb,s be the subscriber history with source broker b and subscriber s.
(b) If there exists Bj ∈ M(Hb,s, t) such that CONTAINS(r) on Bj is true, then

set Sr ← Sr ∪ {s} and Ks ← Ks ∪ {i}.
4. For each neighbor j of broker i, such that j �∈ Ke, set Ka ← Ka ∪ {j}.

Upon termination, b, Kr and Ks can be used (along with the broker topology) to
reconstruct the route of the message. Similarly, Sr gives the set of subscribers to which
the message was delivered.
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Reconstruction Complexity and Optimization. Assuming no false positives (we con-
sider the effect of false positives in Section 4.3), the time required to reconstruct a path
for a given message is proportional, namely O(N), to the number of brokers, N , which
routed the message. It is difficult to improve on this basic complexity result under the
current design where filters act as membership tests and provide little information to
simplify path reconstruction. However, the size of the constant term can be reduced as
discussed below.

The constant search cost at each broker depends on the number of histories which
must be queried, and the number of neighboring brokers which must be queried. At
each broker (except the originating broker), an efficient search is accomplished by first
sampling the local routing history, and then sampling the local subscriber histories if
the routing history indicates that the local broker routed the message. Thus, in the worst
case, if M is the matching set size, and the maximum number of subscribers a broker
may host (at any time) is S, then at each step at most S + 1 histories will be queried or
(S + 1)×M invocations of the CONTAINS operation. Since CONTAINS takes constant
time (with constant key size) and S and M are constants, the history query cost is
constant but tunable by adjusting S and M .

During the path reconstruction, a broker must query every neighboring broker about
the traced message, which may incur unnecessary communication cost particularly
when the message was delivered to only a small number of neighbors (i.e. when the
message was sparsely routed). If communication cost is roughly constant, then let W
be the cost of communicating with a neighboring broker, verifying that its local history
did not track a message, and receiving the reply. If D is the maximum number of neigh-
bors for any broker, then there is a constant communication cost no greater than D×W
incurred during path reconstruction at each broker which routed a message.

There are at least two methods for reducing communication overhead. The first is to
require brokers to store routing histories of the form Hb,d where a message is recorded
in Hb,d if it originated from broker b and was forwarded to neighboring broker d. This
eliminates unnecessary communication during path reconstruction (assuming no false
positives) at the cost of complicating the configuration of Ts and Tp, which must be
sensitive to the rate at which filters are filled (see Section 4.2). In particular, sparsely
routed messages may yield drastically different fill rates for two given histories Hb,d

and Hb,d′ .
A second approach is to store “routing set” information as part of the key recorded in

routing histories. For example, if maximum out degree is D and neighboring brokers are
numbered 0 through D − 1, then we can store a modified message ID r′ = (p, b, t′, d)
where d is a D-bit value with bit i set if neighbor i was forwarded the message. At
path reconstruction time, we must now perform 2D queries of the local routing history
in order to determine where to continue the search. This approach is feasible when
O(CONTAINS) × M × 2D is less than W × D.

3.4 Discussion

As described in Section 4, applying skew adjustments to message timestamps is crit-
ical to ensuring tracking accuracy. However, skew adjustments could be eliminated if
timestamps were assigned at the broker rather than the publisher. The decision to assign
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timestamps at the publisher is a deliberate choice to avoid a performance penalty. If
timestamps were assigned at the broker, then each call to “publish” could not complete
until a reply was received from the broker since message IDs include the time stamp
and the ID must be valid before returning from “publish”. This may not be significant
when publishing reliably since the time stamp could be piggy-backed on the acknowl-
edgment we expect for each message, but best-effort publishing does not require any
acknowledgment. Therefore, we allow publishers to assign timestamps and use skew
adjustments to manage disparate publisher clocks.

At a given broker, the current implementation uses separate router histories for each
broker from which messages are originated. One may wonder if it is possible to simplify
the design, for example by aggregating routing histories into a single history which
records traces for all non-local brokers. In the current design, aggregation is undesirable
for two reasons. First, aggregating incoming messages causes filters to be filled at a
higher rate. Second, without careful clock synchronization, consecutive filters may have
a larger than expected overlap in their range components. Both of these effects increase
the size of the matching set which results in lower tracking accuracy as discussed in
Section 4. The same reasoning applies to aggregation of subscriber histories.

Nonetheless, an aggregate history would be feasible under certain conditions.
Namely, the filter capacity would need to be large enough to accommodate the higher
aggregate input rate; and, Tp would need to be at least as large as the Tp of any broker
for which messages are being aggregated. Such a history is essentially equivalent to the
sum of the individual histories we use in the current design. In particular, the net effect
on overall storage consumption (memory or disk) is identical since both approaches
have the same capacity and the same total number of messages are recorded in either
case.

4 Analysis

Bloom filters provide efficient space utilization at the expense of reduced accuracy. In
this section, we describe how to compute the accuracy of our tracking facility in terms
of Bloom filter accuracy and the size of history matching sets. We then describe how
the tracking facility bounds matching set size in order to guarantee particular accuracy
requirements.

4.1 Bloom Filter Accuracy

The false positive probability (fpp) of a Bloom filter is the probability that an invocation
of CONTAINS will return true for a message that is not stored. Assuming that the output
from the k hash functions is independent and uniformly distributed, fpp is determined
by the expression [7]:

fpp =

(
1 −

(
1 − 1

m

)kn
)k

(1)

where m is the size of the Bloom filter in bits, and n is the number of entries stored in
the filter. Conversely, given a desired fpp, we can determine k, m, and n such that the
required accuracy is met. We give an example of this process in Section 5.
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Fig. 1. False positive rate

Figure 1 helps determine the appropriate parameters. It shows that false positive rate
decreases exponentially as the number of bits consumed per message (that is, m/n)
grows with the optimal number of hash functions (that is, k) used for the given x-axis
value.

We refer to the accuracy of the entire tracking system as the expected false positive
probability (efpp). If all filters are identical (and hence have the same fpp), the efpp is
determined by the size of the matching set:

efpp = 1 − (1 − fpp)|M| (2)

where |M | is the maximum size of the matching set. If |M | is known and bounded, it is
possible to guarantee a particular efpp.

The choice of efpp affects both tracking and path reconstruction performance. Dur-
ing tracking, efpp constrains Bloom filter parameters and the required matching set size.
These two values in turn affect the allowable skew among messages. If clocks can drift
substantially, then more stringent efpp settings will require more frequent skew correc-
tion messages. During path reconstruction, the size of the matching set determines the
number of filters which may need to be queried. Similarly, efpp reflects the likelihood of
generating erroneous search results. Erroneous search results both increase path recon-
struction overhead, by forcing searches down incorrect paths, and may corrupt results,
by including incorrect brokers and subscribers on the path of a message. In the next
section, we describe how matching set size is bounded by efpp. We discuss the effect of
efpp on path reconstruction in Section 4.3.

4.2 Bounding Matching Sets

In this section, we derive a bound on matching set size in order to ensure a desired
tracking accuracy (i.e. efpp). The size of matching sets is determined by the skew in
timestamps of messages and the frequency of filter replacement (i.e. the rate at which
filters in a history are stored).



372 S. Jun and M. Astley

Fig. 2. Persistence of Bloom filter

Recall that the time stamp of a message ID is adjusted according to a skew adjust-
ment, δ, for each publisher. Given a skew tolerance, Ts, the skew adjustment in the
publishing phase ensures that timestamps generated simultaneously by different pub-
lishers of the same broker never differ by more than 2 Ts.

A filter is stored to disk either when it has reached its capacity or when the persis-
tence interval has expired. Let Tf represent the time required to exhaust filter capacity
at the peak message rate. That is, if c denotes the filter capacity (number of messages),
and r denotes the maximum aggregate publishing rate (messages per unit time) from all
publishers attached to a broker, then Tf = c/r. Likewise, let Tp indicate the time after
which a filter must be stored to disk to reduce the data loss from a failure.

As a filter is replaced for the two reasons described above, the minimum filter life-
time Tn is defined as the minimum of Tf and Tp. On the other hand, the maximum filter
lifetime is Tp by definition.

Given a Tn defined as above, we first consider the bounds on the size of matching sets
for the publisher history and then expand the result into the cases of the routing histories
and the subscriber histories. Theorem 1 formalizes the intuition that more accurate clock
synchronization results in smaller matching set.

Theorem 1. If 2 Ts ≤ w Tn, where w is a non-negative integer, the size of matching set
does not exceed w + 1.

Proof. Figure 2 illustrates the time line of Bloom filter persistence. Let Bi be the ith
persisted Bloom filter for a publishing history. The filter Bi is used from time ti, inclu-
sive, to time ti+1, exclusive, with respect to the broker’s clock. The time interval Ti is
defined as ti+1− ti. From the definition of Tn, it follows Tn ≤ Ti for all i. The function
MAXTS[Bi] returns the maximum of timestamps contained in Bi (i.e. the second ele-
ment of the time stamp range Ri), and MINTS[Bi] returns the minimum (i.e. the first
element of Ri). It suffices to prove that the time stamp range of Bi never overlaps with
that of Bi+w+1.

MAXTS[Bi] < ti+1 + Ts

MINTS[Bi+w+1] ≥ ti+w+1 − Ts

= ti+1 +

⎛
⎝ w∑

j=1

Ti+j

⎞
⎠ − Ts

≥ ti+1 + wTn − Ts

≥ ti+1 + Ts

Since the maximum time stamp in Bi is less than the minimum time stamp in
Bi+w+1, the two ranges never overlap.
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We would like to derive a similar result in order to bound matching set size for routing
and subscriber histories. However, before we can do so, there are three complications
that must be considered. First, since JMS subscriptions support content-based filter-
ing, many messaging systems, including Gryphon, avoid routing messages down paths
where there are no matching subscribers. As a result, a downstream broker b2 may not
see all the messages originated at an upstream broker b1. However, this reduced fill rate
does not increase matching set size and therefore does not reduce accuracy.

Second, the relative Tp values may be different at the source and downstream bro-
kers. This is only a concern if some downstream broker has a Tp less than Tn at the
source. In that case, the downstream broker may store filters at a higher rate and poten-
tially violate the matching set bounds. For the moment, we assume this is not the case,
and describe modifications for Tp < Tn in the discussion below.

Finally, during forwarding, messages are subject to jitter, the time between the short-
est message latency and the longest. Message jitter can increase the size of the match-
ing set unless we account for it when determining the skew constraints. The following
corollary formalizes this intuition:

Corollary 2. Suppose Tj is the maximum jitter of messages. If 2 Ts+Tj ≤ w Tn, where
w is a non-negative integer, the size of matching set does not exceed w + 1.

The proof is similar to that of Theorem 1 and is omitted. If Tj includes the expected
skew among brokers, then corollary 2 can be used to determine the required clock syn-
chronization among brokers.

As a guide to configuration, the persistence interval, Tp, at a given broker should
be slightly larger than Tf , the time required to fill a filter at the maximum aggregate
publish rate. This ensures that filters are nearly full when stored. The value for efpp is
determined according to administrative requirements. This value can be used to guide
tradeoffs between desired Bloom filter parameters (and indirectly the maximum Tf that
can be supported), and desired matching set size. Once matching set size is known, the
skew tolerance, Ts, at a given broker should be set to maintain the bound provided by
Theorem 1.

4.3 Discussion

Besides determining matching set size requirements, the choice of efpp also affects path
reconstruction as described in Section 3.3. In particular, a false positive may cause an
unnecessary search during path reconstruction, which occurs when a neighbor finds
a false positive in a local routing history, causing all of the local subscriber histories
to be erroneously searched, and causing further unnecessary queries to the next set of
downstream brokers.

For typical efpp values, the expected number of unnecessary searches is quite small.
If a given broker has at most D′ neighbors which did not observe a message, then the
expected number of unnecessary searches (of one hop) that this broker will conduct is
just the expected value of a binomial expression with parameters D′ and efpp:

D′∑
i=1

i

(
D′

i

)
efppi(1 − efpp)D′−i = D′ · efpp
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Using the example efpp of 0.00001 from Section 5.1 and a D′ of 5, this expected
value is only 0.00005. At the highest efpp we tested, 0.05, the expected value is 0.25
(same D′) or about one unnecessary one-hop search for every four brokers in the net-
work. Note that if it is only critical to properly reconstruct the set of subscribers which
received a message, then the probability of a false positive harmfully affecting the
search results is reduced to efpp2 < efpp since both the local routing history and a
subscriber history must report a false positive.

When applying Theorem 1 to the distributed case, we assumed that Tn at a source
broker was less than the Tp at any downstream broker. In the event that there is some
downstream broker b with Tp such that Tp < Tn, then b will store (partially full) filters
more frequently than the source broker and will violate matching set size bounds. One
way to avoid this problem is to retain the current filter even though it has been stored to
disk, and overwrite the previous copy when filter capacity is finally reached. With this
approach, only full filters are written and never at a rate higher than the source broker.
The resulting filter is equivalent to the union [7] of the partially full filters that would
normally have been stored separately to disk.

For space reasons, we have ignored the issue of retransmitted messages (e.g. retrans-
mission due to failure), which are an unfortunate reality in large distributed systems.
Retransmitted messages are only an issue when their time stamp is older than the oldest
time permitted by the skew bounds in the current filter. We handle this case by adding a
“singleton” set, S, to each filter history element, e.g. (B, R, S). The singleton set stores
individual timestamps rather than a range. Retransmitted messages are stored in the
current filter as usual except that their time stamp updates S rather than R. The notion
of matching set is updated to include S, and filter capacity must now incorporate the
maximum number of retransmissions which a filter may accommodate. This approach
is tenable if the number of “old” messages per filter has a reasonable bound.

Finally, while the subscriber attachment map, Sm, is recorded using the clock of the
broker hosting subscribers, the map is accessed during path reconstruction using the
time stamp attached to the message, which may be skewed from the local broker. Thus,
the time stamp should be adjusted by the clock skew between the two brokers. Since
pairwise skews are difficult to maintain, the maximum possible skew among brokers is
used for skew adjustment at the expense of potentially larger matching set. However,
since this inaccuracy occurs only around join and departure, it should not affect the
overall tracking accuracy in any significant way.

5 Implementation and Evaluation

We have implemented our tracking facility as an extension to the Gryphon messaging
system. We refer to this implementation as the BF strategy. To evaluate our approach, we
also implemented two other tracking strategies. The NULL strategy does not provide any
tracking capability and serves as a baseline for performance comparisons. The ASYNC

strategy is a “naive” logger which simply buffers each tracking event and periodically
flushes the buffer to disk. This strategy is naive in the sense that in-memory records
are not compressed and therefore the buffer must be flushed more frequently than a
comparably sized BF buffer.
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5.1 Implementation

In order to create message IDs with the proper tracking information, we have extended
the Gryphon message ID implementation as illustrated in Table 1. The publisher is
configured with a publisher ID and broker ID at connection time. The time stamp is
recorded in milliseconds relative to the publisher’s local time. A counter field is used
to disambiguate messages which happen to be generated within the same millisecond.
Our implementation synchronizes publisher clocks with local brokers so that 2 Ts < Tn

where Tn is either the time required to fill a filter at the peak messaging rate or Tp,
whichever is smaller (see Section 4.2). This ensures that the size of the matching set is
no greater than two.

Table 1. Message ID

Field Length

Publisher ID 4 Bytes

Broker ID 4 Bytes

Time stamp 6 Bytes

Counter 2 Bytes

For a given efpp and the requirement that at most two filters overlap, we can generate
corresponding Bloom filter parameters m, n and k. For example, an efpp of 0.00001
(five nines accuracy) corresponds to an fpp of less than 1 −√

0.99999 ≈ 5 × 10−6 for
each filter. To satisfy this level of accuracy, we might choose m

n to be 26 and k to be 16,
so that the capacity of the each filter, n, is limited by the size of the filter m.

The number and range of the hash functions are determined by k and m, respectively.
For our implementation, we derive hash functions using one or more applications of
MD5 [13], with each application providing 128 hashed bits. To generate independent
hashes, we prepend a random, unique prefix byte for each application. The output bits
are then divided into k equal segments each addressing a range of m. For example,
if k = 16 and m = 65536, we might use two applications of MD5 divided into 16
segments of 16 bits each.

5.2 Experimental Setup

We evaluated our approach by measuring experimental performance for each of the
three strategies (BF, NULL and ASYNC). We consider two performance metrics for
evaluation:

End-to-End Latency: The elapsed time from the publication of a message and its de-
livery to one matching client. This measure is an indirect indication of overhead
which includes processor overhead (i.e. the per-message computation cost imposed
by tracking) and I/O overhead (i.e. the per-message cost to store tracking records
to disk).
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Storage: The total disk storage used by each strategy. For the BF strategy, this is the
size of the stored history of filters. For the ASYNC strategy, this is the size of the
stored buffers.

For evaluation purposes we only considered measurements for a single broker. Since
the various tracking strategies only impose processing and disk overhead (i.e. they do
not alter routing protocols or introduce network traffic), the single broker case allows
for more accurate measurements without loss of generality.

Each strategy was tested on a dedicated gigabit LAN consisting of 5 6-way 500 MHz
PowerPC servers each with 4 GB of memory running AIX. The test setup consisted
of one Gryphon broker hosting 200 publishers and 500 subscribers. A total of 500
topics were used, with each subscriber subscribing to a single topic, and each publisher
publishing to ten topics. Subscribers were randomly distributed among the topics but
a small portion of the topics had no subscribers. The aggregate input rate was 5000
messages per second (25 messages per second per publisher) divided evenly among all
topics so that each subscriber received approximately ten messages per second (i.e. the
aggregate output rate was 5000 messages per second). The broker ran on a dedicated
machine, the publishers were spread evenly over two machines, and the subscribers
were spread evenly over two machines. Each strategy was tested separately at a run
length of 30 minutes.

Table 2. Test Configurations. If “stores full buffers” is “yes”, then buffers were filled before Tp

expired. For the BF strategy, we show the corresponding configurations for n (filter capacity), m
(filter size in bits), and k (number of hash functions).

Strategy Buffer Limit Accuracy Tp (seconds) Stores Full Buffers?
NULL N/A N/A N/A N/A (baseline)

ASYNC 10K 100% 1 Yes
ASYNC 135K 100% 1 No
ASYNC 135K 100% 2 Yes

BF 10K 99.999% - n=2521, m=64K, k=16 1 Yes
BF 10K 99% - n=5461, m=64K, k=8 1 No
BF 10K 95% - n=7281, m=64K, k=8 1 No
BF 10K 99% - n=5461, m=64K, k=8 2 Yes
BF 10K 95% - n=7281, m=64K, k=8 2 Yes
BF 135K 99.999% - n=38836, m=1M, k=12 1 No
BF 135K 99% - n=87381, m=1M, k=6 1 No
BF 135K 95% - n=131072, m=1M, k=6 1 No
BF 135K 99.999% - n=38836, m=1M, k=12 2 No
BF 135K 99% - n=87381, m=1M, k=6 2 No
BF 135K 95% - n=131072, m=1M, k=6 2 No
BF 135K 99.999% - n=38836, m=1M, k=12 8 Yes
BF 135K 99% - n=87381, m=1M, k=6 8 No
BF 135K 95% - n=131072, m=1M, k=6 8 No
BF 135K 99% - n=87381, m=1M, k=6 18 Yes
BF 135K 95% - n=131072, m=1M, k=6 18 No
BF 135K 95% - n=131072, m=1M, k=6 27 Yes
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We constructed two test scenarios which differed in the limits they placed on in-
memory buffers. The first scenario limited buffers (e.g. publisher, routing or subscriber
tracking records) to 10000 bytes. The second scenario limited buffers to 135000 bytes.
For each scenario, we varied Tp so that we could observe the effects of storing full
or partially full buffers. Finally, we used three different accuracy requirements when
configuring the BF strategy. Table 2 summarizes the various test configurations.

5.3 Results

Latency was measured as the round trip time for a special latency message and includes
both the tracking overhead for the message, as well as the overhead of competing with
tracking for other in-flight messages. Figure 3 gives the average latency for our test
configurations. The NULL strategy was also measured as a reference point.

In the first scenario, the BF strategy performs significantly better than the ASYNC

strategy and imposes only slight overhead as compared to the NULL strategy. This be-
havior is easily understood by considering the frequency of disk operations. With a
10000 byte in-memory limit and message ID size of 16 bytes, the ASYNC strategy can
record at most 625 messages between disk forces. With an aggregate message rate of
5000 messages per second, this corresponds to approximately eight disk forces per sec-
ond. In contrast, the highest reliability BF strategy can accommodate 2521 messages
in the given memory limit, or slightly less than two writes a second. With four times
as many disk forces per second, the ASYNC strategy is at a severe disadvantage when
in-memory constraints are tight. The second scenario shows that, not surprisingly, re-
ducing the frequency of disk forces is the key to controlling latency. With the higher
memory limit, ASYNC can accommodate about 8437 messages between disk forces and
shows performance comparable with NULL. For the BF strategy, disk forces are never a
critical factor and larger buffers do not impose any significant latency overhead.

Even with larger buffers, however, the lack of in-memory compression in the ASYNC

strategy makes it highly sensitive to message rate and ID size. Thus, while ASYNC

achieves acceptable performance for the message rate we tested, the BF strategy has
more tolerance for significant increases in rate, and is not dependent on ID size. For
example, quadrupling the message rate (i.e. 20000 messages per second) would cause
slightly less than three disk forces per second for ASYNC whereas even the highest

Fig. 3. Latency Comparison
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Fig. 4. Uncompressed storage use

Fig. 5. Compressed storage use

accuracy BF configuration would still be storing nearly half-empty filters. Similarly,
doubling the ID size halves the storage capacity of ASYNC without any effect on BF.

Neither ASYNC nor BF attempt further compression before forcing buffers to disk. It
is reasonable to assume, however, that standard compression techniques might be ap-
plied to further reduce storage requirements. We simulate this effect by applying gzip
to each buffer once it has been forced to disk. For evaluation purposes, we report the
average number of bytes per message which is just the total disk log size divided by
the number of messages routed for a particular test. Figures 4 and 5 give the average
storage use (uncompressed and compressed) for our test configurations. Because our
experiments use a single broker, the storage footprint is due to the publisher and sub-
scriber histories. In a multi-broker setting, local routing history storage is bounded by
the size of the publisher history at the source broker. Thus, the storage footprint of the
publisher history approximates the added footprint in a multi-broker setting.

As to be expected, the ASYNC strategy is at a storage disadvantage since audit records
are not compressed in memory. However, the simple structure of ASYNC logs allows
for significant compression as can be seen in the figures. Conversely, the structure of
filters used in the BF strategy does not allow significant compression. In fact, since the
full Bloom filters must have random bit patterns with equal number of zeros and ones,
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compression is impossible in principle. Moreover, the BF strategy is at a significant
disadvantage when only partially full filters are written to disk, particularly when high
accuracy is required. In these cases, the underlying filters are sufficiently random to defy
straightforward compression techniques. In cases where both ASYNC and BF are forced
to persist partially full filters of roughly the same size at roughly the same rate (e.g.
135K buffers when Tp = 1), the ASYNC strategy will utilize disk space more efficiently.
With larger buffers, the BF strategy does not offer an advantage unless disk forces can
be delayed for several seconds.

Although the compressed ASYNC strategy consumes less storage than some of BF,
the BF strategy still has advantage over ASYNC for two reasons. First, the ASYNC strat-
egy requires more complex and larger indexing to avoid otherwise inefficient sequential
search. By contrast, in the BF strategy, such indexing is constructed at the filter level,
as opposed to at the message level, because each Bloom filter answers a membership
query efficiently by applying k hash functions. Note that a filter has a capacity of at least
thousands of messages. Second, since false positives are not correlated among brokers,
many false positives can be deduced as such by comparing the results from neighboring
brokers. For example, if only one broker, and none of its neighboring ones, claims to
have seen a message, it is highly likely to be a false positive. Thus, low accuracy (that
is, high efpp) at a single broker does not necessarily result in the overall low accuracy,
which implies that it is rather safe to take low accuracy level.

6 Related Work

Our work is most similar to traceback facilities proposed at the IP layer. These sys-
tems are designed to help identify the source of distributed denial-of-service attacks
(DDoS). There are two basic approaches: packet marking [14, 16], and route auditing
as in SPIE [15]. Although developed independently, SPIE is very similar to our trace-
back facility in that both approaches use Bloom filters to track recent traffic. The main
difference is that SPIE is intended to detect recent or in-progress DDoS attacks. As a
result, only a single Bloom filter (per node) is required and stale data is periodically
purged. In contrast, our traceback facility is designed to allow historical queries of mes-
sage routes. Thus, Bloom filters are regularly persisted and we have developed new
techniques to manage queries across a history of filters.

In the context of monitoring for middleware applications, various systems have been
developed starting with CORBA monitors such as JEWEL [9], and more recently En-
terprise Java Bean monitors [10]. These systems focus on component level interactions,
rather than middleware messaging. In the context of messaging, recent work has fo-
cused on novel routing architectures [12] and various performance enhancements [11].
However, tracking facilities which specifically address messaging middleware do not
appear in the literature. Nonetheless, commercial products such as WebSphere MQ [2]
provide basic auditing facilities which log message information to disk. This solution
works well for low message rates but is difficult to scale because of overhead. Our
tracking facility attempts to provide scalability by reducing the cost of per-message
operations while compressing persistent records.
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Finally, Bloom filters [6] have enjoyed wide application in distributed systems, for
example as a technique for caching web pages [8]. Broder and Mitzenmacher provide
an interesting survey of Bloom filters as applied to networking in [7]. Typically, Bloom
filters are used as a volatile cache for various types of data. In contrast, our message
tracking facility persists and retains multiple Bloom filters. Thus, our main contribu-
tion is a scheme for indexing multiple Bloom filters for the purpose of managing false
positive probability.

7 Conclusion

We believe that efficient mechanisms for monitoring and auditing middleware messag-
ing will become increasingly important as enterprise business applications are more
widely deployed. In this paper, we have defined a message tracking facility for dis-
tributed messaging middleware, and presented a low overhead system design which
realizes such a facility. We expect future enterprise applications to require large scale
deployments with tens of nodes and tens of thousands of clients. Thus, we believe that
a key feature of our approach is the ability to tune accuracy (and hence overhead and
resource requirements) to the needs of the application.

We have evaluated our design by measuring overhead as compared to a system with
no tracking, and by illustrating trade-offs between absolute accuracy and high overhead.
A key advantage of our approach is that it is tolerant of high message rates, and insen-
sitive to the size of IDs being tracked. In particular, we have shown that low latency
overhead is possible if accuracy can be relaxed to as little as 99.999% of a “perfect”
system. Likewise, if only minimal memory is available for tracking, then low disk uti-
lization is possible even with high-accuracy. If memory is not a constraining factor, then
low disk utilization requires that disk writes be delayed until filters are full. We note that
it is possible to remove this limitation by either merging partially full filters offline, or
storing but retaining partially full filters in memory until they have reached capacity.
We intend to implement these improvements as well as seek further optimizations as
part of our future work.
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Abstract. Enterprises rely critically on the timely and sustained delivery of in-
formation. To support this need, we augment information flow middleware with
new functionality that provides high levels of availability to distributed applica-
tions while at the same time maximizing the utility end users derive from such
information. Specifically, the paper presents utility-driven ‘proactive availability-
management’ techniques to offer (1) information flows that dynamically self-
determine their availability requirement based on high-level utility specifications,
(2) flows that can trade recovery time for performance based on the ‘perceived’
stability of and failure predictions (early alarm) for the underlying system, and
(3) methods, based on real-world case studies, to deal with both transient and
non-transient failures. Utility-driven ‘proactive availability-management’ is inte-
grated into information flow middleware and used with representative applica-
tions. Experiments reported in the paper demonstrate middleware capability to
self-determine availability guarantees, to offer improved performance versus a
statically configured system, and to be resilient to a wide range of faults.

1 Introduction

Modern enterprises rely critically on timely and sustained delivery of information. An
important class of applications in this context is a company’s operational information
system, which continuously acquires, manipulates, and disseminates information across
the enterprise’s distributed sites and machines. For applications like these, a key at-
tribute is their availability - 24 hours a day, 7 days a week. In fact, system failures can
have dire consequences, including loss of productivity, unhappy customers, or serious
financial implications. For example, the average cost of downtime for financial compa-
nies, as reported in [1], is up to 6.5 million dollars per hour and hundreds of thousands
of dollars per hour for retail companies. This has resulted in a strong demand for oper-
ational information systems that are available almost continuously.

Providing high availability in widely distributed operational information systems is
complex for multiple reasons. First, because information flows are distributed, they are
difficult to manage, and failures at any of a number of distributed components or sites
can reduce availability. Second, multiple flows may use the same distributed resources,
thereby increasing the complexity of the system and the difficulty of managing and pre-
venting failures. Third, such systems often have high data rates and intensive processing

M. van Steen and M. Henning (Eds.): Middleware 2006, LNCS 4290, pp. 382–403, 2006.
c© IFIP International Federation for Information Processing 2006
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requirements, and there are frequently insufficient system resources to replicate all this
data and processing to achieve high reliability. Fourth, information flows must have
negligible recovery times to limit losses to the enterprise. Finally, based on our experi-
ence working with industry partners like Delta Air Lines and Worldspan, systems must
recover not only from transient failures but also from non-transient ones (e.g., failures
that will recur unless some root cause is addressed) [2].

How can we provide high availability for information flows, given all of these re-
quirements? Traditional techniques such as recovery from disk-based logs [3] may have
recovery times that are unacceptable for the domain in question. Using active repli-
cas [4] imposes high additional communication and processing overheads (since all
data flow and processing is replicated) and therefore, may not be an economically vi-
able option. Another option is to use an active-passive pair [4], where a passive replica
of a component can be brought up to date by retransmitting messages that had gone
to the failed, active one. This option reduces communication costs, since messages are
only sent to the passive component at failure time. Unfortunately, this may result in long
recovery times. A better solution would be a hybrid of the above approaches, accept-
ing dynamically determined levels of additional processing and communication during
normal operation in order to reduce recovery times when failures occur.

In this paper we extend the active-passive approach to dynamically tune the tradeoff
between normal operation cost and recovery time. In particular, the passive replica will
be periodically refreshed with ‘soft-checkpoints’: these checkpoints transfer the current
state from the active node to the passive node (passive standby), but are not required
for correctness (hence, they are ‘soft’). If the passive replica has been recently brought
up to date by a soft-checkpoint, then recovery will be relatively fast. The tradeoff be-
tween cost and recovery is tuned by changing the frequency at which soft-checkpoints
are transmitted during normal operation. Such tuning is based on user-provided expres-
sions of information utility, and it takes advantage of the following methods for failure
prediction:

• Availability-Aware Self-Configuration – a user-supplied per information flow
‘benefit-function’ drives the level of additional resources used to guarantee avail-
ability. This ensures preferential treatment of flows that offer more benefit to the
enterprise, with the aim of maximizing benefit across the system.

• Proactive Availability-Management – during its execution, a system may be at dif-
ferent levels of stability (e.g., a heavy memory load could mean an imminent fail-
ure). In many cases, the ‘current stability’ of the system can be quantified in order
increase or decrease the resources expended to ensure desired levels of availability.

• Handling Non-Transient Failures – some failures will recur if the same sequence
of messages that caused the failure is resent during recovery. In this case, we must
use application-level knowledge to avoid fault recurrence. We present several tech-
niques, based on real-world case studies, to deal with such faults.

Proactive availability-management techniques have been integrated into IFLOW, a
high performance information flow middleware described in [5]. The outcome is a flex-
ible, distributed middleware for running large-scale information flows and for managing
their availability. In fact, experimentation shows that proactive availability-management
not only imposes low additional communication and processing overheads on
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distributed information flows, but also, that proactive fault tolerance is an effective
technique for recovering from failures, with a low recovery time of 2.5 seconds for
an enterprise-scale information flow running on a representative distributed computing
platform. Experiments further show that utility-based availability-management offers
1.5 times the net-utility of the basic active replica approach.

1.1 Example: Operational Information System

An operational information system (OIS) [2] is a large-scale, distributed system that
provides continuous support for a company or organization’s daily operations. One ex-
ample of such a system we have been studying is the OIS run by Delta Air Lines, which
provides the company with up-to-date information about all of their flight operations,
including crews, passengers and baggage. Delta’s OIS combines three different sets of
functionality:

• Continuous data capture - for information like crew dispositions, passengers, air-
planes and their current locations determined from FAA radar data.

• Continuous status updates - for low-end devices like airport flight displays, for the
PCs used by gate agents, and even for large databases in which operational state
changes are recorded for logging purposes.

• Responses to client requests - an OIS must also respond to explicit client requests,
such as pulling up information regarding a particular passenger, and it may generate
additional updates for events like changes in flights, crews or passengers.

In this paper, we model the information acquisition, manipulation, and dissemina-
tion done by such an OIS as an information flow graph (a sample flow-graph is shown
in Figure 1). We then present techniques, based on this flow-graph formalization, to
proactively manage OIS availability such that the net-utility achieved by the system
is maximized. This is done by assigning per information flow availability guarantees
which are aligned with the benefit that is derived from the information flow, and by
proactively responding to perceived changes in system stability. We also present addi-
tional techniques, based on real-world case studies, that can help a system recover from
non-transient failures.
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2 System Overview

This section describes a model of the information flows under consideration, and it
elaborates the fault model used for the proactive availability-management techniques
explained later.

2.1 Information Flow Model

An information flow is represented as a directed acyclic graph G(Vg, Eg, Unet) with
each vertex in Vg representing an information-source, an information-sink or a flow-
operator that processes the information i.e. Vg = Vsources ∪ Vsinks ∪ Voperators. Edges
Eg in the graph represent the flow of information, and may span multiple intermediate
edges and nodes in the underlying network. The utility-function Unet is defined as:

Unet = Benefit− Cost (1)

Both benefit and cost are expressed in terms of some unit of value delivered per unit
time (e.g., dollars/second). Benefit is a user-supplied function that maps the delay, avail-
ability, etc. of the information flow to its corresponding value to the enterprise. Cost is
also a user-supplied function; it maps resources such as CPU usage and bandwidth
consumed to the expense incurred by the enterprise. We will expand the terms of this
seemingly simple equation in upcoming sections.

2.2 Fault Model

We are concerned with failures that occur after the information flow has been deployed.
In particular, we consider fail-stop failures of operators that process events. Such fail-
ures could result from problems in the operator code or in the underlying physical node.
Other factors might also cause failures, but are not considered here, including problems
with sources, problems with the sink, or link failures between nodes. While such issues
can cause user-perceived failures, they must be addressed with other techniques. For
example, link failures could be managed by retransmission or re-routing at the network
level.

For the purpose of failure recovery, we assume that each flow-operator consists of a
static-state Sstatic that contains the information about the edges connected to the op-
erator and the enterprise logic embedded in the operator; in contrast, the dynamic-state
Sdynamic is the information that is a result of all the updates that have been processed
by this operator (shown in Figure 1). Recovery therefore, is dependent upon the cor-
rect retrieval of the states Sstatic and Sdynamic, which jointly contain the information
necessary for re-instantiation of flow-operator and information flow edges. However,
as described next, simply recovering these states may not prevent the recurrence of a
failure.

Transient Faults. A fault can be caused by a condition that is transient in nature (e.g.,
a memory overload due to a mis-behaving process). Such faults will not typically recur
after system recovery. In our formulation, a transient fault would cause the failure of
an operator, and correct retrieval of the two states associated with the operator would
ensure permanent recovery from this fault. The techniques proposed in this paper are
capable of effectively handling faults of this nature.
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Non-transient Faults. Non-transient faults may be caused by some bugs in the code
or some unhandled conditions. For information flows, this may mean recurrence of
the fault even after recovery, particularly when recovery entails repeating the same se-
quence of messages that caused the fault. To deal with faults of this nature, we note
that the output produced by a flow-operator in response to an input event E depends
on the existing dynamic-state Sdynamic, the operator logic encoded as Sstatic, and the
event E itself. Therefore, the failure of an operator on arrival of an event E is a result of
the 3-tuple < Sdynamic, Sstatic, E >. Thus, any technique that aims to deal with non-
transient failures must have application-level methods for retrieving and appropriately
modifying this 3-tuple. Our prior work presents examples of such methods [2], and we
generalize such techniques here.

3 Utility-Driven Proactive Availability-Management

Traditional techniques for availability-management typically rely on undo-redo logs,
active-replicas, or active-passive pairs. A new set of problems is presented by infor-
mation flows that form the backbone of an enterprise. For instance, using traditional
on-disk undo-redo logs for information flows would lead to unacceptable recovery
times for the enterprise domain in face of machine or disk failures. The other end of
the availability-management spectrum, which uses active replicas, would impose large
additional communication and processing overheads due to the high arrival rate of up-
dates, typically making it economically infeasible for the enterprise to use this option. In
response, we take the active-passive pair algorithm [4], and customize it for enterprise-
scale information flows. To do this, we will incorporate our previous work on soft-
checkpoints [6], and add the ability to dynamically choose checkpointing intervals to
reduce communication and processing overheads. For completeness, we first describe
the existing active-passive pair and soft-checkpoint techniques, and then describe our
enhancements.

3.1 Basic Active-Passive Pair Algorithm

To ensure high-availability for the flow-operator, in its simplest form, the active-passive
pair replication requires: a passive node containing the static-state Sstatic of the flow-
operator hosted on the active node, an event log at the flow-graph vertices directly up-
stream to the flow-operator in question, a mechanism to detect duplicates at the vertices
directly downstream to the flow-operator, and a failure detection mechanism for the
active node hosting the primary flow-operator.

In case of a failure, recovery proceeds as follows: the failure detection mechanism
detects the failure and reports it to the passive node. On receipt of the failure message,
the passive node instantiates the flow-operator, making use of the static-state, Sstatic,
already available at the node. The instantiated operator then contacts the upstream ver-
tices for retransmission of the events in their event log. The newly instantiated opera-
tor node processes these re-transmitted events in a normal fashion, generating output
events, and leaving it to the downstream nodes to detect the resulting duplicates. Once
the retransmission of the event log has been completed, the resulting dynamic-state,
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Sdynamic, will be recovered to the state of the failed operator, and normal operations
can resume. Unfortunately, this simple algorithm can lead to long recovery times, large
event logs at the upstream nodes, and large associated retransmission costs. The remedy
to these problems is the ‘soft-checkpoint’ technique, described next.

The event logs at the upstream nodes and their retransmission to the recovered oper-
ator are required for reconstructing the dynamic-state Sdynamic, of the failed operator.
However, in practice, it is advantageous to retain additional stable state at the passive
node in order to avoid the need to re-transmit the entire event log. Such state saving
is called soft-checkpointing, because it is not needed for correctness. Soft checkpoints
can be updated on an intermittent basis in the background. Once taken, the compo-
nent receiving the checkpoint no longer requires the events on which the state depends
for reconstructing Sdynamic. This in turn permits upstream nodes to discard the event
logs for which the soft-checkpoint has been taken. Soft-checkpointing, therefore, is an
optimization that reduces worst-case recovery time and permits the reclamation of logs.

The introduction of soft-checkpoints requires small modifications to the recovery
mechanism described earlier in this section. The flow-operator at the active node in the
duration prior to failure would intermittently send messages to the passive node that
contain information about the incremental change to its dynamic-state since the last
message. The passive node, after the receipt of complete state update message from
the active node, applies the incremental modifications to the state it holds and then
sends a message to the flow-operator’s upstream neighbors about the most recent event
contained in the message from the active node. The upstream nodes can use such infor-
mation to purge their event logs. In case of a failure, the algorithm proceeds exactly as
described earlier, but only a small fraction of the events needs to be re-transmitted and
processed.

3.2 Availability-Utility Formulation

In this section, we use a basic availability formulation to better describe the effects
and trade-offs in soft-checkpoint-based active-passive replication. Availability AI is
described in terms of Mean-Time Between Failure, MTBF and Mean-Time To Repair,
MTTR.

AI =
MTBF

MTBF + MTTR
(2)

As stated earlier, our approach contributes to a reduction in recovery time and also
reduces the processing and communication overhead imposed as a result of ensuring
a certain level of availability. The reduction in recovery time results in lower MTTR
and a reduction in associated overheads diminishes cost. Jointly, both result in higher
net-utility Unet, which is the actual utility provided by the system.

With our approach, MTTR depends on two factors: (1) the time to detect a fail-
ure, and (2) the time to reconstruct the dynamic-state of the operator. Failure detec-
tion mechanisms generally rely on time-outs to detect failures and therefore, depend
on the coarseness of the timer used for this purpose. Some research in the domain of
fault-tolerance has focused on multi-resolution timeouts [7], but to simplify analysis,
henceforth, we assume that the time to detect a failure is a constant. The second factor
contributing to MTTR depends on the soft-checkpoint algorithm. Specifically, a higher
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frequency fcp, expressed in per unit time, of such checkpoints would lead to a smaller
number of events required to reconstruct Sdynamic in case of a failure. Therefore:

MTTR ∝ 1
fcp

(3)

For simplicity, we next derive the availability-utility formulation for a single informa-
tion flow (self-configuration across multiple information flows is addressed in Sec-
tion 3.3), and we assume that the Benefit and Cost depend only on availability. In
this case, in general, the benefit derived from a system is directly proportional to its
availability. Thus:

Benefit ∝ MTBF

MTBF + k1/fcp
(4)

The above formulation may lead one to believe that a higher fcp is good for the system.
Unfortunately, a higher fcp also means more cost to propagate checkpoints from the
active node to the passive node. Therefore:

Cost ∝ fcp (5)

Note that a higher fcp also results in fewer events retransmitted per soft-checkpoint;
however, for large values of MTBF this effect is minor compared to the effects described
above (increase in benefit due to better availability, and compared to the increase in cost
due to a higher frequency of checkpoints). Experiments reported in Section 5.2 study the
effects of soft-checkpoint frequency on the cost and availability of information flows.

Combining equations 1, 4, 5, and replacing proportionality using constants, we ar-
rive at:

Unet =
k2 × MTBF

MTBF + k1/fcp
− k3 × fcp, (6)

which represents the business-utility calculation model and the constants are determined
by business level objectives [8,5], or using more detailed formulation described later.
This equation expresses the key insight that net-utility depends not only on MTBF, but
also on the soft-checkpoint frequency used in a system, the latter both positively con-
tributing to net-utility (by reducing the denominator) and directly reducing net-utility
(by increasing the term being subtracted). Intuitively, this means that frequent check-
pointing can improve utility by reducing MTBF, but that it can also reduce utility by
using resources that would otherwise directly benefit the information flow.

3.3 Availability-Aware Self-configuration

Ideally, we would like to maximize the availability of an information flow, but given
that there is an associated cost, our actual goal is to choose a value of availability that
maximizes its net-utility. In our algorithm and its mathematical formulation, fcp is the
factor that governs availability. By setting the derivative of equation 6 equal to zero, we
find that the value of fcp that maximizes net-utility is:

fcp =
√

k1 × k2

k3 × MTBF
− k1

MTBF
(7)
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Fig. 2. Enterprise error-log showing predictable behavior of failures

In the presence of multiple information flows, each with a different benefit-function,
the resource assignment for availability is driven by the need to maximize net-utility
across all deployed information flows. Total net-utility of the entire system, then, is
the sum of individual net-utilities of information flows. For a system with n infor-
mation flows, we will need to calculate {f1

cp, f
2
cp, ..., f

n
cp}, which will automatically

determine resource assignments. The value of fcp for each information flow can be cal-
culated using partial differentials, and the involved calculations are omitted due to space
constraints.

3.4 Proactive Availability-Management

We have established that net-utility depends on checkpoint frequency and MTBF. How-
ever, the MTBF in a real system is not a constant. Instead, the rate of failures fluctuates,
with more failures occurring when the system is in an unstable state. For example, dur-
ing periods of extreme overload, the system is likely to experience many component
failures. If we can better approximate the current MTBF, and in particular predict when
there will be many failures, we can make better decisions about checkpointing, increas-
ing the checkpoint rate when the current MTBF is low (and failures are imminent.)

Failure Prediction. An effective way to estimate the current MTBF is to use failure
prediction techniques to generate ’early alarms’ when a failure seems to be imminent.
By using failure prediction, our approach can be ‘better prepared’ for an imminent fail-
ure, by taking more frequent soft-checkpoints. Analysis logs provided to us by one of
our industry partners strengthens our belief in the usefulness of dynamic failure predic-
tion. These logs contain error messages and warnings that were recorded at a middle-
ware broker over a period of 7 days, along with their time-stamps. Figure 2 shows the
distribution and severity of errors recorded at the broker node. One interesting observa-
tion of these logs is that errors recur at almost the same time (around 9:00am as read
from the log time-stamp) beginning from the 2nd day. Another interesting observation
about the same set of logs is that 128 errors of severity level 1 occurred from 7:30pm in
the first day before a series of level 4 errors occurred from 8pm. Based on such logs, it
would be reasonable, therefore, to assume lower MTBF (i.e., predict imminent failures)
for the 9am time period and the period when a large number of less severe errors occur,
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than for other time periods in which this application executes. We note that similar time-
or load-dependent behaviors have been observed for other distributed applications[9].

We implemented the Sequential Probability Ratio Test(SPRT) used in MSET [10,11]
failure prediction method, to predict failures injected by the FIMD [12] failure injection
tool, including timing delay, omission, message corruption datatype, message corrup-
tion length, message corruption destination, message corruption tag, message corrup-
tion data, memory leak, and invalid memory access. The SPRT method is a run-time
statistical hypothesis test that can detect statistical changes in noisy process signals at
the earliest possible time, e.g., before the process crashes or when severe service degra-
dation occurs. SPRT has been applied successfully to monitor nuclear power plants, and
it has recently been used for software aging problems, e.g., for the database latch con-
tention problem, memory leaks, unreleased file locks, data corruption, etc. For example,
an early warning may be raised about 30 seconds (the ’early warning capability’) before
a memory leak fault causes the service to degrade dramatically or the process crashes.
For database shared-memory-pool latch contention failures, early warning capabilities
of 5 minutes to 2 hours have been observed. For additional information about SPRT and
associated MSET method, please refer to [10] and to an extended version of this text
in a technical report [13].

Modulating Checkpoint Frequency. The idea behind proactive availability-
management is to use failure prediction to modulate fcp. We first provide the impor-
tant yet simple guideline regarding checkpoint frequency modulation, we then develop
a detailed formulation for enterprise-scale information flows, and finally, present a for-
mulation and method to meet some specific availability requirement while also maxi-
mizing net-utility.

General guideline. Intuitively, if a failure prediction turns out to be correct, the
system ‘benefits’ because of reduced MTTR; if a prediction turns out to be a false-
positive, the system still operates correctly, but it pays the extra ‘cost’ due to increased
fcp. Stated more formally, let:

α = prediction false–positive rate
β = prediction false–negative rate

f ′
cp = modulated checkpoint frequency after a failure is predicted

Tproactive = duration of increased checkpoint frequency
k = timeout after which an operator is concluded to have failed

Earlier, Cost was shown to be proportional to soft-checkpoint frequency. The new
cost, Cost′, due to modulated f ′

cp, is:

Cost′ = Cost × f ′
cp/fcp (8)

This increased cost is incurred for a duration equal to Tproactive, and it is incurred each
time a prediction is made. Therefore, the additional cost incurred per prediction is:

δCost = (f ′
cp/fcp − 1) × Cost × Tproactive (9)
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Table 1. Four types of cost

Costcp = [1 − P (1 − β + α)]f cpC1,

Costfp = αPf ′
cptoC1,

Costfn = βPC2/(2fcp)+βP (k+1/(2fcp))C3,

Costps = (1 − β)P [C2/(2f ′
cp)+(k+1/(2f ′

cp))C3+f ′
cpt

0
C1].

The increase in fcp also affects the availability of the system and therefore, the ben-
efit, Benefit′, derived from the system. Using equation 4, we have:

Benefit′ =
MTBF + k1/f ′

cp

MTBF + k1/fcp
× Benefit (10)

Therefore, the increase in benefit due to a correct prediction that affects a period equal
to MTBF is:

δBenefit = (Benefit′ − Benefit)× MTBF (11)

Since λ is the fraction of false-positives and because there is no increase in benefit
due to a false positive, the following condition expresses when proactive availability-
management based on failure prediction is beneficial for an entire system:

δCost < (1 − α) × δBenefit (12)

Proactive availability-management. Different systems could have different types and
formulations of benefit and cost, and the above analysis provides the general guideline
regarding proactive availability-management. For the enterprise information flow sys-
tem targeted by this paper, the proactive availability-management problem can be for-
mulated in more details as follows. Proactive availability-management regulates check-
point frequency based on stability predictions to maximize net business utility. By con-
sidering ‘total cost’, including the cost of checkpointing and the utility loss because of a
failure (i.e. the extra utility the system could offer if there had been no failure), the prob-
lem of maximizing net-utility can be converted to the problem of minimizing total cost.
This total cost consists of the cost of normal checkpointing (at frequency fcp), Costcp,
the cost due to false-positive failure prediction (i.e., the failure predictor raises a false
alarm), Costfp, the cost due to false-negative failure prediction (i.e., a failure is not
predicted successfully), Costfn, and finally, the cost associated with failure recovery
when a failure is successfully predicted, Costps.

These four types of cost are summarized in Table 1. For the cost of normal check-
points, Costcp, C1 is the cost for each checkpoint update (e.g., the communication
cost), and P is the possibility an operator could fail from any time t to t+1 (seconds).
Here, P (1 − β + α) is the fraction of time when the checkpoint frequency is f

′
cp, due

to correct failure predictions and false alarms. For the cost of false-positive failure pre-
diction, to is the average time a predictor raises an early alarm for a severe failure. In
the equation for the cost due to false-negative prediction, Costfn, the first term is the
total state recovery cost, i.e., the cost for the passive node to recover from the latest
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checkpointed state to the state when the failure occurred, including retransmission cost
and re-computation cost. C2 is the average recovery cost per unit time($/sec). The sec-
ond term is the total utility loss from the time when failure occurs to the time when the
system recovers to normal operational status. In other words, this term represents the
utility the system could provide if there had been no such failure. C3 is the utility the
system provides per second($/sec)if there is no failure. The cost associated with fail-
ure recovery when a failure is successfully predicted, Costps, is determined in a similar
manner as Costfn.

To regulate checkpoint frequency, proactive fault tolerance finds the best checkpoint
frequency, fcp, when there is no failure predicted, and the best checkpoint frequency,
f ′

cp, after the time a failure is predicted. This is done by minimizing the total cost.
Meet specific availability requirement. Often, enterprises have specific requirements

for system availability. For example, a 365 x 24 system with maximum allowed average
downtime of 8.76 hours (i.e., 525 minutes) per year requires 99.9 percent availability,
while a system with only 3 minutes of service outage must have at least a 99.999 percent
availability. To achieve such availability is difficult due to the high cost of fault tolerance
services and equipments. Proactive availability-management is able to strike a balance
between these two factors by jointly considering availability and utility when regulating
checkpoint frequency. Notice that MTTR can be expressed as:

MTTR = (1/2fcp + k)β +
(
1/2f ′

cp + k
)
(1 − β), (13)

where k is the timeout after which we conclude that a module actually failed, the avail-
ability is given by:

AI =
MTBF

MTBF + MTTR
=

1 − P · MTTR

1
= 1 − p[(1/2fcp + k)β +

(
1/2f ′

cp + k
)
(1 − β)] (14)

Proactive fault tolerance meets the minimum availability requirement and also maxi-
mizes net utility by solving the following equation:

Minimize{Cost = Costcp + Costfp + Costfn + Costps}, subject to:

1 − p[(1/2fcp + k)β +
(
1/2f ′

cp + k
)
(1 − β)] ≥ Arequired

I (15)

This optimization problem is of small size with two variables and one constraint, and is
solved using standard Quasi-Newton method with inverse barriers.

3.5 Handling Non-transient Faults

Non-transient failures are a result of bugs or unhandled conditions in operator code.
Traditional techniques for ensuring high-availability that use undo/redo logs [3,6] are
useful for transient failures, but for non-transient failures, they may result in recurrence
of faults during recovery. The same applies to replication-based approaches [14], for
which all replicas would fail simultaneously for non-transient faults.
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As described in Section 2.2, a non-transient failure of the information flow in our
model is a result of the 3-tuple < Sstatic, Sdynamic, E >. The active-passive pair
approach for ensuring high-availability has sufficient information during recovery to
change this 3-tuple. The passive-node during recovery has access to Sstatic, a stale
state S′

dynamic, and a set of updates T from the upstream nodes that when applied to
S′

dynamic, would lead to Sdynamic. The rationale behind our approach to avoid non-
transient failures is simple: avoid the 3-tuple that caused the failure. This can be done in
a number of ways, and the retransmitted updates T along with application-level knowl-
edge holds the key:

• Dropping Updates: the simplest solution to avoid recurrence of a fault is to avoid
processing the update that caused the failure. Our earlier work on ‘poison messages’
used this technique [2].

• Update Reordering: changing the order in which updates are applied to S′
dynamic

during recovery can avoid Sdynamic. This makes use of application-level knowledge
to ensure correctness.

• Update Fusion: combining updates to avoid an intermediate state could be an op-
tion. A simple example of this approach could be the use of this technique to avoid
‘division by zero’ error.

• Update Decomposition: decomposing an update into a number of equivalent updates
can be an option with several applications, and this can potentially avoid the fault.

While seemingly simple, the techniques described above are often successful in re-
alistic settings. For example, one of our collaborators, reported an occasional surge in
the usage of resources connected to their Operational Information System (OIS) [15]
that traced back to a particular uncommon message type. The resulting performance
hit caused other subsystem’s requests to build up, including those from the front ends
used by clients, ultimately threatening operational failure (e.g., inappropriately long re-
sponse times) or revenue loss (e.g., clients going to alternate sites). Such uncommon
request/message, termed ‘Poison Messages’, were later found to be identifiable by cer-
tain characteristics. The solution then adopted was to either drop or re-route the poison
message in order to maintain operational integrity.

4 Middleware Implementation

IFLOW [5] is an information flow middleware developed at Georgia Tech. IFLOW im-
plements the information flow abstraction of Section 2.1 and provides methods to de-
ploy and then optimize (by migrating operators) the information flow. For more details
please refer to [16].

We now briefly describe the features that enable proactive availability-management
in the IFLOW middleware. These features are implemented both at the control plane
and the data plane of this middleware infrastructure.

4.1 Control Plane

The control plane in IFLOW is the basis for managing information flows.
Self-management methods involve running a self-configuration and a self-optimization
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algorithm, carried out by exchanging control messages between physical nodes that are
external to the data fast paths used to transport IFLOW data. Control actions involve op-
erations like flow-control, operator re-instantiation, etc. The main new features of the
IFLOW control plane that are used for proactive fault tolerance are described below:

• Availability-aware self-configuration module: the benefit-formulation in IFLOW al-
lows for availability goals to be specified, and determines the best value of fcp by
using the formulation described in Section 3.2.

• Failure detection & prediction: IFLOW attempts to use the regular traffic from a
node to determine its liveness, but it switches to specific detection messages if there
is no regular traffic from the node to the monitoring node. We also have a provision
for multi-resolution timeouts to reduce the load imposed by the failure detection
algorithm. Finally, state can be maintained to use failure history for predicting fail-
ures, but we have not yet implemented any specific technique into IFLOW.

• Control messages: SOAP calls are used to notify active-node failure, to communi-
cate log purge points to upstream vertices, etc.

• Update re-direction in case of failure: a simple control mechanism exists at the
upstream vertices to re-direct updates to the passive node in case of failure. The
connection between upstream vertices and the passive node is created at the time of
flow deployment.

4.2 Data Plane

A fast data-path is one of the key design philosophies of the IFLOW middleware. We
have taken care that the features required for proactive availability-management have
minimal impact on the data-path. In order to ensure proactive availability-management,
the state of an operator on the data plane needs to be soft-checkpointed and the changes
need to be periodically communicated to the passive-node. The fact that a
soft-checkpoint is not necessary for correctness of proactive availability-management
ensures minimal impact on the data-path. Specifically, the active-node can transfer the
soft-checkpoint to the passive node asynchronously, and this will not compromise the
correctness of our algorithm. The specific features required for proactive availability-
management are described below:

• Logging at upstream vertices: any update that is sent out from the source vertex is
logged to enable retransmission in case of failure. Additional logs can be established
at intermediate nodes (an operator vertex is a source for downstream vertices) to
enable faster recovery. The log module also implements a mechanism to purge the
log when a message is received from the downstream node after a soft-checkpoint
is completed.

• Soft-checkpoint module at operator vertices: the soft-checkpoint module tracks the
changes in Sdynamic since the last soft-checkpoint. It is also responsible for sending
soft-checkpoints to the passive node.

• Duplicate detection at the downstream node: the duplicate detection mechanism is
based on the monotonic update system proposed in our earlier work [6]. When the
updates cannot be ordered using the contained attributes, a monotonically increasing
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Fig. 3. Sample testbed. The testbed topology is generated using GT-ITM and is configured at
emulab facility.

attribute (e.g., the real-time clock) is appended to the out-going update that uniquely
identifies this update.

• Additional edge between active-passive pair: a supplementary data-flow between
the active-passive pair delivers the soft-checkpoints to the passive vertex.

• Maintaining checkpoints at passive-node: the passive vertex contains the logic that
applies an incoming soft-checkpoint to the recorded active node state.

5 Experiments

Experiments are designed to evaluate the performance our proactive availability-
management techniques. First, simulations are used to better understand the behav-
ior of the self-configuration module that determines the availability requirement based
on the user-supplied benefit function. Next, an end-to-end setup is created on Emu-
lab [17], representing an enterprise-scale information flow to compare our approach
against the traditional approaches and to study the effect of different soft-checkpoint
intervals and proactivity on aspects like MTTR, recovery cost, and net-utility. Results
show that proactive availability-management is effective at providing low-cost failure
resilience for information flow applications, while also maximizing the application’s
net-utility.

5.1 Simulation Study

A simulation study is used to compare utility-based availability management to sim-
ple approaches that are not availability-aware. The study uses a 128 node topology
generated with the GT-ITM internetwork topology generator [18]. The formulation of
net-utility Unet determines benefit as: benefit = k1 × (k2 − delay)2× availability×
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Table 2. Self-Determining Availability based on Benefit

Optimization Criterion Utility Cost Delay
Net-Utility (dollars/sec) 431991 52670 2160
Cost (dollars/sec) 79875 14771 80315
Delay (msec) 222 444 191
fcp (sec−1) 0.050 0.018 0.020
Availability (percent) 99.88 99.66 99.70

availableBandwidth/requiredBandwidth, and cost is calculated as: cost =
dataRate × bandwidthCostPerByte. Random costs are assigned to the network
links, expressed in dollars per byte. We substitute (k1 = 1.0, k2 = 150.0) in the bene-
fit formulation for this specific simulation [5]. The MTBF is assumed to be 86400sec.
and the MTTR is assumed to be 864sec. for a fcp value of 0.01Hz. (Many values are
possible for these variables. However, we must choose some values when conducting
our simulations, and the ones we chose are reasonable for the enterprise environment.)
We first deploy the flow-graph using the net-utility specification from equation 1 as the
optimization criteria, and the results are shown in Table 2 under the column labeled
‘Utility’. The results show a high achieved net-utility with acceptable values for delay,
fcp and availability. The second deployment (under ‘Cost’) focuses instead on mini-
mizing the cost, and it uses 1/cost as the optimization criteria. The effect of choosing a
different criteria is evident in the reduced cost, achieved by allowing a higher delay and
a lower availability (resulting from lower fcp). The final experiment uses 1/delay to
drive the deployment. This results in a reduction of delay achieved for the flow-graph,
but at the expense of net-utility and availability.

5.2 Testbed Experiments Using IFLOW

This set of experiments is conducted on Emulab [17], and the network topology is
again generated using the GT-ITM internetwork topology generator. In many cases, en-
terprises would hand tune their topology for availability and performance, instead of
using an arbitrary topology. For example, an enterprise may explicitly designate a pri-
mary and secondary data center. An arbitrary topology is used in our experiments in
order to understand how our techniques perform without the benefit of additional hand
tuning. Figure 3 shows the testbed used for experimental evaluations. Background traf-
fic is generated using cmu-scen-gen [19], injected into the testbed using rate-controlled
udp connections. For the testbed depicted in Figure 3, background traffic is composed
of 900 CBR connections. We use the utility formulation in Equation 15 to better study
the net-utility and the costs associated with checkpointing and failures. Required avail-
ability is 99.9% if not stated otherwise.

Variation of Net-Utility for Different Approaches. The first experiment studies the
variation of net-utility with different availability-management approaches in the pres-
ence of failures. For simplicity, only one failure is injected into the system. We con-
duct experiments with the active replication approach, the passive replication approach
with varying soft-checkpoint intervals, and our proactive replication approach. Figure 4



Utility-Driven Proactive Management of Availability 397

30 35 40 45 50 55 60 65 70 75
0

5

10

15

20

25

30

Time(Seconds)

N
et

 U
til

ity
(1

0K
$/

se
c)

Active
Passive(interval=2sec)
Passive(interval=5sec)
Passive(interval=10sec)
Passive(interval=20sec)
Passive(interval=30sec)

(a) Active and passive approach(various
intervals)

30 35 40 45 50 55 60 65 70 75
0

5

10

15

20

25

30

Time(Seconds)

N
et

 U
til

ity
(1

0K
$/

se
c)

Active
Passive(interval=2sec)
Passive(interval=5sec)
Proactive

(b) Proactive, active, and passive
approach(interval = 2s, 5s)

Fig. 4. Net utility rate variations using active, passive or proactive fault tolerance ap-
proaches. A failure is injected into one operator node at the time t = 40s.

clearly demonstrates that the active replication approach provides lowest net-utility.
This is because of the high amount of replicated communication traffic when using
this approach. After a failure, net-utility of the active approach increases slightly; there
is less replication traffic, because the failed node no longer sends replicated output
updates. The experiment also corroborates the analysis in Section 3.2: a lower soft-
checkpoint interval for the passive approach imposes higher communication cost on
the system and therefore, results in lower net-utility. Note that if availability were a
predominant factor in the net-utility formulation, then a lower soft-checkpoint interval
could have resulted in higher net-utility. The cost of soft-checkpoints is almost negligi-
ble when the interval is greater than 5 seconds, but its effect is evident for an interval of
2 seconds.

Our proactive approach provides the highest net-utility overall, as it modulates the
soft-checkpoint interval and takes into account the perceived system to offer preventive
fault tolerance. For instance, it switches to a smaller soft-checkpoint interval just before
the failure and is therefore able to recover as fast as the passive approach with a 2
seconds update interval, while performing as well as the passive approach with a 30
seconds update interval at other times. We note that evaluation of failure prediction
techniques is not the focus of this paper (such kind of evaluations appear in [13]). To
investigate how prediction accuracy affects the system, these experiments simulate a
predictor for the proactive approach, with failure prediction statistically generated at
various levels of accuracy. In particular, we notify the soft-checkpoint mechanism that
a failure is imminent, no matter whether the prediction is correct or a false positive.

Variation of MTTR for Different Approaches. The variation of MTTR and its stan-
dard deviation with different approaches are shown in Figure 5. For each approach,
nine experiments are used to obtain the mean and standard deviation. The active repli-
cation approach (not shown in the graph) has no explicit recovery time. This is because
the node downstream of the replicated operator continues to receive processed updates
even after the failure of one active replica. On the other hand, the passive replication
approach which attempts to avoid the high cost of active replication incurs recovery
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Fig. 6. Utility before failure and during recov-
ery, and the total cost to recover from one fail-
ure

times that increase with the soft-checkpoint interval. The reason for this increase is the
time taken for reconstructing the operator state: the higher the soft-checkpoint inter-
val, the larger the number of updates required to rebuild the state. Recovery time for
the passive replication approach depends on the soft-checkpoint interval. It ranges from
3.7 seconds (for a 2 second interval) to 14.8 seconds (for a 30 second interval). Our
proactive approach, as expected, performs well as compared to other passive replica-
tion approaches, since it is able to change over to a very small soft-checkpoint interval
just before the failure, and hence, has low MTTR. The experiment demonstrates the
importance of choosing the right soft-checkpoint interval automatically to maximize
availability at low cost and thereby maximize the net-utility of information flows.

Cost & Net-Utility During Recovery. Our proactive availability-management ap-
proach increases soft-checkpoint activity when a failure is predicted in the near future,
but it maintains a low soft-checkpoint activity at other times. The analysis of net-utility
value before failure, during failure recovery, and the total cost to recover from fail-
ure are summarized in Figure 6. Net-utility using proactive availability-management is
higher than any other approach, because it contains a very recent soft-checkpoint for
the operator state and therefore, incurs the least cost during recovery. Note that passive
replication with an interval of 2 seconds also incurs a low cost during recovery, but this
is achieved by losing non-negligible net-utility at normal operation time.

Effects of Checkpoint Frequency and Prediction Accuracy on Cost and
Availability. The next experiment closely examines the effect of checkpoint frequency
on the system, both in terms of system availability and the cost imposed to gain a unit
amount of utility. As mentioned in Section 3.2, a higher fcp leads to a higher number
of soft-checkpoint messages from the active to the passive node, but it also leads to a
smaller number of updates being required to reconstruct the operator state during recov-
ery. The conflicting behavior of incurred cost due to fcp is represented in Figure 7 by
the two parabolic curves. Ideally, we would like to spend the minimum cost to achieve
a unit amount of utility and would therefore, like to choose a value of fcp that is located
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at the dip of the parabolic curve. Note that the cost/utility ratio is consistently higher for
the passive vs. the proactive approach. We also show the effect of fcp on the availability
of the system: the change is in line with the formulation described in Equation 4. How-
ever, the interesting insight from this experiment is the direct correspondence between
the lowest achievable cost/utility and the flattening of the availability curve.

Our final experiment studies the effect of prediction accuracy λ, on the achieved
cost/utility ratio. It is intuitive that better prediction accuracy would lead to lower
cost/utility for proactive availability-management, and this is clearly depicted in Fig-
ure 8. It is interesting to note the behavior of proactive availability-management with
a lower fcp value. When prediction accuracy is low, a small fcp leads to very high re-
covery times with low net-utility during that period. However, if fcp is modulated prop-
erly to handle failures, recovery time decreases and a far lower cost/utility is achieved.
Meanwhile, the effect of prediction accuracy is less prominent when a higher value of
fcp is used, as the recovery times don’t improve much, even with a correct prediction.

6 Related Work

Traditional Fault-Tolerance. Redundancy is probably the earliest form of
fault-tolerance; the approach popularly known as the active replication approach is
well-studied, and a thorough description appears in [4]. Log-based recovery is well-
know in the database domain. Here, a failure is handled with an undo-redo log [3].
Fault-tolerance has also been studied in the context of transactions [20] and distributed
systems [21]. Dynamically trading consistency for availability is proposed in [22] us-
ing a continuous consistency model. A number of factors distinguish our approach from
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these traditional mechanism, the first and the foremost being its utility-awareness. An-
other distinction is our ability to use failure prediction to reduce the overhead of ensur-
ing high-availability.

Failure Detection & Prediction. [7] focuses on the implementation of fault detec-
tion, and proposed a scalable fault detection/collection framework. More recently, re-
searchers in the autonomic domain have used statistical monitoring techniques to detect
failures in component-based Internet services [11,23]. MSET or multi-variate state es-
timation techniques [11] constitute an early warning system that enables failure predic-
tion with low false alarm probability and has been successfully applied to the thermal
control domain, and more recently, to software aging problems, including predicting
memory leaks, data corruption, shared memory pool latching, etc. In [9], instrumenta-
tion data is correlated to system states using statistical induction techniques to identify
system-level metrics that correlate with high-level performance states. In addition, these
techniques are used to forecast service level objective violations, with prediction accu-
racy reported to be around 90%. Our system provides a framework in which several
such failure detection and prediction techniques can be implemented to provide high-
availability while imposing a low-overhead.

Fault-Tolerant Distributed Information Systems. Stars [21] presents a fault-tolerance
manager for distributed application, using a distributed file manager which performs ac-
tions like message backups and checkpoints storage for user files. Its reliance on causal
and atomic group multi-cast, however, demands additional solutions in the context of
today’s widely geographically distributed enterprise systems [24].

MTTR may be improved with solutions like Microreboot [25], which proposes a fast
recovery technique for large systems. It is based on the observation that a significant
fraction of software failures in large-scale Internet systems can be cured by rebooting.
While rebooting can be expensive and cause nontrivial service disruption, microreboot-
ing is a fine-grain technique for surgically recovering faulty application components,
without disturbing the rest of the components of the application. Our work could bene-
fit from such techniques.

GSpace [26] and replica management in Grids [27] studied dynamic data replication
policy and modeling in distributed component-based systems when multiple replicas of
data are desired, e.g., for global configuration data, or in a highly dynamic environment,
to improve availability. For this kind of data replication management, efficient read-one
write-all protocol [28] can be used when updates of the replicated data occur frequently.

IFLOW’s techniques may be directly compared to the fault-tolerance offered in sys-
tems like Fault-Tolerant CORBA [29,30], Arjuna [31] and REL [32], which replicate
selected application/service objects. Multiple replicas allow an object to continue to
provide service even when one of its replicas fails. Passive replication is also provided.
Here, the system records both the state of the currently executing member (primary
member) and the entire sequence of method invocations. While CORBA focuses on the
client-server model of communication, recent systems like Borealis [14] and SMILE [6]
have focused on fault-tolerance for applications that process data streams. The for-
mer uses replication-based fault-recovery, and the authors propose to trade consistency
for recovery time. The latter proposes the soft-checkpointing mechanism that can be
used to implement a low-overhead passive replication scheme for fault tolerance. We
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differ from such earlier work because of our explicit consideration of system utility for
managing system availability, and because our system also provides a framework for
incorporating failure prediction techniques.

Utility-Functions. The specific notions of utility used in this paper mirror the work
presented in [8], which uses utility functions for autonomic data-centers. Autonomic
self-optimization according to business objectives is studied in [33], and
self-management of information flow applications in accordance with utility functions
is studied in [5]. A preliminary discussion about availability-aware self-configuration
in autonomic systems appears in [34]. Our middleware carefully integrates the ideas
from the above systems and other domains to build a comprehensive framework for
fault-tolerant information flows.

7 Conclusion

We have proposed techniques for managing the tradeoff between availability and cost
in information flow middleware. First, a net-utility-based formulation of the benefits an
enterprise derives from its information flows combines both performance and reliabil-
ity attributes of such flows. The goal is not simply to attain high utility, but to reliably
provide high utility to large-scale information flow applications. Second, since reliabil-
ity techniques incur costs, thereby reducing utility, proactive methods for availability-
management regulates resources used to guarantee availability and take into account
the fact that system and application behaviors change over time. A specific example is a
higher likelihood of failure in high load vs. low load conditions. Reliability costs, there-
fore, are reduced by exploiting knowledge about the current ‘perceived’ system stabil-
ity. Additional cost savings result from the use of failure prediction methods. Third, the
implementation presented in this paper can deal with both transient and non-transient
failures, the latter relying on application-specific techniques for fault avoidance. Fi-
nally, utility-driven proactive availability-management techniques has been integrated
into our infrastructure for large-scale information flows, where it is shown to impose
low additional communication and processing overheads on information flows. Exper-
imental results with IFLOW attained on Emulab [17] demonstrate the effectiveness of
proactive fault tolerance in recovering from failures.

Future work will experiment with richer failure prediction techniques, and investi-
gate specific enterprise environments. For instance, we will model the redundant
data-centers mandated by government rules, and will consider the attainment of high
availability and net-utility in information flows that cross multiple organizational
boundaries.
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Abstract. Today’s enterprise data centers support thousands of
mission-critical business applications composed of multiple distributed
heterogeneous components. Application components exhibit complex de-
pendencies on the configuration of multiple data center network, middle-
ware, and related application resources. Applications are also associated
with extended life-cycles, migrating from development to testing, stag-
ing and production environments, with frequent roll-backs. Maintaining
end-to-end data center operational integrity and quality requires care-
ful planning of (1) application deployment design, (2) resource selection,
(3) provisioning operation selection, parameterization and ordering, and
(4) provisioning operation execution. Current data center management
products are focused on workflow-based automation of the deployment
processes. Workflows are of limited value because they hard-code many
aspects of the process, and are thus sensitive to topology changes. An
emerging and promising class of model-based tools is providing new
methods for designing detailed deployment topologies based on a set
of requirements and constraints. In this paper we describe an approach
to bridging the gap between generated “desired state” models and the
elemental procedural provisioning operations supported by data center
resources. In our approach, we represent the current and desired state
of the data center using object models. We use AI planning to auto-
matically generate workflows that bring the data center from its current
state to the desired state. We discuss our optimizations to Partial Or-
der Planning algorithms for the provisioning domain. We validated our
approach by developing and integrating a prototype with a state of the
art provisioning product. We also present initial results of a performance
study.

1 Introduction

Today’s enterprises are increasingly reliant on network-based services to imple-
ment mission-critical business processes. A typical enterprise supports thousands
of business applications, composed of numerous heterogeneous distributed com-
ponents, and deployed in multiple large data centers. The collection of business
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applications is in a constant state of flux. New applications are developed, tested
on different test environments, staged and rolled into production. Existing appli-
cations are continuously updated, and often rolled-back. Data center operations
personnel must provision and configure multiple networked environments and
deploy applications into them. The capabilities of these environments have also
evolved from basic services such as routing, naming, and hosting, to higher-level
middleware services such as directory, messaging, and storage. Maintaining data
center operational integrity and quality has thus become an extremely chal-
lenging task. In the absence of end-to-end operational methodologies and tools,
enterprises and their customers are exposed to significant operational cost and
risk.

While operators enjoy a large set of tools to perform local configuration tasks,
they face major challenges in deploying complete applications. Current method-
ologies and tools provide fragmented and incomplete support for the end-to-end
application deployment process. This process can be broken into four major
logical steps, representing different domains of expertise. First, a deployment so-
lution must be designed that satisfies functional application deployment require-
ments and non-functional deployment goals. Second, resources must be selected
that can be used to implement the solution. Resource selection must take data
center capabilities and constraints into account. Third, an ordering of bound pro-
visioning operations must be established to bring the data center from its current
to the desired state. Complex constraints exist between configuration parameters
across the various tools and in provisioning operations that are far apart in the
ordering sequence [1]. Implied or poorly documented ordering interdependencies
are typically discovered in the process of deploying an application. Forth, the
selected operations must be invoked across different management platforms and
domains. Operation execution status must be monitored, and operational errors
reported.

A new class of cross-platform management products, such as IBM Tivoli Pro-
visioning Manager (TPM)[2], has emerged to address the bottom-up challenges
of operating heterogeneous data centers. These provisioning technologies offer
a large set of automation packages that expose a uniform data access and up-
date layer to heterogeneous management platforms. In addition, they provide
a platform for programming workflows for higher-level provisioning operations.
Users can create workflows invoking primitive provisioning operations or other
workflows to automate the deployment of a business application. Typically, such
workflows statically encode significant aspects of the application design, resource
selection, and operational ordering choices tied to a particular deployment envi-
ronment. Development, testing and maintenance of such workflows in a chang-
ing environment is a significant challenge. Since these workflows are specific to
a deployed application and a target environment, the potential level of reuse is
minimal. Thus, the amortized complexity is not reduced.

More recently, a new class of model-based tools has emerged to address the
top-down challenges of designing and binding applications to data center re-
sources. In these tools, the current data center state and the desired deployment
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solution are both described declaratively using object-relationship models. These
tools aid in the construction and validation of a model describing the desired
solution, which may vary in its degree of concreteness. In particular, resource
instances may or may not be identified by it. In [3,4] we described the design
and implementation of such a tool, and the methods we used to guarantee that
the deployment topology satisfies an input set of requirements and constraints.
While these tools address the design and resource selection challenges, their out-
put is a declarative model, and the generalized task of realizing this model using
existing provisioning tools is an open problem.

We believe that representing configuration knowledge in object models will
offer significant advantages and will be the basis for the next generation of con-
figuration management tools [5]. Models provide easier visualization, concep-
tualization, extensibility, componentization, standardization, and reuse. Most
technologies in this space are moving towards model-based solutions. However,
there exists an inherent mismatch between a declarative model that is the basis
for these modeling tools and the provisioning technologies that are in essence
procedural. Moreover, the granularity does not match: models are typically fine
grained, while provisioning operations are coarser grained. In particular, provi-
sioning operations may have a complex effect on multiple resources. In model-
ing terms, multiple objects and relationships may change in a model describing
the state of the data center before and after an execution of a provisioning
operation.

In this paper we describe an approach which bridges the gap between the
declarative model of a solution and the procedural provisioning operation tool-
ing needed for its implementation. We use models to declaratively describe the
required solution, as well as the operational capabilities of existing provision-
ing platforms. We then employ a planning algorithm to automatically infer the
partial order of provisioning operations and their inputs to deploy a given ap-
plication in a data center. The generated workflows maintain operational con-
straints while verifiably provisioning the desired data center state. Our approach
supports the seamless integration of existing automation tools specializing in ap-
plication solution design, resource selection, and cross-platform provisioning. We
based and evaluated our models and algorithms on the capabilities of a state of
the art provisioning product[2], in customer use.

The structure of the paper is as follows. In Section 2, we present an overview
of our approach and architecture for model driven deployment planning. Next,
in Section 3, we present a formal model for applying planning to the problem
domain. In Section 4, we describe the planning algorithm and how we optimized
it for our particular usage of deployment planning. In Section 5, we describe our
prototypical implementation and integration with TPM [2], a state of the art
provisioning product. In Section 6, we present empirical results of a multi-tier
network provisioning experiment. Last, in Section 7, we review the related work,
and in Section 8, we summarize the work and discuss future challenges.
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2 Approach

2.1 Background: Data Center Operations Today

Data center operators use a large number of automation and configuration tools
to deploy distributed applications and services on a set of managed resources.
Every such tool provides a set of automated resource management functions,
that we term provisioning operations. To accomplish a particular configuration
task, the operator must identify a set of provisioning operations provided by
the collection of available tools, instantiate them correctly, and execute them in
an appropriate order. Hundreds of low-level provisioning operations may be re-
quired to deploy a single application. For example, servers must be selected from
a free pool, network switches, firewalls and load balancers must be configured,
operating systems, middleware, and application components must be installed
and/or configured, and monitoring must be enabled. Some of these tasks, such
as the selection of resources, are performed manually, others with tooling assis-
tance. The ordering and parameterization of provisioning operation invocations
is determined by operators in an ad hoc manner. Operators typically rely on
past experience, product manuals, existing scripts and other unstructured and
informal data sources.

Individual provisioning operations may incorporate complex logic. A provi-
sioning operation often makes assumptions about the state of the affected re-
sources and about other resources connected to them. Upon invocation, it may
perform a large number of fine grained configuration actions effecting the state
of a number of resources in the data center. For example, a provisioning oper-
ation to install an operating system may need to configure a DHCP server and
a network image server, in addition to the target system of the installation. In
secure environments, the OS install operation might have to configure a number
of network devices to ensure connectivity between the install server and the tar-
get server. To determine a successful order of executions, operators must fully
understand the preconditions and effects of each of the provisioning operations
and their interdependencies. Due to the aforementioned complexities, operators
often rely on step-by-step trial and error operation. Even a simple application
migration from the developer’s workstation to a testing environment can become
a challenge, with studies indicating it accounts for 35% of the testing time1.

2.2 A Case for Model Driven Deployment Using Planning

Increasingly, object models are used in order to formally describe resource con-
figuration state. The objects in these models are typically typed and associated
with attributes. For example, the Management Information Base (MIB) of an
IP system will contain an object for each IP network interface, with attributes
such as IP address and netmask. The IP interface node will also have a relation-
ship to the network interface card (NIC) object on which it is defined. These
configuration models can be navigated and queried at a fine level of granularity.
1 Theresa Lanowitz, speaking at a Mercury Users Conference, 2004.
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While configuration models offer uniform access and navigation, their update
functions are typically not uniform or consistent. A single operation may have
multiple parameters, pre-conditions and post-conditions. For example, the op-
eration to configure an IP interface may take multiple parameters such as the
IP address, netmask, NIC, and default gateway, where the IP address must be
unique and must match the netmask, the NIC must be enabled and connected
to a link-layer network associated with the netmask, and so on. The execution
of the operation may result in changes at multiple attributes and nodes in the
MIB.

The complexity of configuration operation parameterization and dependency
ordering, necessitates the use of advanced algorithms for inferring and generat-
ing correct sequences of provisioning actions, termed workflows. The workflow
generation problem can be naturally reduced to the AI planning problem. A
planning system synthesizes a course of actions to change the world from its
current state to a desired goal state. A planning domain defines a set of atomic
actions that are capable of changing the state of the world. Each action can only
be executed under some particular conditions of the world termed preconditions.
Each action has certain effects on the state of the world. A planner generates a
plan: a sequence of actions that will bring the world from its initial state to the
goal state.

Use of planning for workflow generation allows users to focus on the declarative
expression of data center resources, desired state and operation models. Models
can be defined by different users, supporting separation of concerns across re-
source types and operational domains. For example, a CISCO router expert may
model the pre-conditions and post-conditions of a CISCO IOS router configu-
ration operation. A deployment expert may add a constraint that a route must
exist between the boot server and a system being rebooted. These models can be
created once, and reused many times to automatically generate multiple work-
flows to deploy multiple applications in different networked environments. Thus,
the amortized complexity of managing the enterprise data center is significantly
reduced using this approach.

Our approach to deployment planning and execution can be summarized as
follows. (1) we formally capture both the current state of the data center, and the
desired deployment solution using object-relationship models, (2) we formally
capture the pre-conditions and effects of a key set of provisioning operations
provided by the available tools using propositional logic, (3) we employ partial
order planning algorithms to automatically generate sequences of provisioning
operations to bring the data center from its current state to the desired state. We
optimize partial order planning to the area of provisioning by utilizing domain
knowledge and data center characteristics.

The detailed architecture of our approach is depicted in Fig. 1. The current
state of data center resources is maintained in a configuration database in the
form of an object-relationship model. Automation tools are integrated into the
system by a specialized adapter. This adapter provides an abstraction layer and
a common access layer to execute the functions that are provided by the tool.
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Fig. 1. Architecture

In addition, the pre-conditions and effects of key provisioning operations are
formally modeled as predicates and transformers over the data center state and
kept in a repository.

A workflow orchestration framework provides the means to author workflows,
encoding sequences of invocations of provisioning operations, and to manage
their execution. These worflows, in addition to invoking operations on the tools,
update the configuration database, based on the expected or actual result of
the execution. This is necessary since the tools are agnostic of the configuration
database. Note that this will always be an approximation of the actual state of
the data center. Discovery techniques can be employed to fix any inaccuracies
in the state of the data center as it is recorded in the configuration database.

A workflow generator (planner) receives three inputs: the current state of
the data center, the desired deployment topology, and the available provisioning
operations. The desired topology is generated using a modeling tool, such as [4].
The workflow generator employs a planning algorithm to automatically generate
orchestration workflows. The workflow generator component is the focus of this
paper. The rest of paper focuses on the design, implementation, algorithms, and
empirical studies of this architectural component.

3 Generating Workflows Using Planning

Given a model describing the desired deployment state of an application, the
task of workflow generation involves identifying the provisioning operations to
be performed, binding of operational parameters, and analyzing ordering de-
pendencies between operations. The set of available provisioning operations is
determined by the provisioning technology. In this section, we describe how we
can use planning methods to generate the workflows by mapping the models rep-
resenting current and desired state to first order logic that is the input to most
planners, and modeling the provisioning operations as planner actions. Sect. 4
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will focus on the planning algorithm and our adjustments and optimizations
necessary for it to work well in this domain.

3.1 Problem Domain Modeling

State Modeling. Any resource object model (in fact any network model [6])
can be simply mapped to first-order logic. For a given object model, consisting of
typed nodes and relationships containing attributes, the following construction
will generate an equivalent planning initial or goal state:

– For each object instance N of type T , add the following predicates:
• (exists N), to express that the object is in the created state.
• (T N), to express the type of the object.
• For object models with support for inheritance, add (T1 N), (T2 N),

... predicates for each supertype Ti of type T .
– For each relationship instance E of type T , between N1 and N2, add the

following predicates:
• (established E N1 N2), to express that the relationship is in the es-

tablished state.
• (T E), to express the type of the relationship.
• For object models with support for relationship type inheritance, add (T1

E), (T2 E), ... predicates for each supertype Ti of relationship type T .
– For each object or relationship O, and an attribute A declared in type T

with value V , add the following predicates:
• (set O A), to express that the attribute is set.
• (T.A O V ), to express the attribute’s value.

The above rules are used to translate both the initial data center model and
that of a desired topology (which represents the desired state of all the resources
in the data center) into a first-order representation.

Figure 2 shows a sample object-relationship configuration model of a data
center server and its logic representation. The server contains a network interface

exists sp001

SwitchPort sp001

Nic sp001

set sp001 spNumber

SwitchPort.spNumber sp001 14

NicConnectedToSp ncts01

established ncts01 sp001 en0

...

Fig. 2. Example object model and logical representation
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(:action moveSwitchPortToVlan
: parameters  (?switch - Switch

?sp     – SwitchPort
?vlan1  - Vlan
?vlan2  – Vlan
?scs - SwitchContainsSp
?vdos - VlanDefinedOnSwitch
?vcs1   - VlanContainsSp
?vcs2   - VlanContainsSp)

: precondition (and (exists ?switch)  (exists ?sp) (exists ?vlan2)
(established ?scs ?switch ?sp)
(established ?vdos ?vlan2 ?switch)
(established ?vcs1 ?vlan1 ?sp)
(set SwitchPort.spNumber ?sp) (set SwitchPort.spModule ?sp)
(set Vlan.vlanNumber ?vlan2))

:effect        (and (established ?vcs2 ?vlan2 ?sp)
(not (established ?vcs1 ?vlan1 ?sp))

Fig. 3. PDDL specification for the moveSwitchPortToVlan operation

card (NIC) which is connected to a switch port on switch sw01. The switch port
is also configured to be a member of the virtual LAN (VLAN) vlan1 defined on
sw01. The SwitchPort type is inherited in our type system from the Nic type.
vlan1 has an attribute vlanNumber with value 201.

Action Modeling. Provisioning operations are modeled as planner actions.
Typically, provisioning actions are implemented imperatively, thereby requir-
ing additional declarative modeling of pre-conditions and post-conditions. The
Planning Domain Definition Language (PDDL) [7] is a common language for
expressing planning domains. Preconditions for each action may express restric-
tions on the life-cycle state of entities (e.g. exists), graph structure, and attribute
values. The effects of the actions are similarly expressed.

An example of a configuration operation model expressed in PDDL is shown
in Fig. 3. The operation moveSwitchPortToVlan configures a switch to assign a
switch port into a particular VLAN. This allows the computer system connected
to the port to communicate with other computer systems in that VLAN as if they
were on the same local network. In order to move a switch port into a VLAN,
the switch port, the switch and the VLAN must all exist and be interconnected.
The preconditions clause in Fig. 3 express these requirements. The effects clause
indicates that after the execution of this action, the switch port will be contained
in the VLAN. For simplicity, we omitted the type predicates for both objects
and relationships. They are implied from the definition of the parameters.

3.2 Planning

Planning algorithms are a class of search algorithms. They basically search and
backtrack various possible plans until they find a solution. Classic planners adopt
one of two approaches: searching the world state space or searching the plan
space. In the first approach, the search space consists of a graph whose nodes
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represent the state of the world and whose edges represent the execution of ac-
tions (e.g. GraphPlan [8]). The planner can search world space starting from the
initial state (progression planners) or starting from the goal state (regression
planners). In the second approach, each node in the graph represents a partial
plan, and each edge represents a plan refinement operation. Of these, some al-
gorithms generate totally ordered plans (Total Order Planning), while others
generate partially ordered plans (Partial Order Planning or Least Commitment
Planning) [9,10].

For the task of provisioning workflow generation, we selected partial order
planning (POP) for the following reasons:

1. A partially ordered plan can be efficiently executed in parallel. Provisioning a
distributed application typically requires configuring multiple systems. These
configurations can usually be done in parallel.

2. In any given data center state, there may be many possible actions that can
be executed. The number of such actions is proportional to the size of the
data center. Consequently, world state search approaches will have a high
branching factor. A high branching factor is likely to increase planning cost.

3. Partially ordered planning algorithms are efficient when the number of pos-
sible actions to fulfill a given condition is small. This is the common case
for distributed application provisioning: typically only a few provisioning
operations will produce a particular configuration of a given resource.

3.3 Partial Order Planning

A partial order planner searches the plan space. Each node in the search space
represents a partial plan while edges represent plan refinement operations. We
briefly review partial order planning; for a more detailed description see, for
example, [9].

A partial plan in POP is a set of action steps S0, S1, . . . , Sf and a set of
ordering constraints Si < Sj which indicate the causal order of the action steps.
In addition, the following meta information is maintained: (1) a set of causal
links Si →c Sj that record that precondition c of step Sj is achieved by step
Si, (2) a set of open conditions which consist of action preconditions that still
remained to be achieved, and (3) a set of unsafe links Si →c Sj indicating that
precondition c is deleted by some step Sk in the partial plan.

Partial order planning begins with an initial unfinished plan comprising two
dummy steps: Start Step S0 and Finish step Sf . S0 is a step with no preconditions
and whose effects represent the world in the initial state. Sf is a step with no
effects and whose preconditions represent the world in the goal state. This initial
plan is iteratively refined by applying plan refinement operations also termed flaw
resolutions. Flaw resolutions fall into two categories:

1. Open Condition Achievement: An open condition represents a
unachieved precondition of an action already added to the partial plan. An
open condition can be achieved by adding a new action to the partial plan
or by reusing an action already in the plan.
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2. Unsafe Links Resolution: An unsafe link indicates that an achieved con-
dition may be invalidated by another action. In this case, ordering the actions
avoids the conflict.

A partial plan is a complete plan when there are no flaws in it. A partial
planner continues to refine the different partial plans generated until a complete
plan is found or all the different possibilities have been tried and no solution is
found. Observe that a POP planner generates a plan backwards by identifying
actions that achieve the preconditions of actions already in the plan.

General-purpose planning algorithms suffer from poor scalability. The use of
domain-specific knowledge is critical to developing practical planners [11]. We
show in subsequent sections, how we have exploited the nature of the domain of
network configurations in distributed application provisioning to achieve signif-
icant improvements in the efficiency of POP for this purpose.

4 Optimizing POP for Provisioning

4.1 Domain Characteristics

The domain of distributed application deployment poses efficiency challenges to
the generic partial order planning algorithm:

Complex Provisioning Operations. Provisioning operations tend to be com-
plex, ofter performing multiple configuration tasks. Consequently, even simple
operations frequently have several parameters and effects. Their preconditions
also tend to have many clauses. When adding an action to a partial plan, each
parameter that must be instantiated acts as a multiplier to the number of pos-
sible variable instantiations, resulting in a high branching factor.

Data Center Size. A typical data center manages hundreds, if not thousands,
of resources. This means that for a given action parameter, the planner needs to
consider a large number of possible values. For example, when trying to instan-
tiate a server variable in an action, there may be hundreds of possible instanti-
ations. In partial order planning, if we naively attempt to fully instantiate each
action that is added to a partial plan, the branching factor will be prohibitive.

Constrained Resource Modifications. Resources can be configured only in
a limited number of ways, and data center policy typically introduces even more
configuration constraints. For example, the set of NICs that a server contains
is typically fixed. In addition, once a server is wired into a data center, its
relationship (through its NIC) to a switch port on a particular switch is typically
fixed. Consequently, a resource typically has a number of fixed relationships
with other resources. Many provisioning operations tend to be local in nature:
they operate on groups of closely related parameters. In subsequent sections we
explore how a planner can take advantage of the fixed relationships between
resources to efficiently instantiate parameters.
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Runtime Parameter Determination. Not all parameters for provisioning
operations are available at planning time. Some are only available at deploy-
ment time. For example, to enable communication, it is necessary to configure
a server’s network interface with an IP address. It is usually not possible to
select any unused IP address; the selection is constrained by a runtime data cen-
ter policy. As a consequence, at planning time, it is not possible to instantiate
all variables. We discuss how we deal with this, using a concept that we term
deferred instantiation, in Sect. 4.2 below.

4.2 Partial Order Planning for Provisioning

Prioritized Flaw Selection. Partial order planning proceeds by iteratively
selecting flaws to resolve. This selection can be ordered to improve planning
efficiency. In our workflow generator, we, as in [12] and [13], resolve unsafe links
before open conditions. With regards to resolving open conditions, we use the
following priority (in a descending order):

1. Open conditions of the form (exists ?<type>).
2. Fully instantiated open conditions.
3. Other partially instantiated open conditions.

Our highest priority is to instantiate unknown resources. We do so for two
reasons: first, such open conditions have only one uninstantiated variable, helping
to reduce branching. Second, once resources are bound, it is more likely that open
conditions representing resource relationships and attribute values will be more
constrained, again reducing branching.

Fully instantiated open conditions are given preference compared to partially
instantiated open conditions because they constrain the problem more. They are
least likely to introduce the uninstantiated open conditions.

When comparing two open conditions which are either fully instantiated or
which are both partially instantiated, the flaw selection algorithm counts the
number of partial plans that will be created to resolve each open condition. The
open condition that generates the fewest new partial plans will be selected.

Condition Driven Variable Instantiation. Recall that one class of flaw res-
olutions are open condition achievement operations. These operations involve
adding a new action to a partial plan or reusing an existing action in a partial
plan to achieve the precondition of another action in the partial plan. When
adding actions we can choose to instantiate all of its parameters with specific
values or instantiate only some of them. If we choose to instantiate all of the pa-
rameters, we create a new partial plan for each combination of fully instantiated
variables. Recall that provisioning operations typically have a large number of
parameters and that data centers manage a large number of resources. Conse-
quently, a large number of new partial plans will be generated. In search terms,
the branching factor will be high. On the other hand, we may leave parameters
uninstantiated until a consistency threat necessitates instantiation. If we leave
parameters uninstantiated, the branching factor remains low, however, planning
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becomes more complex, as it is necessary to maintain variable binding constraints
that specify whether two parameters are the same. Further, it is necessary to
implement a unifier that takes into account the variable binding constraints to
identify valid tuples of parameters. Unsafe link detection and action matching
become more complex as well.

We adopted a hybrid approach that reduces the branching factor but which
minimizes the complexity of the implementation and the performance overhead.
In our approach, when adding a new action we instantiate only the parame-
ters that are needed in order to satisfy the open condition. Note that adding
an action may result in new open conditions corresponding to the unsatisfied
preconditions of this new action with uninstantiated variables. Unlike the lazy
approach described above, we do not allow these uninstantiated variables to be
propagated to new actions at a subsequent step. Instead, when we select an open
condition that is uninstantiated, we generate instantiations at that time. Our ap-
proach reduces the branching factor because the number of variables in an open
condition is low for provisioning (typically one or two). Further, the need for
variable binding constraints is minimized because uninstantiated variables are
not propagated. This significantly reduces the complexity of the implementation
and the performance overhead.

Model Guided Variable Instantiation. We take advantage of knowledge on
resource and data center configurability constraints to minimize the number of
tuples created when binding variables in an open condition. For example, the
relationships between servers and their NICs, and also typically the relationships
between the NICs and the switch ports to which they are connected, are all fixed.
These fixed relationships limit the number of resources that need to be considered
when instantiating an action.

As an example, consider the provisioning operation addNetworkInterface
shown on the left side of Fig. 4, and its precondition (established ?scn ...),
where scn is a relationship of type SystemContainsNic. Without our strategy,
the planning algorithm would generate all pairs of systems and NICs in the
data center, 8 combinations will be generated for the data center model piece
shown in Fig. 4 (types and identities of relationships are omitted for simplicity).
Most would lead to a search dead end since no action exists that can change
the fixed relationships between servers and their NICs. Not only are a large
number of possible instantiations generated, but they are not immediately elim-
inated from consideration. Using our strategy, on the other hand, only pairs
connected by a relationship will be considered. Specifically, only the following
pairs will be generated by the planning algorithm when instantiating this ac-
tion: (EJB-server, nic4), (EJB-server, nic5), (Data-server ,nic1), and
(Data-server, nic2). Clearly, if one of the variables in this example were al-
ready instantiated, the number of tuples is further reduced. As a further en-
hancement of this strategy, we not only look at the preconditions of the current
action when instantiating variables, but also at other preconditions, associated
with relationships that are know to be fixed, where the variables appear.
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Fig. 4. Specification of the addNetweorkInterface provisioning operation and part of
initial state showing two servers, their NICs and several IP addresses

Deferred Variable Instantiation. A deployment topology describes how re-
sources in a data center should be configured. While the deployment topology
identifies all the resources needed, it may not have fully selected them. Recall
that a data center may implement policies that prevent some types of resources
from selection until deployment time. For example, to configure a network in-
terface, it is necessary to have an IP address. While the planner knows, based
on the data center model, what IP addresses are in use, it does not have control
over the selection of IP addresses, as data center policies typically determine
the selection at deployment time using a provisioning operation. This restric-
tion prevents the planning system from instantiating the IP address in other
network configuration actions, such as to configure network interfaces, routing,
and access control. To address this challenge, we introduce the concept of de-
ferred variable instantiation. For variables that can only be instantiated at de-
ployment time, we create placeholders that represents the instantiated variables.
Such a substitution can, however, take place only when the following conditions
hold:

1. There is a provisioning operation (action) that can create a new unique
instance of the required variable. For example, to resolve an IP address, the
provisioning system may have an operation getIPAddress that generates a
valid IP address.

2. The variable does not change in value once it is created.

The placeholder represents the output of a particular provisioning operation.
It is treated as a read only instantiated variable that can be used as a parameter
to other operations.
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5 Prototype Implementation

We implemented a prototype of the workflow generator architecture and plan-
ning algorithm described in the previous sections. For the role of the workflow
generator, we developed a custom Java-based partial order planner. The plan-
ner was implemented with configurable support for our domain specific variable
instantiations, flaw selection, and deferred variable instantiation. For the role of
the workflow engine, we used the IBM Tivoli Provisioning Manager (TPM) [2]
v.3.1 product. TPM workflows are parameterized with strongly typed objects
defined in a data center model (DCM). The DCM schema is DMTF CIM-
based [14]. DCM instance data is populated manually, or automatically by dis-
covery tools. TPM provides a device abstraction layer whereby logical device
operations (LDOs) are declared against DCM types. This layer enables users
to define workflows that can operate over different vendor implementations of
a logical device. DCM objects are bound to device drivers that bundle device-
specific implementations of logical device operations. We modeled a subset of
the TPM LDOs relating to network configuration, as planner actions. We also
implemented an importer from the DCM object model to logical representation.
Finally, we implemented an Eclipse-based graphical user interface, with views
for planner operations, initial and goal states, and generated operation partial
orders.

Our prototype was also integrated with the SPiCE (Service Plan Composi-
tion Engine) model-driven data center design tool [3]. Using SPiCE, users could
customize a logical application structure with deploy-time choices, and automat-
ically generate the desired state of the data center. Our worflow generator would
then be invoked, in the same Eclipse shell-sharing environment, to generate the
the partial order of TPM LDOs required to provision the data center changes.
A TPM workflow exporter was implemented to convert the planner’s output
to the TPM workflow language. Generated TPM workflows were submitted for
execution to the TPM deployment engine.

6 Empirical Evaluation

We evaluated our prototype using the desired network structure of a three-
tier clustered application consisting of a web, business logic, and data tier. An
example of this structure is depicted in Fig. 5. An external browser system was
defined to model remote access to the web tier. Browser traffic would be routed
through a firewall, connected to a load-balancer, spreading requests across the
servers in the web cluster. Web tier servers would invoke business logic functions
by routing traffic over an internal firewall. Load balancing on the business tier
would be performed at the application-level. Business tier servers were modeled
as dual-homed, connecting to the data tier through another firewall. The figure is
a screen shot of the SPiCE visualizer and depicts a filtered view over the desired
state topology. Server, router and load-balancer network interface card (NIC),
IP interface configuration, and routes were hidden. The switch and switch ports
over which the VLANs were defined were also hidden.
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Fig. 5. Sample three-tier application network structure

The desired state models were varied in the number of servers per cluster.
The models were generated by defining a SPiCE logical application structure
and varying the cluster size. For our infrastructure modeling, we created a pa-
rameterized DCM generator that created data centers with the requisite number
of switches, routers, load-balancers and servers. The number of NICs on each
device was also parameterized. The generated data center resources were instru-
mented by a simulator device driver provided by TPM.

We modeled the network device logical device operations (LDOs) for creating
a VLAN on a switch, assigning a port to a VLAN, creating IP network inter-
faces on systems (routers and servers), creating routes, access control lists, and
virtual IP addresses, creating clusters and free-pools, and adding servers to clus-
ters and free pools. We also modeled resource-selection operations for selecting
IP addresses/subnets, assigning tiers, and determining cluster expansion sizes
(for support of TPM dynamic orchestration features). Figure 6 lists a partial
workflow generated for a minimal topology. The workflow represents a serial ex-
ecution of the partial order generated by the planner (topological sort). It starts
by creating the spare pool, customer and subnet logical resources defined in the
desired state. Next it obtains a unique VLAN ID, and creates a new VLAN
with the specified ID in the switch identified in the desired state. It configures
the switch port to the newly created VLAN ID (must precede VLAN creation
on switch). Note that this operation required the switch module containing the
port as a parameter. This information was missing from the desired state. The
planner used the module port lookup LDO to obtain the required parameter.

We focus on scalability studies that show our domain specific enhancements,
described in Sect. 4.2, scale well and are better performing than the generic POP
algorithm. We present two scalability experiments using the workflow generator.
They investigated the scalability of the generator in terms of the infrastructure
size and the size of the three-tier application desired state.

First, we varied the number of available resources in the data center keep-
ing the number of resources in the desired state constant. Because the desired
topology was unchanged, the number of provisioning operations was constant,
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workflow SPiCEDeployOneTimeWorkflow LocaleInsensitive

// variable declarations deleted ...

CreateSparePool( "Pres-Module_pool", ID211)
CreateCustomer( placeholder_2, ID213)
CreateSubnet( ID92 )
GetUniqueVLANNumber( placeholder_7)
CreateVLAN( "1209", "ID68", placeholder_7, ID68)
GetIPAddress( placeholder_10, "1219", ID92)
AddNetworkInterface( "1218", "1219", ID92, placeholder_10, DT_ID75)
CreateApplication( "MyAppStagEnv", ID213, ID214)
GetPortModule( placeholder_24 )
MovePortToVLAN( "1209", "1202", Vlan_DT_ID68, placeholder_24, "1")
CreateRoute( "1218", ID152, ID94, ID75, ID193)
GetClusterTier( placeholder_20 )
GetClusterMinServers( placeholder_21 )
GetClusterMaxServers( placeholder_22 )
CreateCluster( "Pres-Module", placeholder_20, placeholder_22, placeholder_21, ID214, ID148 )
AddServerToCluster( ID148, "1227" )
AssociateClusterToPool( ID148, ID211 )

Fig. 6. A example of a generated workflow

modulo the selection of different servers. Therefore, the experiment measured the
performance of the planner’s variable instantiation. Figure 7 shows the planning
time for infrastructures containing between 10 and 250 servers. We benchmarked
our POP planner performance with domain specific optimizations enabled and
disabled. The results show that the effect of our variable substitution optimiza-
tions result in a significant speedup for the base case, and are significantly less
sensitive to infrastructure size increases.

In our second scalability experiment, we varied the number of resources in the
desired state by increasing the number of servers in each tier cluster. We varied
the total number of servers from 4 to 128. In this case, we kept the number of
resources in the data center constant at 250 servers. Under these conditions, the
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number of provisioning operations will grow, resulting in a larger search space.
Figure 8 shows the results of benchmarking our POP planner with optimizations
enabled and one point with optimizations disabled. For problems with more than
4 servers we were unable to obtain solutions using the unoptimized planner.
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7 Related Work

Planning techniques are increasingly being adopted for distributed system man-
agement. Several projects have recently used planning techniques for the de-
ployment of component-based applications [15,16,17], the composition of web
services [18], and the management and execution of scientific workflows in the
Grid [19,20]. There are several main differences in focus between these works
and the work presented in this paper. All of these works focus on software (or
service) level configurations. In contrast, our work is focused primarily on the
low level network configuration aspect that is driven by the application require-
ments. The main usage of planning in these works is the optimization of resource
placement, resource usage, and/or execution time, where a simplified model of
the provisioning and configuration actions is assumed. In contrast, in our work
we assume that an input desired state identifies the selected resources. Rather,
we focus on the correct ordering and instantiation of complex real world provi-
sioning and configuration actions with multiple preconditions and effects on the
system state, and with a large number of input parameters.

Specifically, in [17], the authors addresses the issue of resource-aware deploy-
ment of component-based distributed applications in wide-area systems though
planning. They provide a model, called the component placement problem
(CPP), that describes the placement of application components onto compu-
tational, data, and network resources across a wide-area environment subject
to constraints. The planner generates a plan of application components place-
ment on a set of networked nodes. The work does not address the provisioning
operations necessary to implement the solution and their ordering.
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The CHAMPS system [16] focuses on Change Management, a process by
which IT systems are changed through software upgrades, hot fixes, or, hard-
ware changes. Upon the reception of a request for change, CHAMPS assesses the
impact of the change and generates a change plan (as a BPEL workflow). Plan-
ning is used to optimize resource selection and execution time, while it is assumed
that needed provisioning operations and their temporal dependencies are known.

Several techniques have been suggested to limit the search space when using
planning for the dynamic composition of web services. Similar techniques might
be applicable to our domain such as using business rules to guide the search
space [21] and adopting a mixed-initiative approach where users can interact
with the planner to drive the workflow composition process [22].

It is widely agreed on that proper modeling of the planning domain is key
for correct and efficient planning. Several efforts have manually encoded the
necessary domain knowledge [23,24]. This is error prone and requires extensive
efforts which hinder the practicality and adoption of the approach. In this work,
we advocate the usage of object models for representing the current and goal
state. In addition, we sucessfully integrated our planner with a modeling tool
that generates an object model representating the desired state [3], and with a
provisioning engine that provides the current state.

8 Summary and Future Work

Separation of deployment concerns is key to improving data center reliability, as
well as reducing capital and operational costs. Emerging model driven technolo-
gies are showing great promise in the direction of weaving functional application
aspects, with non-fuctional aspects such as security, performance and availabil-
ity, and data center resource availability and policies. Bridging the model to pro-
visioning system gap is a key challenge in releasing the value of these tools. In
this paper we demonstrated that with proper optimizations, planning algorithms
can provide this bridge. Our initial results focused on generating network pro-
visioning workflows driven by application requirements. Future work will focus
on extending the operational models to the software domain. Resource selection
can be performed in various stages of the deployment design process, and fu-
ture work will examine usability and performance implications of alternatives.
Existing workflows can be mined for dependencies, and compared to generated
workflows to detect unusual ordering patterns. Desired state models may intro-
duce non-functional operational dependencies, which should be honored by the
planner.
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