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Preface

Middleware is one of those topics in computer science for which it appears dif-
ficult to reach consensus on its exact meaning. Broadly speaking, one could say
that middleware contains solutions to the distribution of processes, data, and
control that are more or less independent from applications, and that allow un-
derlying platforms and hardware to be hidden from applications. In other words,
it covers a lot.

However, there does seem to be consensus on the fact that middleware is
about distributed systems, and that the solutions incorporated into middleware
are applicable to a wide range of applications. Following the trend of past Middle-
ware conferences, this seventh edition has continued to take a broad perspective
on what middleware is all about, and there was general agreement among the
Program Committee members that we should be open-minded as to what should
be considered on topic or not. This open-mindedness is reflected in an interest-
ing collection of papers that cover many fields of middleware, and even touch
upon areas that have traditionally belonged more to the systems arena, such as
virtualization.

However, not everything changes. As usual, the number of strong submis-
sions was remarkably high, and there were many discussions among committee
members as to which papers to accept. (Almost every paper was reviewed by
four committee members.) Eventually, we selected 21 out of the 122 submissions,
with space limitations forcing us to reject even papers that reflected good and
original research.

We would like to thank all authors who submitted papers for Middleware
2006. Also, we both feel that we had a strong committee with members who not
only did an excellent job reviewing submissions, but also submitted their reviews
on time and acted promptly during the discussion phase, which allowed us to
send out notifications to the authors as originally planned. We also gratefully
acknowledge the work done by external reviewers, who often provided detailed
and high-quality reports.

September 2006 Maarten van Steen and Michi Henning
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Caching Dynamic Web Content: Designing and
Analysing an Aspect-Oriented Solution

Sara Bouchenak!, Alan Cox?, Steven Dropsho?®,
Sumit Mittal**, and Willy Zwaenepoel®
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3 EPFL, Department of Computer Science, CH-1015 Lausanne, Switzerland
{Steven.Dropsho, Willy.Zwaenepoel}@epfl.ch
4 IBM India Research Lab, Block-1, IIT, Hauz Khas, New Delhi, India
sumittal@in.ibm.com

Abstract. Caching dynamic web content is an effective approach to re-
duce Internet latency and server load. An ideal caching solution is one
that can be added transparently by the developers and provides com-
plete consistency of the cached documents, while minimizing false cache
invalidations. In this paper, we design and implement AutoWebCache, a
middleware system for adding caching of dynamic content transparently
to J2EE server-side applications having a backend database. For this
purpose, we first present the principles involved in caching dynamic web
content, including our logic to ensure consistency of the cached entries.
Thereafter, we demonstrate the use of aspect-oriented (AOP) techniques
to implement our system, showing how AOP provides modularity and
transparency to the entire process. Further, we evaluate the effectiveness
of AutoWebCache in reducing response times of applications, thereby
improving throughput. We also analyze the transparency of our system
for a general application suite, considering issues such as dynamic web
pages aggregating data from multiple sources, presence of insufficiently
structured interfaces for exchanging information and the use of applica-
tion semantics while caching. We use two standard J2EE web benchmark
applications, RUBiS and TPC-W, to conduct our experiments and dis-
cuss the results obtained.

Keywords: Caching, aspect-oriented programming, J2EE applications,
dynamic content.

1 Introduction

Dynamically generated web content represents a large portion of web requests.
The rate at which dynamic documents are delivered is often orders of magnitudes
slower than static documents [9,11]. Therefore, caching dynamic web content is

* Work done while being at Rice University, Houston and EPFL University, Lausanne.

M. van Steen and M. Henning (Eds.): Middleware 2006, LNCS 4290, pp. 1-21, 2006.
© IFIP International Federation for Information Processing 2006



2 S. Bouchenak et al.

an appealing approach to reduce Internet latency and server load. Web sites
for dynamic content are usually based on a multi-tier J2EE architecture using
several middleware systems [27]: an HTTP server as a web front-end and provider
of static content, an application server to execute the business logic and generate
the dynamic web content, and a database to store the persistent data required by
the application. Dynamic content generation places a significant burden on the
servers, often leading to performance bottlenecks. Caching dynamic web content
can directly address these bottlenecks.

Implementing caching as a middleware solution is particularly attractive. Of
course, an ideal solution is one that can be added transparently by the developers,
possibly even as an after-thought. Some examples of transparently adding caching
to an application are given in [17,6,4], but these ignore consistency of the cached
entries. Other solutions provide consistency, but ignore transparency, requiring
manual insertion [10]. There are some projects that provide both consistency and
transparency, such as those caching SQL query result sets [8] at the back-end. The
interesting property of data from result sets of SQL queries is that it is from a sin-
gle interface and hence, of one type (homogeneous). An open question is whether
similar techniques can be successful for more complex content such as web pages
that aggregate data from multiple sources (i.e., heterogeneous).

In this paper, we present the design and implementation of AutoWebCache, a
middleware solution for caching dynamically generated content in J2EE applica-
tions. A goal is to move the caching as far forward in the multi-tier architecture to
not only reduce the database activity in the back-end but also the business logic
activity, which is becoming ever more complex and costly at the middle tier. Unlike
caching data such as JDBC SQL results at a single well-specified interface, caching
fully formed web pages requires interfacing to both the front-end (e.g., Tomcat
servlet engine) and the back-end (e.g., JDBC interface). Caching at this level re-
quires information from both interfaces to maintain consistency of the cached doc-
uments. To keep the caching transparent, we cast caching as an aspect of the ap-
plication and use an aspect oriented programming (AOP) framework to capture
the information flowing through various interfaces. We give details of the AutoWe-
bCache cache system based on AOP principles and the Aspect] [2] weaving rules
that add the caching logic transparently to the application.

We evaluate the performance of our middleware solution with the help of two
J2EE benchmarks - RUBIS and TPC-W. RUBIS implements the core functional-
ity of an auction-site: selling, browsing and bidding [1], while TPC-W simulates an
online-bookstore [30]. We demonstrate the gains in response times using AutoWe-
bCache for each. We also analyze the transparency of AutoWebCache for a general
application suite. We argue that for the general case, issues can arise when caching
dynamic content at the front-end due to 1) dynamic web pages aggregating data
from multiple sources, 2) some sources not having sufficiently structured interfaces
for exchanging information and 3) the need to consider semantics of the applica-
tion while caching. Although our benchmark applications are servlets-based and
use SQL queries to incorporate dynamism, we believe that the results and argu-
ments presented in this paper hold true for a general architecture as well.
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The contributions of this paper can be summarized as follows:

1. Design, implementation and evaluation of AutoWebCache, a middleware so-
lution that caches dynamic web pages at the front-end while maintaining
consistency with the back-end database(s).

2. Demonstrating that dynamic web caching can be considered a crosscutting
aspect and, therefore, AOP methods should be considered as a flexible and
easy-to-use tool to develop the middleware support.

The remainder of this paper is organized as follows. Section 2 gives some back-
ground on dynamic web applications and aspect-oriented programming. Section
3 outlines the principles involved in designing a dynamic web cache and gives
an overview of our AutoWebCache system. Section 4 describes the implementa-
tion of AutoWebCache using aspect-oriented techniques, and analyzes its trans-
parency with respect to an application. Sections 5 and 6 present our evaluation
environment and the results of our evaluation, respectively. Section 7 provides a
discussion of our experiences. Section 8 discusses some related work and finally,
Section 9 draws our conclusions.

2 Background

2.1 J2EE Web Applications

Java 2 Platform, Enterprise Edition (J2EE) defines a model for developing dis-
tributed applications, e.g., web applications, in a multi-tiered architecture [27].
Such applications usually start with requests from web clients that flow through
an HTTP server front-end and provider of static content, then to an applica-
tion server to execute the business logic and generate web pages on-the-fly, and
finally to a database that stores resources and data (see Figure 1).

HTTP request
s — ] [=—]| SQLreq [=I=—
= B B
 E— l  E—
=1 “SQLres
HTTP response
Client Web server Application Database server
server
€------ b SEEEEEES e BEEEEEE >
Web tier Business tier Database tier

Fig. 1. Architecture of Dynamic Web Applications

Upon an HTTP client request, either the request targets a static web docu-
ment that the web server can return directly; or the request refers to a dynamic
document, in which case the web server forwards that request to the applica-
tion server. The application server runs one or more software components (e.g.,
Servlets, EJB) that query a database through a JDBC driver (Java DataBase
Connection driver) [28] and retrieve data to generate a web document on-the-fly.
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2.2 Aspect-Oriented Programming

Aspect-Oriented Programming (AOP) is a methodology with concepts and con-
structs to modularize crosscutting concerns (i.e., aspects) [15]. With AOP, the dif-
ferent aspects involved in a system are separately implemented in different mod-
ules. The developer can also specify the manner in which these modules need to
be woven to form the final system. Aspects are woven together via the join point
model, a fundamental concept in AOP specifying identifiable execution points in
a system. Such join points include method calls and executions, constructor calls,
read and write access to fields, exception handler invocations, etc. Pointcutsallow a
programmer to capture certain join points while an advice provides a way to express
crosscutting actions to be performed at a certain pointcut. At a pointcut, an advice
specifies the weaving rules involving that point, such as performing some actions
before or after the execution of the pointcut. Figure 2 shows the basic principle of
adding caching transparently to a web application, using aspect weaving.

bOrigilr)aI ) Weaving C_aching
web application les library
Aspect weaving /

C IS
Cache-enabled
web application

version

/1]

@

Fig. 2. Aspectizing Caching

3 Dynamic Web Caching

Caching dynamic web content prevents the client from remotely re-accessing the
database server to re-execute SQL queries, and from regenerating dynamic web
pages on the application server. In this section, we first present the principles
involved in designing a dynamic web cache, including our logic to ensure consis-
tency of the cached documents. We then give an overview of our implemented
system. Concrete details about the implementation based on aspectizing web
caching are provided in the next section.

3.1 Designing a Web Cache

Designing a cache for web documents is rendered complicated by the dynamic na-
ture of web applications, requiring mechanisms to maintain consistency between
the data and its cached copy. Specifically, dependency needs to be established
between requests that read the data in the back-end (read-only requests) and
those that make updates to the back-end (write-requests). We divide the design
of such a caching system into the following mechanisms:
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- Cache checks. Upon a client read-only request, the cache is first checked
to look up the requested document. In case of a hit, the cached document (e.g.
a web page) is simply returned to the client, bypassing the request execution.

- Cache inserts. Upon a miss in the cache during a client read-only request,
the request is executed by the application server (and SQL queries are possibly
executed on the database server) to dynamically generate a web document that
is returned to the client; and a copy of that document is stored in the cache.

- Collecting consistency information. For a read request, we attach the
information mapping the underlying database set used in the generation of re-
sponse to this request (dependency information). Similarly, for a write request,
we associate information regarding the database set updated by this request (in-
validatior. information).

- Cache invalidations. Upon a client write request, the cache entries that are
affected by the write must be invalidated. This would require making use of the
consistency information.

Index: URI Index: SQL String | <value vector, URI> pair
(readHandlerName | Cached web
+ age ;
readHandlerArgs) P ReadQueryTemplate, ;::t::;: \)I;:Ju:ss,‘: 3;[:;
URI, WebPage1 <instance values,;, URI5;>
ReadQueryTemplate, | <instance values,,, URI,>
URI, WebPage2

ReadQueryTemplate; | <instance values,,, URI;,>

Fig. 3. Cache Structure

Figure 3 shows the basic structure of our cache. The first table stores the
entries of web pages, indexed by URI of the client requests including the request
arguments (input info). The second table maintains details about the read-only
queries (template + vector of dynamic values = dependency info) used in the
formation of the cached pages. When a write query occurs, a query analysis
engine determines the set of read queries affected by the update. This information
is then used to remove the invalidated entries from the cache.

3.2 Maintaining Cache Consistency

Determining if a client write request invalidates the cached page resulting from
a previous client read-only request is equivalent to determining if the set of SQL
queries associated with the former request invalidates one of the SQL queries un-
derlying the latter request. For this purpose, our implemented solution includes a
query analysis engine that has the task of determining the dependencies between
SQL queries. Query analysis has two primary components:
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— Determining possible dependencies between queries. SQL queries are
given as templates (the vector of dynamic values for a particular instance to
be known at run-time). If a read query template shares common tables and
columns with an update query template, then a dependency is established.

— Actual intersection testing to reveal true dependencies. A true in-
tersection between a read query and an update query (with a dependency
established) exists if the update modifies one or more columns in the row(s)
being read, and/or results in changing the set of rows satisfying the selection
clause of the read query [20].

It is interesting to note that while the first component of this analysis is based
on the static portion of the query string (i.e. query template), the second com-
ponent comes into play at run-time, once we know the actual values used in the
selection criteria. For efficiency, our system caches the results of the first com-
ponent and re-uses them while encountering the same queries again. In practice,
there are usually a small fixed number of different query templates, thus, the
query analysis cache stabilizes very quickly (Figure 4).

Benchmark | Read queries | Write queries | Number Clients | Time to stabilize
RUBIS 22 types 10 types 1000 <4 min
TPC W 10 types 14 types 400 < 1 min

Fig. 4. Query Analysis Cache Statistics for RUBiS and TPC-W

Our analysis engine explores a balance between invalidation precision and
its associated evaluation cost, the cost of precision being determined by the
detail of query analysis required to extract the relationship needed. The engine
supports three cache invalidation policies that increase precision by providing
progressively more refined analysis:

1. A simple method is to check if the columns used in the read query are also
updated in the write query. This column-only check may result in many false
positive indications that an intersection exists when, in fact, there is none.
E.g., reading then updating column a from table T creates an intersection,
but reading column a and updating column c does not.

(a) “SELECT a FROM T WHERE b=X" vs “UPDATE T SET a=new val..” may inter-
sect if the column updated is a (as here) or b.

(b) “SELECT a FROM T WHERE b=X" vs “UPDATE T SET c=new val...” does not in-
tersect (assuming c!'= a,b).

2. To make the test for intersection more precise, selection criteria in the read
query’s WHERE-clause are matched to values from the write query to see if
the same rows are being updated. E.g., if a read’s selection clause requires
that T.b=X, but for the write query T.b=Y and X # Y, then the queries do
not intersect.

(a) “SELECT a FROM T WHERE b=X" vs “UPDATE T SET a=new val WHERE b=Y”,
does not intersect if X #Y.
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Original code of a read only request handler, Caching related code
identified by a URIand called with a set of Cache check
input information String cachedDoc = Cache get(uri,

inputinfo);
- if (cachedDoc != null)
___________ return cachedDoc; // Cache hit

Collecting dependency info

Build dependencylnfo

webDoc=... T T=--a__

/I Return the web document .
Cache insert

_______ Cache add(webDoc, uri, inputinfo,
eIl p dependencylnfo); // Cache

Fig. 5. Caching Read Requests

Original code of a write request handler Caching related code
Collecting invalidation info

Build invalidation info

Cache invalidation

/I Cache consistency
Cache remove(invalidationInfo);

Fig. 6. Handling Write Requests

3. Invalidates can be made even more precise by executing extra queries to re-
trieve missing data needed to test for intersection. Continuing with the prior
example, if the value of the field T.b is not specified in the write query itself,
then an extra query can be made to the database to read the value of T.b in the
row(s) being updated. This option generates additional queries (by the cache)
to the back-end but reduces unnecessary webpage invalidations. E.g.,

(a) “SELECT a FROM T WHERE b=X” vs “UPDATE T SET a=new val WHERE d=W”,
but there is no reference to the value of b in the update query.

(b) Therefore, the cache generates a query for column b of the row being
updated: “SELECT b FROM T WHERE d=W".

(¢) The read and update queries intersect if the value returned equals X
(from the read query).

We refer the reader to [20] for detailed descriptions of the engine’s handling of var-
ious query types for each of the above three cases. The last (and most aggressive)
technique which we call the A C-extraQuery strategy is used in this study.

Figure 5 and Figure 6 show how collecting dependency and invalidation in-
formation, and how cache check, insert and invalidation operations take place
within web application request handlers. From the figures, it is clear that to
provide consistency, information is gathered both at the front-end (request ar-
guments in the servlet engine) as well as the back-end (queries being shuttled to
the database).
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This is in contrast to caching of SQL query result sets, which requires cap-
turing calls to the database at the JDBC interface only [8].

3.3 Overview of the AutoWebCache System

Our design is called AutoWebCache, a system for caching web pages and man-
aging their consistency [3,20]. In AutoWebCache, the cache is located on (in
front of) the application server (though it could easily be used in a proxy cache
formation), and it consists of a set of web pages from read-only requests indexed
by the request URI + set of arguments. A page is invalidated if a client update
request modifies the data set used to generate the cached page. AutoWebCache
uses the most precise cache invalidation strategy discussed prior, namely the
AC-extraQuery strategy. Web pages resulting from client write requests are not
cached.

jwebcaching.cache
Class Cache
java.lang.Object
|
+ - - jwebcaching.cache.Cache

public class Cache

extends java.lang.Object
A Cache implements consistent caching of web pages.

Method Summary

static java.lang.String | get(java.lang.String uri java.lang.String inputData)
Returns the cached web document associated with the
given component URI and input data if any, null otherwise.

static void | add (java.lang.String webDoc, java.lang.String uri,
java.lang.String inputData, java.util. Set dependencylinfo)
Adds a cache entry corresponding to a web document, a
component URI, component input data and the associated
dependency information.

static void | remove(java.util.Set invalidationInfo)
Removes the cache entries corresponding to the
specified invalidation information.

Fig. 7. Cache API

The main package of the AutoWebCache system is the jwebcaching.cache pack-
age. It provides several classes, among which the Cache class provides the neces-
sary features for cache management, including interaction with the query analy-
sis engine to maintain consistency of the cached web pages. Figure 7 illustrates
a part of the API of this class.

4 Aspectizing Web Caching

Aspect-oriented programming (AOP) hands us an efficient tool to perform
caching by treating it as a concern that cuts across the application. In this sec-
tion, we describe our implementation of AutoWebCache, an AOP based caching
middleware system. We will also analyze the transparency of the caching aspect
with respect to a general application suite.
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4.1 Implementing an AOP Based Caching

AspectJ [2] is an aspect-oriented environment that provides the AOP constructs
and set of tools for aspects written in the Java programming language. The
Aspect]J language exposes a set of join points that are well-defined places in the
execution of a Java program flow.

(a) aspect ServletExecution {
(b)  // Pointcut definition
(c) pointcut doGetExecution() :

(d) execution(
(e) void HttpServiet+.doGet(
) HttpServietRequest, HttpServletResponse)) ;

(9)  // Advice definition
(h)  before() : doGetExecution() { ... crosscutting actions ...}

@}

Fig. 8. Pointcut and Advice Examples

Figure 8 gives an example of a pointcut and advice declaration in the AspectJ
language. This example defines a pointcut called doGetFExecution that designates
the execution of the doGet method in the HttpSerulet class or its subclasses! that
takes a first argument of type HttpServletRequest and a second argument of type
HttpServietResponse (lines (c)-(f) in Figure 8). This example also defines an
advice that executes prior to the specified pointcut (the doGet method, line (h)
in Figure 8). Please notice that the pointcuts and advices that define the weaving
rules to be applied are specified as entities separate from the individual aspect
modules. Weaving the final system from individual aspects is performed by the
ajc tool, the AspectJ compiler.

In order to apply aspect-oriented techniques for caching dynamic web pages
in J2EE applications, the following properties are needed:

— The entry and exit points of request handlers in web applications must be
well-known points. This is necessary to automatically inject cache check,
insert and invalidation operations to those handlers.

— The call to SQL queries that underlie the request handlers in web applica-
tions must be well-known points. This is necessary to collect dependency
and invalidation information.

4.2 AutoWebCache-An AOP Based Web Cache

We implemented AutoWebCache as an AOP-based solution that helps in trans-
parently injecting caching mechanisms to web applications. This involved the
following steps:

— Weaving rules specification - defines how to integrate the caching aspect
into the web application core aspect. The weaving rules specify the points
in the application where mechanisms for cache check, insert, invalidation
operations etc. need to be injected (see Figure 5 and Figure 6).

! The + sign following the HttpSerulet class name in Figure 8 designates its subclasses.
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— Aspect weaving - the process of composing the final cache-enabled system
from individual web application and AutoWebCache aspects by following
the weaving rules, using the AOP compiler (see Figure 2).

// Pointcut for Servlets main method
pointcut servletMainMethodExecution{ ) :
execution(
void HitpServlet+ doGet(
HitpServletRequest HttpServietResponse))
|| execution(
void HitpServlet+ doPost(
HitpServietRequest HttpServietResponse));

Fig. 9. Capturing Servlets’ main method

Figure 9 shows how to capture the execution of a Servlet’s main method in
AspectJ; this is necessary to inject cache checks, inserts and invalidations. Since
Java Servlets are defined with a standard API, their main methods are known
as being either doGet or doPost that respectively implement HTTP GET and
POST; and the AspectJ’s ezecution keyword used in the pointcut captures the
execution of those methods 2.

Cache checks and inserts. Figure 10 describes the rules for tackling read-only
Servlets. The around advice surrounds the normal execution of the main method
of a Servlet with cache checks and inserts (the proceed keyword calls the normal
execution of the method). In case of a cache hit, the normal execution of this
Servlet is bypassed. For a cache miss, an entry is added in the cache along with
the dependency information associated with this request (c.f., Figure 5).

// Advice for read only requests
around( ) : servletMainMethodExecution ( ) {
// Pre processing: Cache check
String cachedDoc;
cachedDoc = call Cache get of JWebCaching
if (cachedDoc !=null} {
return cachedDoc

}

// Normal execution of the request
proceed( });

// Post processing: Cache insert
call Cache add of JWebCaching

Fig. 10. Weaving rules for cache checks and inserts

Cache invalidations. Figure 11 describes an advice that is aimed at tackling
write Servlets; it defines the after advice that executes following a Servlet’s

2 In case a Servlet’s doGet and doPost methods are interleaved, it is necessary not
to capture the execution of both methods, but only the top-level one. This can be
achieved in AspectJ using a cflowbelow pointcut (see [17], Chapter 3). For simplicity
purposes, we do not use it here.
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// Advice for write requests
after( ) : servletMainMethodExecution ( ) {
// Cache invalidation
call Cache remove of JWebCaching
}

Fig. 11. Weaving rules for cache invalidations

main method. Specifically, it uses the invalidation information attached with
this request (c.f., Figure 6) to invalidate the affected cache entries.

Collecting consistency information. Figure 12 declares a pointcut that cap-
tures calls to read-only and write SQL queries (through standard JDBC API
calls, e.g., executeQuery, executeUpdate). The after advice executes following an
SQL query and collects the consistency information - dependency (read query
templates 4 value vectors for a read-only request handler) or invalidation (write
query templates + value vectors for a write request), derived from that query.

If a read query is aborted during the formation of response for a client request,
the corresponding web page is not stored in the cache. Further, if a write query
does not complete successfully, it is not considered for determining the cache
entries affected. For simplicity, implementation details concerning these points
have been omitted from our presentation.

// Pointcut for SQL query calls

pointcut sqlQueryCall(} :
call(ResultSet PreparedStatement executeQuery())
|| call(int PreparedStatement executeUpdate());

// Advice for SQL query calls

after() : sqlQueryCall () { collect consistency info '}

Fig. 12. Collecting Consistency Information

4.3 Analysing Transparency of AutoWebCache

Caching of dynamic web content can not be considered as an aspect completely
orthogonal to the application, in general. In this subsection, we outline some
issues that affect the transparency of AutoWebCache with respect to a general
application suite.

Capturing Information Flow through various Interfaces. To maintain
complete consistency of the cache with the back-end databases, the caching
scheme must capture all flow of information in the application, from front-to-
back. Such information can flow through various interfaces:

- Entry and Exit points. AutoWebCache requires well-defined interfaces for iden-
tifying the entry and exit points of a request. In our benchmarks, the Java Servlet
APIs provide a standard way to capture entry and exit of a http client request.
Further, each cached document is uniquely identified by the URI and Servlet
parameters specified in the request.
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- Modification to underlying Data Sets. When time-lagged weak consistency is
employed, once cached, entries are valid until some timeout occurs. To provide
a strong consistency of cached documents, however, changes must be tracked on
the data used to generate the documents. In our case, we capture modifications
to the data sets by capturing the associated SQL requests.

- Cookies. Some web applications store part of their request parameters in cook-
ies, instead of specifying them explicitly in the http requests (e.g., the user name
and password). In this case, the client includes its cookie [21] in all requests to
the server. A cookie is a small amount of state with no defined structure. Thus,
if each web application defines its own ad-hoc cookie structure, transparency is
difficult to achieve in AutoWebCache.

- Multiple Sources of Dynamism. A dynamic web page can be formed by aggre-
gating data from multiple sources. Currently, AutoWebCache handles dynamism
resulting out of SQL queries to a database. However, as long as the interfaces
for accessing such sources of dynamism are well-defined, AutoWebCache can be
extended easily to provide a high degree of transparency.

The Hidden State Problem. Implied in the design of AutoWebCache is
that the http request contains all the information necessary for the servlet to
create the web page, thus, identical requests (which will map to the same cache
entry) result in the same page being generated. Any other state that affects
the web page content is considered hidden state. For example, some applications
employ randomly generated information for advertisement banners [25]. Another
instance is the use of static variables inside the application. In such setups, each
subsequent identical http request results in generation of different web pages.
Such requests should be marked as uncacheable by the developer.

Use of Application Semantics. For aspect-orientedness to be used, the key
semantic concepts must be conveyed via the syntax of the code and, therefore,
must be rather straightforward. In some cases, however, understanding the na-
ture of application provides avenues for improving performance of the caching
system. For instance, in one of our benchmarks, the TPC-W application, the
expensive Best Seller web interaction uses a 30 second window allowing dirty
reads. In essence, the effects of a change committed to the database by any web
interaction which completed less than 30 seconds before the Best Seller is per-
mitted to be not reflected in the response page for Best Seller. This conforms to
clauses 3.1.4.1 and 6.3.3.1 of the TPC-W v1.8 specification [30]. Such concepts
form a part of the complex application semantics, and as we demonstrate in the
results section, can be quite effective in performance improvement.

5 Evaluation Environment

Test-bed J2EE Web Applications. We tested with the J2EE applications on-
line bookstore TPC-W and auction site RUBiS. TPC-W implements an on-line
bookstore [30] and defines 14 different interactions among which are accessing
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a user home page, listing new products and best sellers, registering a new user,
updating the shopping cart, ordering. We used an implementation of TPC-W
proposed by the University of Wisconsin [18]. RUBIS implements the core func-
tionality of an auction site modeled over eBay [1]. It defines 26 interactions
including registering new users, browsing items by category or region, bidding,
buying or selling items, and leaving comments. Both TPC-W and RUBIS provide
a benchmarking tool that emulates web client behavior and provides statistics
(e.g., client response time). For evaluation, we use the shopping mix for TPCW
(80% read requests), and the bidding mix for RUBIS (85% read requests). We
vary the client load but the size of the database is fixed.

Client Emulator. Both benchmarks use a client-browser emulator to generate
requests. A client session is a sequence of interactions for the same client. For
each client session, the client emulator opens a persistent HT'TP connection to
the Web server and closes it at the end of the session. The average think time
between requests (7 sec) and session time (15 min) conform to clauses 5.3.1.1
and 6.2.1.2 of the TPC-W v1.8 specification [30]. All our experiments warm the
cache for 15 minutes before collecting statistics over the next 30 minutes.

Software & Hardware. We use the Apache v.1.3.22 web server and the Jakarta
Tomcat v3.2.4 servlet engine, with the MySQL v2.04 type 4 JDBC driver, run-
ning on Sun JDK 1.4.2. The database is MySQL v.3.23.43-max with MyISAM
tables. All machines have an Intel Xeon 2.4GHz CPU, 1GB ECC SDRAM, the
2.4.20 Linux kernel, and a 120GB 7200 rpm disk drive. All machines are con-
nected through a switched 1Gbps Ethernet LAN.

Using this setup, we next analyse the AutoWebCache system, and shed light
on some of these important questions:

— What is the effect of AutoWebCache on the performance of an application?
— How does the semantics of an application relate to cache efficiency?

— What is the relative benefit of caching on different read-only requests?

— How much do AOP techniques help in implementing the caching system?

6 Results

In our first experiment, we study the effectiveness of AutoWebCache in reducing
the response time of applications. Figure 13 shows the response time for RUBIS,
comparing the results of the cache-enabled version (AutoWebCache) with the
original application (No cache). Here, RUBIS is running the bidding mix which
has updates. Thus, we need to generate cache invalidations to ensure cache
consistency. For this mix, the cache hit rate is 54% 3. We see that AutoWebCache
provides a clear performance benefit, improving response time by upto 64%.

3 All numbers reported here are for the most optimal AC-extraQuery cache invalidation
strategy of AutoWebCache. See [20] for results comparing different strategies.
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Fig. 14. Response Time for TPC-W - Shopping Mix

Figure 14 shows the results for TPC-W, using the primary reporting mix of
shopping which has updates. Please note the log scale of the y-axis. From the
graph, we again see that AutoWebCache version of the application has signifi-
cantly faster response times than the No cache version. In this case, the response
time is reduced by up to 98%, and the cache hit rate is 43%. The overhead of
processing cache lookups can be measured by forcing a cache miss on every
lookup. The performance difference to NoCache is negligible (not distinguish-
able at the millisecond scale) so it is not shown in the graph.
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Fig. 15. Cache Improvement in TPC-W based on Application Semantics

In our second experiment, we present how knowledge of the application se-
mantics can help in improving the efficiency of AutoWebCache. In TPC-W ap-
plication, the expensive BestSeller request uses a 30 second window allowing
dirty reads, permitting those changes committed to the database less than 30
seconds before this request to be not reflected in the response (c.f., Section 4.3).
Making use of this semantics, the best seller pages were marked cacheable for a
full 30 second window. The performance improvement with this optimization is
shown in Figure 15.
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Fig. 16. Relative Benefits for different Requests in RUBIS

In our next experiment, we analyze the relative benefit of caching on different
individual read-only requests. Figure 16 shows that for RUBis (with 1000 clients),
as expected, requests benefit by varying degree using the AutoWebCache system.
Requests BrowseCategories and BrowseRegions have an almost 100% hit rate,
while requests BuyNow and PutComment have the least cache hit ratios. While
most of the misses in the last two categories were cold misses,* for ViewItem
and ViewBids, most of the misses were due to invalidation of the cached entries.
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Fig. 17. Relative Benefits for different Requests in TPCW

Figure 17 shows the relative benefits experienced by different requests for
TPCW, running with 400 clients. However, there are two differences in this graph
from the one we obtained for RUBIS. Firstly, in the case of TPCW, two requests
(unlike any in RUBIS), SearchRequest and HomeInteraction were explicity
marked uncacheable because they use a random number generator to produce
advertisement banners. Secondly, most of the hits for BestSeller request were
obtained using a 30 second window for invalidation (described earlier). Such
application semantics were not used for any request in RUBIS.

Figures 18 and 19 report the improvement in response times of individual
requests with AutoWebCache, for RUBIS and TPCW with 1000 and 400 clients,
respectively. For each request, the graphs show the average extra time required to
generate the response for that request in case of a cache miss. Hence, for a miss,
the response time for a request is the sum of the two components. In the case of
RUBIS, AboutMe has high penalty for a miss. However, this is compensated by

4 Hits for these requests require the same customer and item as a previous request.
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Fig. 18. Breakdown of different Requests in RUBiS w.r.t. Response Time

a high hit rate for this request. Same arguments can be applied for BestSeller,
ExecuteSearch and NewProducts requests in TPCW. Also, since the requests
SearchRequest and HomeInteraction have low response times, marking them
uncacheable does not impact the performance of AutoWebCache a great deal.
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Fig. 19. Breakdown of different Requests in TPCW w.r.t. Response Time

Web application Caching library AOP based caching
Application #Java | Javacode | #Java | Javacode | # Aspect] files Size of
PP classes size classes size (weaving rules) | Aspect] code
TPC W 46 12K lines . .
RUBIS 25 5 8K lines 13 4 6K lines 1 150 lines

Fig. 20. Web App & Cache Library Code Size vs. Aspect-J Code Size

Figure 20 compares the code size of the individual aspects, the TPC-W and
RUBIS testbed applications and the JWebCaching library. Most of the code
for the AutoWebCache system, including the query analysis engine, lies in the
JWebCaching library. This library implements the cache interfaces and can be
reused for various applications. Size of code written in Aspect] for weaving
caching into the application is much smaller. Thus, it is easy to maintain and
customize for different applications.

7 Discussion

A goal in web cache research has been to develop designs that are completely
transparent to the application yet supports strong consistency. Complete trans-
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parency means that no effort is required from the application programmer to
achieve caching - such a cache would be easy to add. Support for strong consis-
tency means the cache can ensure it is always synchronized with the state of the
persistent backing store - such a cache would have a wide audience. Caching of
static content achieves both goals. Strong consistency is trivial by the fact that
the content does not change. Transparency is easily achieved as the final content
can be captured at a well-known point - while being sent as the response to a
client’s request.

The complexity of maintaining consistency in our case is due to caching de-
rived data. We call data such as web pages derived because they are obtained
using some set of data in the persistent store of the application (e.g., rows in the
database tables). In contrast, non-derived data objects map directly to unique
items in the persistent store. Thus, checking for inclusion in the cache is a simple
matter of checking for the existence of a unique global identifier (e.g., a simple
id). When caching derived data, however, the mapping relationship is obscured.
Complexities arise as more than one document can depend on the same field in
the database. Also, dynamic web pages can aggregate data from multiple data-
bases. Therefore, detecting if a change to a database affects a web page involves
testing for inclusion of the changes in each page’s input set.

Aspect-oriented programming is an efficient tool to capture the information
flow in an application and can be used to inject the caching calls at appropriate
points. Working with AOP gives several benefits:

Modularity. Separation of concerns is inherent to AOP-based systems. The
implementation of each individual aspect (e.g., the J2EE web application and
the logic for caching dynamic content) may evolve separately without inducing
a change in the implementation of the others.

Generality. The AutoWebCache prototype uses AOP to add caching of dy-
namic web pages to a Servlet-based web application that interfaces a database
with JDBC. This methodology is general enough to encompass other sources of
dynamic data. Specifically, individual aspects can be developed separately for
each source and then woven together.

Transparency. Any modification/extension to the application interfaces is cap-
tured by making appropriate changes in the pointcut specifications, and not the
way individual aspects have been developed or woven. This provides a clean way
to make caching look oblivious to the developer.

Our AOP-based framework combines simplicity with flexibility to achieve a
good level of transparency. Let us compare our technique with a compiler-based
approach as in [8]. The compiler does a similar query analysis at compile time
and embeds the results for simple look-up at run-time. The proposed AutoWe-
bCache system also achieves almost zero run-time analysis overhead via result
caching [3], but is much easier to develop than compiler techniques, making use of
AOP tools. Another subtle advantage of our approach is that it is robust even if
the SQL queries are dynamically formed, as it captures the run-time value of the
string at the point of SQL call. For a compiler, query strings must be statically
available. This assumption might not hold for real-life, complex applications.
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We believe that achieving the simultaneous goals of complete transparency
and strong consistency in web caching is not possible for the general case. The
key problem is in automatically verifying that no essential data in an applica-
tion needed for caching flows through unexpected interfaces and, thus, elude
the consistency logic. Cookies, randomly generated data and application seman-
tics are some examples of this phenomena from our benchmarks. If an applica-
tion presents a fairly orthogonal caching aspect, AutoWebCache would require
only minimal developer intervention. If not, a special weaving rule would be
constructed for each non-orthogonal concept. In the worst case, AOP would
extend only modularity as a benefit, same as that offered by object-oriented
techniques.

8 Related Work

Caching of dynamic content with weak consistency can achieve transparency
because, as for static content, no information is needed to synchronize the cached
documents with the backing store. Typically, pages can be set to timeout so that
the cache content is periodically refreshed. CachePortal [4] has a unique form
of weak, time-lagged consistency. It relies on timestamps and HTTP logs to
conservatively determine which pages to invalidate. Inconsistencies can exist for
a time between the cache and the backing store.

While caching the contents of the persistent store (non-derived data) directly,
a high degree of transparency with strong consistency can be achieved. Exam-
ples include caching direct copies of raw DBMS tables [29] or caching copies of
persistent Java objects [13]. A framework where business rule SQL query re-
sult sets are cached is presented in [8,12]. As with our work, strong consistency
is maintained through complex analysis of the SQL queries. A high degree of
transparency is achieved through the compiler-based solution to insert the cache
API calls tuned to the Websphere environment. In contrast, our work uses much
simpler AOP tools.

Examples of caching derived data with strong consistency suffer from a low
level of transparency that requires considerable developer input about request
structure or dependencies. DynamicWeb [10] provides a strongly consistent web
page cache, but not transparently as developers must define the dependencies
between events, e.g., read and write queries. Similarly, form-based proxy caching
[19] of web pages requires developers to pre-define configurations of web page
formats. Weave [33] requires the programmer to use a specialized language to
describe dynamic web pages and event handlers to specify invalidations. Various
commercial solutions such as SpiderCache [26], Xcache [32], and Oracle9iAS [22]
provide an event API to the developers to add consistency management.

The current prototype of AutoWebCache is implemented as a generic solution
for a J2EE web application that uses Servlets embedding SQL queries based on
JDBC [27] since this pattern is widely used in many J2EE applications [5]. It can
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be easily extended to include other sources of dynamism, as well as other ways of
forming dynamic content, such as PHP [31]. Furthermore, the proposed caching
solution is completely transparent when all database updates go through the
server-side application. However, if some updates are directly performed on the
database, transparency is difficult to achieve. A possible solution is to extend the
caching system with an API similar to the ones provided by the DynamicWeb
and Weave systems to allow an external entity to invalidate cache entries [10,33].
This external entity could, for instance, work through database triggers.

AOP techniques were experimented for profiling [7], persistence [23], distrib-
ution [14], web cache pre-fetching [24], caching static content [17], caching (non-
derived) Java objects [13], and also for transactions [16] where the authors con-
clude that, as for consistent caching of dynamic web content, transactions can
not be aspectized in general.

9 Conclusions

In this paper, we presented AutoWebCache, a middleware system for adding
caching of dynamic content transparently to J2EE server-side applications hav-
ing a backend database. Caching fully-formed webpages reduces the work at both
the increasingly costly business logic tier as well as the back-end database tier.
We first outlined the principles involved in caching dynamic web content, in-
cluding the logic to ensure consistency of the cached documents. Thereafter, we
demonstrated the use of aspect-oriented techniques to implement our system. We
showed how aspect-oriented techniques improve modularity and transparency of
the entire solution.

Using two standard J2EE web benchmarks, RUBiS and TPC-W, we evaluated
AutoWebCache along various dimensions. First, we studied the effectiveness of
AutoWebCache in reducing the response time of applications. Second, we ana-
lyzed the transparency of our system for a general application suite. We argued
that for the general case, issues may arise when caching at the front-end as dy-
namic web pages can aggregate data from multiple sources and also some sources
might not have sufficiently structured interfaces for exchanging the information
necessary for tracking coherency. Furthermore, we showed that knowledge about
application semantics can improve the efficiency of caching.

Our work presents itself several avenues for extension. A database query-
results cache is complementary to webpage caching. Complex SQL queries that
cannot be efficiently parsed for coherency dependency information (e.g., range
queries) can be declared uncacheable at the front-end webpage cache but have
its result sets cached at the back-end, thus, reducing the database costs if not
the business logic costs for those requests. We also want to extend the AutoWe-
bCache system to incorporate sources of dynamism other than SQL queries, and
study their transparency w.r.t. AOP. Finally, we want to analyze the effect of
varying cache size on the hit rates of requests and investigate different cache
replacement strategies in this context.
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Abstract. Networked computer services are increasingly hosted on shared con-
solidated physical resources (servers, storage, network) in data centers. Thus,
some form of resource control is required to ensure contractual performance tar-
gets for service customers under dynamic workload and system conditions. This
paper proposes a solution for resource control that maximizes the yield of the
performance contracts given the available physical resources, while it does not
require any modifications to the clients’ and the computing services’ software or
hardware. Our approach achieves this by manipulating the flow of requests into
the service by using one or more proxies between the clients and the service.

This paper evaluates Proteus, a prototype implementation of the proposed ap-
proach, on two different services: a 3-tier e-commerce system and a networked
file service. We show that existing proxies for the two respective protocols (HTTP
and NFS RPC) can easily be modified to use Proteus to schedule their requests.
Once the modified proxies have been deployed, our approach is transparent to
clients and services. Moreover, we show that, in contrast to prior art, our solution
(1) is stable when workloads and systems change, (2) automatically tunes itself
to different services, (3) can enforce flexible quality of service specifications, and
(4) correctly detects and reacts to contention of internal service resources.

1 Introduction

Increasingly, computing services are hosted using clustered architectures, rather than
single servers, where a number of distributed physical resources (servers, storage, net-
work) together offer a service. Moreover, service providers and enterprises use shared
pools of resources to host multiple customers of a service and/or more than one service.
Multiplexing services onto a shared infrastructure allows for on-demand assignment of
resources and, thus, improves resource efficiency and cuts management costs.

This paper is concerned with how to manage the performance of a shared computing
infrastructure. Negotiated Service Level Agreements (SLAs) define contractual perfor-
mance objectives, such as throughput and response time bounds, and corresponding
monetary returns for those performance objectives. The yield derives from the rev-
enue for serving the service workloads, less any penalties for failing to meet contract
terms. This paper focuses on the problem of performance management, i.e., how to
share resources between customers/workloads given the choices already made for ad-
mission control and provisioning. These policies usually overbook resources to improve
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resource utilization and efficiency, assuming a statistical multiplexing of the service de-
mands of different customers. When the total demand exceeds the capacity of the pro-
visioned resources, then a performance management mechanism is needed to share the
available capacity, in a way that first isolates workloads from each other and second
maximizes the yield obtained from the service given the SLAS in place.

A lot of existing research and commercial systems that provide performance man-
agement depend on modifications in the operating system [1,2], middleware [3], or
application code [4]. Clearly, such intrusive approaches are not generally applicable.
Thus, a number of non-intrusive approaches have been proposed to intercept and control
the workloads as they enter the service infrastructure [5,6,7,8,9]. All these approaches
suffer from drawbacks that affect their general applicability.

First, all non-intrusive approaches depend on some form of feedback about the per-
formance delivered to each performance class. The feedback loops of existing solutions
are implemented in some ad hoc way, usually employing heuristic algorithms. As a re-
sult, there is no guarantee that the system is stable and that it converges to the desirable
performance goals when workloads and systems outside the experimental evaluation
are used. Second, prior art requires tuning according to the specific service, infrastruc-
ture configuration and workload characteristics, something that is ever changing. Third,
they may unfairly penalize the performance of workloads given that they do not know
who contends for what resources in the infrastructure. For example, if we have ten
workloads and one of them has poor performance because it contends for resources
with only one other class, then the only way to improve its performance is to reduce the
throughput of the contending class. Reducing the others, as usually happens with prior
approaches [5,6,7,8,9], will only decrease the total system throughput.

Finally, none of them allows for enforcing flexible performance goals that take into
account the state of the workloads and resource usage. Prior approaches [5,7,8] assume
simple static SLAs in the form of a single latency goal that will be guaranteed up to
a throughput limit. If demand exceeds the throughput limit or the service cannot pro-
vide the latency goal due to workload or system variations, then either no performance
guarantees are made [9], the client application is required to throttle back requests [8],
or requests are dropped from mainly the performance class with the strictest latency
goal [5]. Clearly, such approaches are not acceptable by all applications and services.
E.g., dropping requests destined for a disk array is not an option and penalizing the class
with the strictest latency goal is unacceptable if that one workload is more important
than the others. A more flexible way of specifying performance goals is required.

To address these needs, we propose a new non-intrusive approach for performance
management of computing services. Our approach uses standard proxies to intercept
service requests before entering the system. These proxies have been modified to use
our Proteus library to schedule their requests. Once the modified proxies have been de-
ployed, our approach is transparent to clients and services. Internally, Proteus uses a
control-theoretic adaptive controller to schedule the requests so that the performance
of the service is automatically adjusted according to the specified SLAs. The con-
troller automatically adapts to system and workload characteristics. Thus, it requires
no tuning between different services or as the system and workloads change. We prove
that the proposed closed-loop design is stable for throughput goals. Last, the controller
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automatically detects workloads that contend for internal service resources without any
prior knowledge about those resources. Thus, control actions do not penalize workloads
that do not use bottleneck resources. We report on an prototype of our approach and on
experimental results with two diverse computing services: a 3-tier e-commerce system
and an NFS service. In both cases, we show that Proteus can achieve all the previously
mentioned goals and that the proxies can easily be modified to use Proteus.

2 Overview

This section introduces the basic system model in Section 2.1 and a flexible and generic
way of describing performance goals and performance differentiation policies in Sec-
tion 2.2. In Section 2.3, we show that the performance of a real service varies quickly
and often. Thus a static solution or a human in the loop is not an option. Instead, we
need an automatic controller that we develop in Section 3.

2.1 System Model

We assume that the system consists of a stream of requests dispatched from a set of
clients. The requests are processed by a service and returned to the clients in some
arbitrary order. Each request can be associated with a performance class. A class can
be made up of e.g., a specific set of clients or any client using a set of services. A
service usually uses a multitude of compute, storage and networking resources. The
actual number, layout and performance characteristics of these resources are assumed
to be unknown.

In order to be able to isolate and differentiate performance classes, one or more prox-
ies are interposed on the network path between the service and its clients as in Figure 1.
The proxies are modified to use our software library to schedule their requests through
the API discussed in Section 4. The library consists of two parts: a controller and a
scheduler. The scheduler intercepts requests and re-orders or delays them to achieve the
partition of throughput capacity corresponding to a configurable share setting. For ex-
ample, with two classes, setting the share to 2:1 means that one class will get 2/3 of the
throughput, while the other one gets 1/3. The second scheduler parameter is the con-
currency level that decides the maximum number of requests inside the system at any
given point in time from all the classes. The premise is that the performance (latency
and/or throughput) of a class varies with the amount of resources available to execute it.
Thus, the scheduler enforces approximate proportional sharing of the service’s capacity
to serve requests aiming at meeting the performance goals of the different classes. The
controller (described in Section 3) will then set these parameters so that the performance
goals are met.

The scheduler in our system implements Controllable Start-Time Weighted Fair
Queuing (C-SFQ(D)) [10], a scheduling algorithm common in computer systems, for
four reasons. First, it is computationally efficient; second, being work conserving it re-
sults in high resource utilization; third, it is responsive to parameter changes; and fourth,
it works in systems with high degree of concurrency.
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Fig. 1. Our software layer is integrated into a proxy and consists of two parts: a scheduler and a
controller. The scheduler controls how a resource is shared by a number of performance classes,
while the controller sets the scheduling parameters based on performance feedback.

2.2 Specifying Performance Goals

In contrast to prior approaches, we provide a way to generically specify any perfor-
mance goal and performance differentiation policy. A performance differentiation pol-
icy is used to modify the performance goals when there is not enough capacity in the
system to satisfy all the classes’ performance goals. The reason for this is that we do
not believe that a single policy or goal formulation is good for all possible services,
workloads and systems. For a web service with gold, silver and bronze class customers,
it might be enough to have a simple priority differentiation policy to prioritize gold
over silver over bronze when the system is overloaded. On the other hand, for a shared
remote file system in a company, we might want to provide low latency for business
critical workloads, but at the same time ensure some slice of the throughput to guar-
antee forward progress of the backup application. Other situations require completely
different performance goals and differentiation policies.

Utility functions [11] provide a way to flexibly specify performance goals and differ-
entiation policies. These are monotonically increasing (for throughput and bandwidth)
or decreasing (for latency) functions of one or more performance measurement. The
measurements can either be averages or percentiles and there is one utility function per
class. The goal of the system is to maximize the total utility obtained, given the utility
functions of the classes. In the example of Figure 2, a user of performance class 1 does
not want the request latencies to be above 300 ms. In that case the provider should pay
40 monetary units as a penalty. The user is willing to pay for performance above 300
ms, but at the most 100 monetary units for 100 ms. Simpler goals such as “provide at the
most 100 ms latency and nothing else” of prior work [5,8,9] can be achieved by a utility
function that gives x monetary units for 100 ms or less and —x for anything above 100
ms. It is also possible to describe the utility as a function of more than one goal, e.g.,
utility as a function of both latency and throughput is useful. With these, throughput
and latency can be traded off against each other according to user specifications, or we
can specify strict goals for both of them.

The performance differentiation policy is captured by the difference between the
utility functions of the classes. If one class consistently pays more than another, as is
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Fig.2. A utility function example to the left. The right graph shows that a fixed share of the
service capacity result in widely varying throughput and latency in our experimental service.

the case in Figure 2 where class 1 always pays more than class 2, we have a priority
policy preferring the high-paying class. If the utility functions alternately pay more than
each other for each performance level, we have a fair sharing policy, as maximum utility
is achieved by alternately giving each class a little bit more of performance. A plethora
of other differentiation policies are possible. This way, the users of our system are not
locked into a specific differentiation policy or performance goal specification as in prior
art [5,8,9].

Throughout the paper we will mostly talk about high level performance goals such
as “provide 100 ms request latency” or “give me between 100 and 400 req/s”” combined
with high level performance differentiation policies such as “priority”, “fair share” and
“best effort”. The reason for this is that these are easier both to understand and to val-
idate than arbitrary chosen utility functions. Note, that these performance goals and
differentiation policies are all specified with utility functions and, as we will see in Sec-
tion 3, utility functions are the only performance specification that is used internally by
our library to achieve our goal of flexibility.

2.3 Need to Vary Shares and Concurrency

A key problem is that, in the general case, certain share and concurrency level assign-
ments do not result in steady and predictable performance, because of the dynamic
nature of workloads and systems. The right graph in Figure 2 depicts the example of a
typical workload of a remote file service. Even in this static example where the system
does not change (there is a fixed number of clients running the same workload on a
fixed set of resources), a fixed share and concurrency level (80% and 16 in this exam-
ple) for one class results in widely oscillating throughput and latency. If for example, we
would like to provide exactly 2,000 req/s to a class, that would mean 100% of the share
around 30 s. and around 50% of the share at the beginning of the execution. Clearly,
the shares need to change dynamically. A solution that does not dynamically vary the
shares [5,8,9] can fundamentally not provide a flexible performance differentiation pol-
icy, as the sharing of the system is fixed.
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The concurrency level also needs to vary dynamically. When the concurrency level
is high, the system is used efficiently as it provides the highest total throughput. But the
more requests inside the service, the higher the request latencies will be, given a fixed
amount of resources. There is thus a trade-off between these goals. The concurrency
level that achieves the best trade-off varies with for example, what other requests are
inside the system, what resources are used and resource lay-out. As this changes, the
concurrency level also needs to vary dynamically.

3 Adaptive Resource Control

In this section, we will design a controller for automatically and dynamically setting
the shares and the level of concurrency of the scheduler. We will use adaptive control
theory [12] described in Section 3.1, as it provides a well understood methodology for
designing closed-loop systems that are stable, efficient and meet their goals. On a high
level, an adaptive controller has two sets of inputs, a set of performance measurements
from the system and a set of desired performance references. The goal of the controller
is to get the performance measurements to equal the desired references by adjusting
one or more system parameters. In order to achieve this, one of the most important
tasks for it is to internally estimate a model of how the system parameters affect the
measurements.

Figure 3 shows an overview of the control architecture we propose to provide adap-
tive resource control. It consists of one controller for setting the shares and one for
setting the level of concurrency. The share controller in Section 3.2 sets the shares of
the performance classes so that their performance goals are met. The concurrency con-
troller in Section 3.3 adjusts the level of concurrency as to achieve the best trade-off
between high capacity and meeting the strictest latency goal. An optimizer, described
in Section 3.4, computes the performance targets for the classes, using the utility func-
tions of the classes and the performance model produced in the share controller. These
performance targets are then fed as references to both controllers, that they can ad-
just the shares and concurrency so that the classes achieve their performance targets.
The targets are continuously modified so that they are always possible to achieve. The
extension to distributed proxies is described in Section 3.5.
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Fig. 3. Overview of our solution to the left and a self-tuning regulator to the right
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3.1 Adaptive Optimal Control Theory

In order to explain the controllers, we need to introduce some notation. Assume that
there are N measurements of interest made in a system, and let y (k) be a column vector
of the N measurements sampled at time k. These measurements are statistical metrics
(e.g., average or percentile) computed over the sample period (k — 1, k]. The elapsed
wall clock time between k — 1 and k is called the sample interval and is assumed to
be constant over time. Let column vector y,.¢(k) denote the desired values for the N
measurements at time k, and let u(k) capture M actuator settings at time k. An actuator
is a system parameter that can be dynamically set. For example, it can be the resource
share of each performance class. Informally, the problem is to have the N measurements
converge to the specified desired values by dynamically setting the M actuators in the
system. This can be formalized as the following optimization problem:

minimize J(u(k)) = [|[W(y(k + 1) = yres (k + 1)[1* + [|Q(u(k) — u(k — 1))[|*(1)

W e RN and Q € RV*M are positive-semidefinite weighting matrices. W cap-
tures the importance of meeting the reference values for different measurements, and )
reflects the penalties for large actuation changes. This objective function J is expressed
as a function of u(k), as the latter is the only input that can affect the state of the system.
Note that J(u(k)) > 0 in all cases. It becomes zero when all the measurement refer-
ences are met and there is no change to the actuators between consecutive intervals, i.e.
the desired state.

The advantage of the problem formulation in (1) is that there are well-understood
controllers that can be applied to solve it. More specifically, optimal control [13] is a
field of control theory, in which control goals are formulated as optimization problems.
Controllers designed following this approach are constructed so that they aim for the
optimal solution to (1), while guaranteeing that the system is stable and converges fast.

There are a number of requirements that such a controller should meet. It has to be
computationally efficient—as it needs to perform on-line control of the system. The
controller should require little or no knowledge of the target system and should need
little or no manual tuning before being applied. It should also quickly adapt to changes
to the system and its workloads and the closed-loop should always be stable.

We propose using a certain type of adaptive controllers called Self-Tuning Regulators
(STR) [12], that can enforce on-line optimization of optimal control problems while
they satisfy the above practical requirements. The structure of an STR is shown in the
right diagram of Figure 3. It consists of an estimator module that on-line estimates a
model that describes how actuator setting affect the measurements. That model is then
used by a control law that decides how to set the actuators so that (1) is minimized
while guaranteeing stability.

3.2 Shares Controller

Meeting performance goals and providing flexible performance differentiation by ma-
nipulating the share of resources each class gets, can be formulated as an optimization
problem using (1). In this case, the vector y(k) refers to the performance measurements
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of each of the N performance classes, sampled at time k. These measurements can
refer to either request latencies, throughput, or both. Vector ... f(k) represents the de-
sired performance. When these targets cannot be met, y,. (k) will be adjusted by the
optimizer in Section 3.4 according to the performance differentiation policy. u(k) cap-
tures the individual share settings of each of the N performance classes. Minimizing
J(u(k)) in this case means that the system converges to the performance targets for the
N classes, while minimizing the necessary changes in share settings.
For model estimation in the STR we use a linear model of the following form:

n n—1
y(k) =Y Ak —i)+ Y Biu(k —i—do) )
i=1 =0

Here A; and B; are the model parameters. Note that A; € RV, B; € RNXM
0 <t<mn,0<j < n,where n is the model order that captures how much history
the model takes into account. Parameter dj is the delay between an actuation and the
time the first effects of that actuation are observed. The diagonals of A; and B; state
what performance a class receives from a given share setting, while the anti-diagonals
describe the effect changing the shares of the other classes have on a given class. Thus,
the first advantage of the model is that it models how the classes are contending for
resources. To correctly capture and react to this was one of our goals of the architecture.
A second advantage is that it is simple and generic, a prerequisite for wide system
applicability. A third advantage of this model is that it captures the dynamics of the
system. This is important as higher share many times results in worse performance for
a short period before the performance gets better. The underlying reason for this is e.g.,
warming up of caches. If the model in the controller did not take this into account, it
might increase the share even further as a response to the worse performance observed
shortly after the change, leading to oscillations and in the worst case to instability. The
final advantage with this model is that it does not assume that all requests in all classes
consume the same amount of resources. One class can have a higher entry in B; than
the others reflecting requests that take longer to serve. Prior work [5,9] does not take
any of these four effects into account.

We know that the relation between actuation and performance is not always linear.
For example, latency is inversely related to the share. However, even in the case of non-
linear metrics, a linear model is a good enough local approximation for the controller,
as it usually only makes small changes to actuator settings. But the estimation can be
improved by inputting the inverse of the latency, which we do for the rest of the paper.
The advantage of using linear models is that they can be estimated in computationally
efficient ways, that result in tractable control laws and there are stability proofs for
them.

The unknown model parameters A; and B; are estimated using Recursive Least-
Squares (RLS) estimation [12]. This is a standard, computationally fast estimation
technique that fits (2) to a number of measurements, so that the sum of squared er-
rors between the measurements and the model is minimized. RLS is able to estimate
even the performance correlation between the classes (the anti-diagonals of A; and B;).

The control law is a function that, based on the estimated system model (2), decides
what the actuator settings should be so that objective function (1) is minimized. One
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of the reasons we specifically chose (1) and (2) is that u(k) can be computed using a
computationally efficient closed-form expression. The full derivation can be found in
Karlsson et al. [14].

From a systems perspective, the important point is that the control law provides a
computationally efficient way to calculate u(k) which can be performed on-line. This
STR requires little system-specific tuning as it uses a dynamically estimated model of
the system, the control law automatically adapts to system and workload dynamics.

It has been shown [12] that this STR is stable iff the following is true of the system:
(i) the initial delay (do) is known and bounded; (ii) the system is minimum phase';
(iii) the signs of the triangular elements of By are known; (iv) the upper bound on
the order (n) of the system is known; and (v) the measurements are linearly related to
the actuators. If true, our control-loop is stable and the performance converges to the
performance goals in steady state. Independently of the system we run on, we know
that the diagonal of By is positive for throughput and negative for latency, and that
throughputis linearly related to the share, while latency is nonlinearly related. The other
parameters are system dependent and hold for our experimental systems. This means
that the controller is provably stable for throughput goals and for latency goals when the
changes to the system and workloads are small (as linearity is a good approximation).
It is a topic of future work to analyze the stability of the loop for latency goals under
arbitrary workload and system changes.

3.3 Concurrency Controller

For the concurrency level controller we are going to use the same control law and es-
timator as for the share controller, though with different measurements and actuators
in y(k) and u(k), respectively. u(k) will now contain the concurrency level as that is
what we desire to set. The trade-off in setting this is between high total throughput
of the system and being able to meet the tightest latency goal. Generally, the higher
the concurrency, the higher the total throughput (until we get into overload). The end-
to-end latency consists of the sum of two parts: the waiting time inside the scheduler
(w(k)) and the service time? (o(k)) inside the service itself. As the service times also
monotonically increase with an increase in concurrency level, we can achieve the best
total throughput while still being able to satisfy the tightest latency goal by having the
system operate around a service time that will provide that end-to-end latency goal.
Thus, y,cs(k) of the concurrency controller should contain the service time it should
aim for, that is the tightest latency goal minus the wait time w(k) for that class. The
corresponding measured service time is put in y(k). This computation of y,.s(k) is
performed by the performance target optimizer and fed to this controller. The control
law is then used to compute the concurrency level in u(k). Note, that we do not need
to care about the other classes’ latency goals here, as they will be met by adjusting the
shares with the share controller.

The stability conditions are the same as for the share controller. Note that these two
stability proofs are only valid when the two controllers are applied to the scheduler

! This basically means that new actuator settings have precedence over old actuator settings.
% Queuing time plus processing time inside the service.
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Fig. 4. Pseudo-code of the performance target optimizer used to compute Yy ¢, (k)

individually. It is a topic of future work to analyze the stability of the two loops together.
Currently, we make sure that the concurrency controller’s effect on the share controller’s
measurements are small by increasing @ in (1) for the concurrency controller, making
it less aggressive than the share controller.

3.4 Performance Target Optimizer

As noted in the beginning of Section 3, the utility functions we use to describe per-
formance goals and differentiation policies need to be translated into a setting of the
references (y,. s (k)) for the controllers at each time interval. The problem is to find the
share settings or resource partitioning that maximize the utility of the system given the
current service capacity. Fortunately, we can derive a function relating shares to utility,
as utility (U) is a given function of performance and RLS estimates a model correlating
performance with shares inside the share controller. For notational convenience, we will
here denote that model from (2) as Xp(s) where s is a vector of shares for the NV classes
and p indicates what proxy this is from. We have so far only presented the solution for
one proxy, so this p can be ignored for now. But in the next section, we will present a
distributed solution that will use multiple proxies.

Throughput is linearly dependent on the shares, so this optimization problem can
be easily solved using linear algebra. But for latency, the model Xp(s) has a nonlinear
dependency on the shares (in contrast to the latency inverse that was entered). Thus
we cannot solve this optimization problem using standard linear algebra. Instead, we
use a greedy optimization heuristic depicted in Figure 4 that works as follows. Each
performance class is initially given 0 in share (s) in line 1 and the current utility (U*"")
provided by class 7 is initialized to minus infinity in line 2. We then find the smallest
increase in share that will provide an increase in utility for each class in line 5. (The
granularity of share increases is set to the share that one request consumed on average
during the last interval, i.e. 1/Tiot »(k).) The reason we do this is to deal with utility
functions that have sections that are flat (as in Figure 2 for latencies above 300 ms). If
there is no such share increase or this increase would be larger than giving that class
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the rest of the system capacity, the share increase is set to its minimal value in line 7.
In line 9, we then find the class that provides the largest increase in utility per share
by giving it a share corresponding to the share increase computed in line 5. This class
is then given this amount of extra share in line 10, and the process is repeated until
the sum of all shares given equals 1. Finally in line 13, we enter the computed shares
into the estimated model to compute the latency values to put into y, s (k) for the share
controller. The concurrency controller is fed the strictest latency goal found in Y, (k)
minus the queue wait time for that class. Note, that changing the reference values does
not affect the stability of the controllers, only the time it takes for them to reach the
desired goals.

3.5 Distributed Proxies

A solution with multiple distributed proxies can be employed in front of the service
when there are multiple entry points or when the request rate is so high that one proxy
cannot handle it. In this case, the controllers and the scheduler are run on each proxy us-
ing local information. However, the optimizer is only executed on one node using mea-
surements gathered from all the distributed proxies, thus it becomes a global optimizer
for all the proxies. The same algorithm as in Figure 4 is used, but now there are multiple
proxies so the algorithm will iterate over all proxies. That way, we now loop through
line 3 to 12 until we have used up all shares on all proxies. Once the algorithm termi-
nates, the individual references for each proxy are distributed to the local controllers
on each proxy. The amount of floating point numbers transmitted over the network per
sample period is (4N + 2N?)(P — 1), where N is the number of performance classes
and P is the number of proxies. The quadratic term stems from transferring the model
and the linear term from the measurements and results. The physical location of this
global optimizer is statically defined at start up.

4 Implementation and API of Proteus

Our implementation of the controllers, optimizer and scheduler is called Proteus. We
have implemented it as a library weighting in at slightly over 10,000 lines of C++. Pro-
teus exports the API tabulated in Table 1. It consists of two parts. The first part is used
to initialize the library and register and unregister performance classes and their goals.
The second part of the interface is related to the handling of application requests. When-
ever a request arrives at the proxy, the request is queued in the proxy and is registered
with prRequest (), which returns a unique handle for the request. Similarly, when a
reply to a request goes through the proxy, the reply is also registered with prReply ()
using the handle of the corresponding request. Proteus specifies the next request to be
submitted to the backend service in either of two ways, depending on whether the proxy
is implemented as an event-driven or a multi-threaded program. Event-driven proxies
register a call-back function using prInit (). Whenever one of the Proteus functions
are called, Proteus may invoke the call-back with the handle of the next request to be
sent out. Threaded proxies, instead, may use a thread to call prDequeueRequest ()
to obtain the handle of the next request to be sent to the service or return an error if
there is no request for delivery.
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Table 1. The API of Proteus

Function name Description

void prlnit(cbl, cb2) Initializes Proteus and registers application callbacks for
sending the next request (for event-driven proxies) and
dropping requests.

ClassID prClassInit(PerfGoal) Registers a class and its performance goals. Returns a
unique ID for this class.

void Changes the performance goal of the class identified
prPerfGoal(ClassID, PerfGoal) by ClassID.
void prExecCtrl() To be called repeatedly by the proxy. Once every sample

interval, a call to this function will execute the controllers.

QoSReqID Register an incoming client request to belong to class
prRequest(AppReqlD, ClassID) ClassID. AppReqlID is the proxy’s request ID. Returns a
unique identifier for this request.

void Registers a reply with Proteus. The reply is uniquely
prReply(QoSReqID, AppReqID) identified by the <QoSReqID,AppReqID> tuple.
<QoSReqlID,AppReqlD> Synchronous call to dequeue the next request for
prDequeueRequest() submission to the system. QoSReqID is -1 if there is no
request to send. Used by threaded proxies.
void prRemoveRequest Explicitly remove a pending request from Proteus.

(QoSReqID, AppReqlID)

The running time of Proteus is around 150 us on our machines, a low overhead to
incur at every sample interval. The sample interval is 1 s which we found to work well
empirically. The overhead of Proteus incurred when registering requests and replies is
negligible.

5 Evaluation

In this section, we present our prototype implementation Proteus and experimental re-
sults showing that it can achieve the goals stated in the introduction.

5.1 Experimental Methodology

Our evaluation demonstrates the effectiveness of Proteus using two different network
services: a 3-tier e-commerce system and an NFS service. The 3-tier system consists
of a web server, two application servers and one database server. They are hosted on
separate server blades, each with two 1 GHz Pentium III processors, 2 GB of RAM,
one 46 GB 15 krpm SCSI Ultral60 disk, and two 100 Mbps Ethernet cards. The web
server is Apache version 2.0.48 with a BEA WebLogic plug-in. The application server
is BEA WebLogic 7.0 SP4 over Java SDK version 1.3.1 from Sun. The database client
and server are Oracle 9iR2. All three tiers run on Windows 2000 Server SP4. The site
hosted on the 3-tier system is the Java PetStore>.

3 http://java.sun.com/developer/releases/petstore/
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The workload applied to this system mimics real-world client behavior on shopping
sites. These clients log in, browse and search for products, put products in their carts,
and sometimes checkout the cart which gives rise to credit card verifications, adjustment
of inventory, etc. The response latencies vary between 10 ms and 700 ms for the various
operations. The workload also captures the corresponding time scales and probabilities
these occur with and is generated using ht tperf on a separate machine. Proteus has
been integrated into tinyproxy v1.6.3 that intercepts the traffic between the client
machine and the 3-tier system. Only 15 lines of code had to be added to tinyproxy to
use Proteus. For the experiments in the rest of this section, we generate 80 concurrent
client sessions and we consider 2 performance classes of 40 clients each, unless noted.

We generate three workload patterns in order to stress the system. Smooth keeps
the number of clients and their shopping behavior steady with a minimum of changes.
In Ramp, more clients are gradually added as in TPC-W. After 80 is reached, they grad-
ually start to check out more things which gives rise to even higher load on the system,
especially on the database tier. The third pattern, Step, makes the same changes as
ramp but all at once. This change is repeated in a square wave pattern with a change
occurring every 30 s. Note that it is not possible to perform this change instantaneously,
as clients must add products to their carts before they can check them out. Thus, the
step takes 3-4 s in practice.

Second, we use an NFS file service consisting of five blades with the same hardware
specification as the ones above. All blades run Linux 2.4.20. Two blades are used as
clients, two as servers and one as an NFS proxy. Both clients and servers use NFS v.3
with asynchronous writes. In order to stress the system, the clients make random reads
and writes to individual files on the NFS servers. The full data set is large enough that
it does not fit in the in-memory cache of the file server. The traffic between clients and
servers is intercepted by a user-space NFS v.3 proxy. Only 20 lines of code were added
to integrate Proteus into this proxy. There are 16 concurrent client threads generating
requests on each client node. Each node belong forms a different performance class.

5.2 Comparison Against Prior Art

First we will compare Proteus to prior art. We will only compare against non-intrusive
techniques as another non-intrusive technique [5] already showed it was comparable to
the best intrusive ones. Of the non-intrusive techniques, we did not consider techniques
that cannot provide performance isolation [7,9], nor do we think it is fair to compare
a technique [6,8] not designed for 3-tier systems or NFS servers. This leaves us with
Quorum [5] designed for Internet services. We implemented Quorum according to the
algorithmic pseudo code reported in their paper. Their scheduler and dropping module
was used instead of C-SFQ(D) and their controller replaced ours.

In order to make the comparison fair, we will only consider the case which Quorum
was designed for; a 3-tier system when there is a combined latency and throughput goal
per class and achievable goals. Quorum adjusts the concurrency dynamically based on
the latency goal, while the shares (called weights in Quorum) are static and set off-
line according to the ratio between the throughput goals. Class one (C1) has a latency
goal of 200 ms and a throughput goal of 60 req/s. Class two (C2) has a latency goal
of 5,000 ms (effectively best effort so that we can ignore it for the comparison) and a
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Fig. 5. A comparison against Quorum on the 3-tier system. C1 has a 200 ms latency goal and C2
has a best-effort goal and is not shown in the graphs. Quorum shows unstable behavior when the
workload is changing between 10 s and 60 s. As can be seen in the right graph, the stability of
Quorum is also dependent on the throughput goals used to statically set the shares.

throughput goal of 30 req/s. The static share ratio is then set to 60 : 30 = 2/1 in the
Quorum scheduler. The workload used is ramp as we want to evaluate how Quorum
deals with change.

The left graph in Figure 5 shows the provided latency over time for Quorum and for
Proteus. A latency of zero means that there were no requests at all during that interval.
From this figure we can see that Quorum oscillates widely and misses the latency target
during the period the ramp workload changes between 10 s and 50 s. Quorum exhibits
instabilities around 20, 30 and 50 s when the dropping module of Quorum drops all
requests from C1. Proteus with the same latency and throughput goals, on the other
hand, has no problem with the changing workload and varies smoothly slightly under
the latency target most of the time. After 60 s, when the workload and system is not
changing, Quorum and Proteus are comparable.

If we then change the throughput goals to 60:60 (a 1:1 share ratio) or 60:20 (a 3:1
share ratio) we expect Quorum to provide similar latency measurements as for the 60:30
case, as the throughput goals are still easily going to be met (the total capacity is around
150 req/s) and therefore have no impact on the system. But this is not the case as seen
in the right graph of Figure 5. Quorum oscillates widely when the share ratio is 3:1 and
shows complete starvation for 1:1 during the ramp up, then undershoots the goal by
a wide margin once the workload stabilizes. One of the reasons for this is that shares
have an impact on not only the throughput but also the request latencies as seen in Fig-
ure 2. Proteus, on the other hand, automatically adjusts the shares to produce the desired
performance goals. Proteus behaves the same in all these three cases as the references
produced by the optimizer are the same in all three cases, because the throughput goals
are always met. Clearly, the shares need to be set dynamically in response to both la-
tency and throughput goals and measurements, and not set statically according to the
throughput goals only. Moreover, if we would like to support flexible performance dif-
ferentiation policies and react to internal resource contentions as in Proteus, being able
to vary the shares is imperative.
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Fig. 6. Proteus on the 3-tier system with throughput goals. C2 has a best-effort goal.

5.3 3-Tier e-Commerce System

For the rest of the evaluation we will evaluate how well Proteus can achieve the ob-
jectives stated previously. That is, to be able to provide flexible performance goals and
differentiation policies, show that it works between systems without any system-specific
modifications or tuning, it is stable, and show that Proteus can successfully detect and
deal with workload and system changes as well as contention for unknown internal
service resources.

In this section, we will focus on the 3-tier system. We will start to show that Proteus
works for throughput goals with a strict prioritization between the classes. C1 has higher
priority than C2. The throughput target of C1 and C2 is given in the graphs and C2 gets
any spare capacity. In this case, the goal of C1 can be met for the workloads shown in
Figure 6. The throughput does vary a little around the performance target, because the
total throughput of the 3-tier system is not constant as was shown in Figure 2.

Figure 7 shows that we can also enforce latency goals. In these experiments, C1 and
C2 have the same latency goal, but C1 has higher priority. If it is not possible to meet
both class goals, then the latency goal of C1 is met at the expense of C2. To introduce
even more variation from the previous experiment, if both goals can be met, then any
remaining resources are shared fairly resulting in better latency for both classes. We can
see from the graphs that this indeed is the case for all three workloads: for smooth,
C1 gets a latency around its requested target value, while C2 gets only what is possible;
with step we can also see that when the capacity is high enough to satisfy both classes,
they equally share the excess capacity (with the exception of the initial start up period).

The previous experiments have only considered absolute performance goals with pri-
oritization. However, any other performance goal or performance differentiation policy
is possible as long as it can be described by utility functions. Figure 8 shows results for
proportional performance goals: in the left graph, throughput is shared 2/3 to C1 and 1/3
to C2; and in the right graph, C1 has to have half of C2’s latency. The ramp workload
is used for both experiments. We see that Proteus effectively also enforces proportional
performance goals. Note that C2’s latency varies more than C1’s. The reason is that the
higher the latency, the more sensitive it is to even slight throughput changes. When few
requests are let into the system from a class, admitting one more or less will have a
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Fig. 7. Proteus on the 3-tier system with latency goals. C1 has higher priority than C2.
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Fig. 8. Demonstrating the enforcement of proportional performance goals in the 3-tier system
with ramp. On the left, C1 gets 2/3 of the throughput; and on the right, C1 has half the latency
of C2.

large impact on the average latency measured for that class. One the other hand, when
there are many requests from one class, one more or less makes little difference in the
measured latency.

To show that Proteus can handle more than two performance classes, we ran an ex-
periment with 4 classes. The results are shown in Figure 9. Each class has a throughput
goal of 70 req/s. Priorities are set as C1 > C2 > C3 > C4. We use the ramp workload
to show how Proteus reacts to changes. As specified, a class receives some throughput
only if there is spare capacity after the goals of higher priority classes have been met.
C4 is the first one to get throttled back to O req/s, followed by C3. Then C2 is scaled
back to around 45 req/s, while C1 receives its requested 70 req/s throughout the run.

5.4 A Shared NFS Service

To demonstrate that Proteus can be effectively used in different systems, we applied
the same library used for the 3-tier system to enforce performance differentiation in a
shared NFS service. The two services have workloads with different types of requests,
response latencies that are orders of magnitude different, and internal structures that are
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Fig. 10. Using Proteus to meet performance goals in an NFS server. Throughput goals are shown
on the left and latency goals to the right.

representative of different types of resource contentions. For example, the application
server in the 3-tier system is mostly CPU-bound, while the NFS servers are disk-bound.

Figure 10 demonstrates performance differentiation in the NFS service. Class 1 is
the high priority one, while class 2 is best effort. Note, that the performance of the NFS
system varies more than the performance of the 3-tier system. The dip in throughput
right before 90 s is due to the kswapd daemon in Linux being invoked to write pages
to disk. During those 1-2 s the throughput of the NFS server is close to zero.

To show that Proteus can successfully detect and deal with changing internal bot-
tleneck resources due to workload variations and/or resource failures, we conducted an
experiment where the two classes are accessing different NFS servers during the first
30 s. After that, class 2 switches to accessing the same server as class 1. In this ex-
periment we mounted the NFS partitions in synchronous mode to be able to load the
servers more, hence the lower performance numbers. The results of this experiment are
shown in Figure 11 for throughput goals. Before time 30 s, both classes are getting
their desired 150 req/s as they are accessing disjoint servers. But at time 30 s, they start
to share the same server, which cannot meet the goals of both workloads. This is de-
tected by the model estimator in the share controller, and the model starts to show that
the performance of the two classes is now correlated. This is taken into account by the
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Fig. 11. Proteus can adapt to dynamic resource contention inside the system. At time 30 s, Class
2 switches from its own NFS server to accessing the same server as Class 1.

optimizer that adjusts the performance target of the low priority C2 downwards so that
the target of the high priority C1 can be met. This takes Proteus only a few seconds.

6 Related Work

During the last few years, there has been a surge of research on automatic performance
management of systems. For on-line management problems, most existing solutions
consider some form of feedback approach. Many of them use classical non-adaptive
controllers [4,15,16,17,18], which for most practical purposes are not adequate in com-
puter systems due to their ever changing characteristics [7,8,19]. Some approaches have
addressed this problem by proposing some form of adaptive controller designed in an
ad-hoc manner [6,7,9,20,21,22]. Given that the analysis of the controller is based on
empirical data, it is unknown whether the resulting controller is stable and performs
well beyond the generally narrow experimental evaluation performed. Moreover, they
are designed for a specific service and many require modifications to the target service.

To the best of our knowledge, there are six published papers that use adaptive con-
trollers designed using a formal control-theoretic approach to achieve performance
goals in computer systems. All of them are intrusive, target a specific system, cannot
detect contention between performance classes, and have a static performance differ-
entiation policy, if any at all. Proteus addresses all of these problems. Lu ef al. [23]
constructed an STR to satisfy absolute latency goals in web servers by partitioning the
cache space. Wu et al. [24] used a dual STR to control the hit ratio of a web cache by
allocating cache space to different users. Karlsson et al. [8] used an STR to achieve
latency differentiation in a clustered file-system. Zhu ef al. [25] use a adaptive pole
placement controller to set the CPU resources given to a performance class in a web
server, while Wei et al. [19] use an adaptive fuzzy controller to guarantee latency goals
in web servers. Finally, Lu et al. [26] used another type of adaptive controller called
model-based predictive controller to satisfy end-to-end latency bounds in distributed
real-time systems. The controller we use here is of the same general type (STR) as the
first three approaches, though they only design single input and single output controllers
and do not use optimal control.
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7 Conclusions

In this paper, we proposed a solution for performance management that maximizes the
yield of the performance contracts given the available physical resources, while it does
not require any modifications to the software or hardware of the computing services or
the clients. Our approach achieves this by manipulating the flow of requests into the
service by using one or more proxies between the clients and the service. In contrast
to prior art, our solution is stable, runs on different services and can enforce flexible
performance goals.

We implemented a prototype of our design called Proteus, that was evaluated on two
systems, a 3-tier e-commerce system and an NFS file service. We show that existing
proxies for the two respective protocols (HTTP and NFS RPC) can easily be modified
to use Proteus to schedule their requests. Once the modified proxies have been deployed,
our approach is transparent to clients and services. Proteus ensures that both services
effectively conform to the SLAs of multiple competing workloads and enforces flexible
performance specifications. It adapts within a few seconds to system and workload
dynamics, is more stable than prior art, and automatically detects contention on internal
service resources to improve overall resource utilization. We also show that it can be
used on both systems without any tuning between them.
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Abstract. Next-generation middleware must support complex compo-
sitions that involve dependencies between multiple components residing
in different contexts and locations in the network.

In this paper we present DyMAC, an aspect-oriented middleware plat-
form that offers an aspect-component model to support such complex
distributed compositions by means of advanced remote pointcuts, trans-
parent remote advice and distributed instantiation scopes for aspects.
The remote pointcuts can evaluate on calls and executions of remote
method invocations and can also evaluate on the distributed context.
The remote advice can be executed transparently in a remote environ-
ment while still respecting the full semantics of existing types of advice,
including around advice. The component model unifies aspects and com-
ponents into one entity with one interaction standard.

To our knowledge, DyMAC middleware is the first AO middleware
platform that distributes the concepts of aspect-oriented composition
completely and transparently.

1 Introduction

The environments in which distributed software applications must execute have
become very dynamic and heterogeneous. As a result, software must be dynam-
ically composed and even be adapted at runtime. This is for instance the case
in ubiquitous computing environments. Typical enterprise applications expose
similar needs.

Distributed applications are typically built on middleware, the software that
sits between lower level system software (such as the OS) and the distributed pro-
gramming platform. A dominant trend in (typical) enterprise middleware is the
fact that specialized servers combine many middleware functions with specific
component frameworks (e.g. J2EE, .NET etc.). The value of such a middleware
component framework is twofold [1,2]: first, a specific component model enables
the construction of applications from independently developed third party com-
ponents - at least in principle - and second, built-in services facilitate covering
non-functional requirements of a distributed application. The presence of built-
in (container managed) services is often the basis for acceptance of a specific
middleware platform. However, this critical success factor is at the same time
the basis for the limitations of such a middleware platform. Built-in services sup-
port modularized, declarative composition of concerns of a cross-cutting nature:
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these are concerns that cannot easily be addressed without creating code that is
scattered over the application and middleware artifacts. However, these built-in
services are hard to modify or customize. Solutions for these shortcomings have
been proposed in [3,13]. But, the services also cannot be used in complex com-
positions. This observation characterizes the limited flexibility that is supported
by state-of-the-art middleware: more complex compositions must be enabled.
The types of compositions that should be supported are very broad. Many of
these compositions involve dependencies between multiple components residing
in different contexts and locations in the network. This is extremely hard if one
has to rely purely on state-of-the-art software development technologies - i.e.
object-oriented and component based software engineering.

To address this problem, aspect-oriented software development (AOSD([7]) of-
ten has been put forward as a possible solution. AOSD addresses this shortcom-
ing by focusing on the systematic identification, modularization, representation
and composition of (often crosscutting) concerns or requirements throughout
the entire software development process. The core concept in AOSD is an as-
pect [4,5]: a coherent entity that addresses one specific concern and that has
the properties of a module that can be changed independently of other modules.
An aspect defines behaviour that can be executed (so called advice) and de-
fines composition logic to describe complex and dynamic dependencies between
this behaviour and the rest of the software system. This composition logic is
expressed using a joinpoint model. A common definition of a joinpoint refers to
well-defined places in the structure or execution flow of a program [5,7]. In any
case, joinpoints represent dynamic, runtime conditions that arise during program
execution. The occurrence of such a condition is an event that can trigger the
execution of aspect behaviour (advice). A set of joinpoints can typically be spec-
ified with pointcut designators that address and describe the kind and context
of the joinpoints [7]. By the kind of a joinpoint we mean for instance a method
call or a field access, etc. By the context we refer to additional information that
can be made available to constrain the condition, such as the method signature,
type and identity of the caller or callee of a method, further credentials and
properties of the caller etc. The statically decidable conditions of a pointcut can
be evaluated at compiletime or loadtime. The dynamic conditions are evaluated
at runtime.

In state-of-the-art AOP, context information is essentially limited to local
information, managed in a single VM. In a realistic distributed application how-
ever, joinpoints must refer to context information that is inherently distributed.
Relative to state-of-the-art AOP, distributed joinpoints are advanced in that they
transparently distribute the basic concept of a joinpoint: they refer to sophisti-
cated conditions in distributed systems that are required to express composition
in a distributed application. In general, the context information that is needed
must refer to (potentially multiple) components that are not local, and possibly
to distributed infrastructure. In particular, to express these runtime conditions
and express compositions, we need support for aspects with three key features.
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1. We need remote pointcuts, that can evaluate on calls and executions of
remote method invocations and also can evaluate on distributed context.

2. Remote advice is required, which can be transparently executed in a remote
environment (different from the pointcut evaluation), while still respecting
the full semantics of existing types of advice, including around advice!.

3. To be part of a mature middleware concept, aspects need component seman-
tics, including clearly defined interfaces, supporting third party composition
and interaction with other aspects.

Many initiatives in the domain of aspect-oriented middleware (AO middleware)
have started to support creation, deployment and execution of distributed
aspects for a distributed environment [9,15,18,17]. However, so far none of these
research results have defined and illustrated a complete solution to the above
mentioned challenges. In this paper, we present DyMAC, a middleware ar-
chitecture that offers true and transparent distributed composition of aspect-
components. Its component and composition model offers a solution for the
three key challenges.

The rest of this paper is structured as follows. In section 2 we refine the prob-
lem statement and motivate why true and transparent distributed composition of
aspect-components will be an important feature of next-generation middleware.
Section 3 describes the model, architecture and implementation of our solution,
DyMAC middleware. Section 4 evaluates our prototype. We discuss related work
in section 5 and we conclude in section 6.

2 Problem Refinement

We use an example of a banking application that manages checking accounts
and offers support to perform transactions on the checking accounts. The core
business component is BasicBanking, which is a component offering operations
to create new checking accounts, and execute transactions: withdrawals, deposits
and transfers. This component is located at the application server. The employees
at the branch offices use the EmployeeClient component at their workstations to
handle the requests of the customers to create a new checking account or perform
a transaction. The clients send the requested operations to the BasicBanking
service at the application server. We have depicted the deployment architecture
of the application in Figure 1. It also describes the set of additional middleware
services that are part of the application:

1. A client-side, local component asking the employees for credentials, before
the EmployeeClient component starts up.

2. An authentication service to authenticate the credentials of the employees
and add an authentication token to their execution context. This authen-
tication service is located at the central authentication server and is called
after the client has provided his credentials.

1 Around advice replaces the advised method invocation.
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Fig. 1. The deployment architecture of the banking application

SecureLogger

3. An authorization service at a central authorization server that verifies the

application-level rights associated with the authenticated user. Before the
execution of a remote method invocation at the BasicBanking service, this
authorization server is called.

. A load-balancing and fail-over service that delegates the calls of the clients to
one of the application servers, based on the load or availability of the servers.
This middleware service is located at a dedicated server (called reverse proxy-
server).

. A secure logging component at the central audit server that keeps track of
all authentication and authorization attempts and the results.

The composition policies of these middleware services should solve the problem
of crosscutting calls to the services in the core business components, and should
allow a clean separation of concerns. Therefore the component and composition
model needs to support the three key features from section 1. We motivate and
refine the three key features with illustrations from the example.

Advanced remote pointcuts

1. Remote pointcuts that are able to refer to joinpoints before and after call-

ing and executing remote method invocations in a distributed system. This
notion extends the kind of the joinpoint for distributed systems. E.g. for the
load balancing service: whenever a client machine calls the BasicBanking
service, before that call load balancing advice should be called.

. Remote pointcuts that can evaluate over the contextual properties about the
components involved: the calling and receiving component name, the inter-
face of the receiving component or the dependency name 2 of the sending
component. E.g. for the authorization service: it has to be called each time
a method is executed at the BasicBanking service. But this service is dupli-
cated for load balancing as different components and has different names. By

2 A dependency defines a required interface to be fulfilled by another component.
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using the interface of the component as contextual property of the receiving
component, all duplicated BasicBanking components can be captured in one
pointcut.

Remote pointcuts that allow to evaluate over the contextual properties about
the distributed location of sending an receiving component. E.g. for the load
balancing service: the composition policy above uses the contextual property
hostgroup® of the calling component. This scales better when other client-
side components are using the BasicBanking service.

Transparent remote advice with full semantics

4.

Transparent remote execution of advices, based on the deployment speci-
fication of an advising component. E.g. for the authorization service. The
deployment location of that service should be transparent when defining the
composition.

Remote before, after and around advice with full remote semantics. This
allows to capture remote behaviour that is associated with calling and exe-
cuting remote invocations.

e E.g. for the validation at the authentication server of the given creden-
tials, remote after advice is needed after the client has provided the
credentials.

e E.g. for the evaluation of the load balancing policy, remote around advice
is needed: based on the load or availability of the application server it
can replace the original call with a call to a backup server or it can just
let the original call continue.

Unified aspect-component model

6.

Unification of the entities. Components are aspects and aspects are com-
ponents. E.g. the logger entity to log executing messages. This should be a
reusable component, offering support for aspect-oriented composition in its
interface. And it should be reusable and deployable in third party composi-
tions and deployment infrastructures.

Unification of interaction: advices and methods are considered normal re-
mote method invocations and are both subject to aspect-oriented composi-
tion. E.g. the remote authentication advice for validating the credentials is
remotely advised by the logging component at the audit server.

State-of-the-art aspect-oriented middleware fails to define the complete range of
compositions as sketched above. For instance, the contextual information pro-
vided for pointcut expressions is too limited and remote around advice with
full semantics is not supported. We further discuss the shortcomings and the
consequences in the related work section.

3 A name for a group of hosts in the application, e.g. workstations.
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3 DyMAC Middleware

In this section we discuss the DyMAC middleware platform. First, we briefly
describe the basic concepts of the component model. Second, we explain the
support for aspect-oriented composition in a distributed environment. Third, we
explain how the middleware supports the concepts of the component and compo-
sition model. We explain the basic architecture of the middleware and describe
the important subsystems that support distributed joinpoints, remote pointcuts
and the coordination of remote advices. We also motivate the architectural deci-
sions in the middleware that manage performance overhead. Fourth, we present
a brief description of the .NET implementation of DyMAC.

The component model has been inspired by two evolutions: the first one is
the evolution to distributed object-based component technology, such as EJB [8].
The second one is the evolution in AOSD towards the concept of an aspect with
component semantics[10,11,15,14], and even towards a unified concept of aspect
and component [19]. A pure object-based approach to the latter is currently
supported for single-process applications [23]. Aspects are reduced to normal
Java classes and advices are reduced to normal object methods, having a special
signature. The resulting programming model offers one entity with one inter-
action standard. The aspect-oriented composition itself is defined in a separate
specification file. These specifications define a pointcut, and which class and ad-
vice to bind. This way the advising entities become more reusable in third party
compositions, an essential property for component based software development.
DyMAC leverages the unified, object-based approach to aspects to the level of
distributed object-based component models.

3.1 DyMAC’s Basic Component Model

DyMAC components are object-based entities that separate interfaces and im-
plementation. DyMAC components declare their required interfaces by means
of dependencies. Components are composed in an application and are deployed
on a distributed infrastructure. We explain these different concepts.

Components have two interfaces: a create-interface that specifies how to in-
stantiate a component, and an instance-interface that specifies which methods
are offered by a component instance. We illustrate this for the BasicBanking
component in listing 1.1.%

The implementation of the component implements the members of the two
interfaces as follows. First, it implements a constructor for each create-method
specified in the create-interface. Second, it explicitly implements the instance
interface. Client components implement the predefined interface IExecutable,
which defines a main method, as an entry point for execution. Each component
implementation also inherits from Componentinstance, which binds a component
to the DyMAC framework. Listing 1.2 illustrates the implementation of the
BasicBanking component and the EmployeeClient component. It also illustrates

4 The examples are implemented on the DyMAC.NET prototype and use plain C#.
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Listing 1.1. BasicBanking interfaces

interface IBasicBankingCreate{

IBasicBanking Create();}

interface IBasicBanking{

void CreateAccount(string id);

void WithDraw (string account, double amount);

void Deposit(string account, double amount);

void Transfer(string from, string to, double amount, string msg);}

Listing 1.2. Component implementations

class BasicBankingImpl : IBasicBanking, ComponentInstance {
public BasicBanking (){}
public void WithDraw (string account, double amount){...}

class EmployeeClientImpl : IExecutable, ComponentInstance{
public void Main(string [] args){

//create an instance
IBasicBanking ibb = Factory.Create(”mybanking”) as IBasicBanking;

ibb . WithDraw (accountid , amount); //call an instance method

iy

how to create instances and how to do remote method invocations using the
instance interface.

The component descriptor defines the component name, the provided inter-
faces, the implementation file and the dependencies of the component. A de-
pendency is defined by a dependency name and the interfaces that are expected
of the component that will be bound to the dependency. This is similar to the
approach that is used in the EJB component model.

The application descriptor first defines a name for the distributed application,
then it defines the set of components that is used, by referring to their descriptor.
Then the compositions of the components are defined. These compositions can be
normal compositions between dependencies and components, as well as aspect-
oriented compositions.

Deployment descriptor. A distributed DyMAC application consists of a set of
components that are deployed across a distributed infrastructure. This distrib-
uted infrastructure has a hierarchical structure: a hostgroup contains multiple
hosts, (E.g. the client workstations), a host can contain multiple framework
instances, which are processes. A framework instance can host multiple applica-
tions, each in an application domain. Multiple application domains are typically
used on web servers and application servers to host multiple applications in one
process. An application domain is a contextual unit of isolation for an applica-
tion. The isolation guarantees that an application can be independently stopped.
Furthermore an application cannot directly access code or resources in another
application. A fault in an application cannot affect other applications. Processes
with multiple application domains are only used for server processes; for the
client tier of distributed applications, each application starts a different process
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at the client, containing one application domain with the client tier components.
For one distributed application, the deployment infrastructure consists of a set
of application domains that are located on multiple processes and hosts. The
deployment descriptor of an application defines those deployment locations of
the components. For a remotely accessible component, this location is unique in
the infrastructure and is defined by the name of a host, framework instance and
application domain. A component can also be deployed as a local component,
then it is deployed in every application domain of the distributed application.
When components are deployed locally, then an instantiation call always creates
a local instance of the component.

3.2 Support for Aspect-Oriented Composition

In DyMAC, aspect-oriented compositions are defined in the application descrip-
tor. They consist of two main parts.

1. The component providing the aspect behaviour and its instantiation scope.

2. A set of bindings in which each binding defines a pointcut, refers to an advice-
method of the advising component, and specifies an advice type (before, after
or around).

We first explain the pointcut expressions, then we explain advice and the instan-
tiation scopes of an advising component. For each concept, we emphasize how
it supports AO composition in a distributed environment. Finally we illustrate
AO compositions in DyMAC by means of the example from section 2.

Pointcut expressions. Pointcuts are logical expressions that evaluate over the kind
and context properties of the joinpoints. The kind of the joinpoint can be re-
stricted to calling and executing remote method invocations. The pointcut ex-
pressions to support that are a call and execution pointcut. Pointcuts can further
evaluate over two sets of contextual properties. First, the component-related prop-
erties of the joinpoint model: the message signature, the dependency name of the
sending component, the interface of the receiving component, and the names of the
sending and receiving component and the name of the distributed application they
belong to. Second, the infrastructure-related properties of the joinpoint model: the
host names of sending and receiving component, their hostgroups, their framework
and the application domain they belong to. If pointcuts do not specify a value for
a certain property, it has the default value all. This breakdown of the contextual
properties implies that pointcuts can be remote in an implicit and explicit way.
Pointcuts evaluating on the component-related contextual properties only, are im-
plicit remote pointcuts. They allow to refer to distributed components, without
being aware (containing no information) of their distributed location. Notice that
in this way the concept of a pointcut is transparently remote. Pointcuts that eval-
uate on the infrastructure-related contextual properties are explicitly aware of re-
mote locations of components in the infrastructure. But, even with explicit remote
pointcuts, AO compositions in applications can be made reusable in third party
deployment scenarios by means of hostgroups. These are deployment-independent
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groups of hosts, defined by the application. The deployment descriptor defines
which hosts belong to the groups.

Advice. First we describe briefly the different types of advice that are supported
in DyMAC. Second we describe the definition of advice methods in the interfaces
of components. Third, we explain the implementation of advice and the joinpoint
API. Last, we discuss the execution semantics of advice.

Types of advice. In DyMAC, three types of advice are supported: before, after
and around. Before and after advices are respectively called after and before the
call or execution of a remote method invocation. Around advice replaces the
actual invocation it advises, but a proceed operation can be called in the advice
to continue with the original remote method invocation. In case multiple advices
have to be called on a certain joinpoint, the proceed call continues with the next
advice in the advice chain. In case the advice is terminal in the chain, the call
or execution of the original method invocation continues. After the execution of
the advices later in the chain, the control flow returns to the rest of the around
advice where the proceed was called.

Specifying Advice Methods. Methods, defined in the interface of a component,
that are used as advice in an aspect-oriented composition, need to have a special
signature. The advice can also be annotated with the kind of the joinpoint that
the advice supports, requires or prohibits to be composed with. The possible
advice kinds are BeforeCall, AfterCall, AroundCall, BeforeExection, AfterExe-
cution and AroundExecution. Multiple prohibits and supports annotations can
be defined. Only one requires annotation can be defined. These annotations
are part of the interface (and thus the contract of the component [1]) because
they express explicit requirements of the component when composed with other
components. These need to be fulfilled to guarantee correct behaviour of the
component. We specify the log method of the secure logger as an example. It
only supports to be composed after an execution or call, because it needs the
return message to check for exceptions.

[Supports(Kind. AfterExecution)]
[Supports(Kind. AfterCall)]
void Log(RuntimeJoinPoint rjp);

Advice implementation and the joinpoint API. The implementation of a compo-
nent implements the behaviour of the advice methods specified in the interface.
In this implementation the joinpoint API can be used to reflect on the current
joinpoint. In DyMAC the current joinpoint is accessed using the RuntimeJoin-
Point parameter of the advice. It contains information about the kind and con-
text of the joinpoint. The joinpoint API contains contextual properties about the
remote method invocation that is being advised and the calling and executing
component instance of that invocation. Component properties like component
name, interface and dependency names are read only. Infrastructure properties
are read only too. Arguments of the method invocation can be altered. In case
the joinpoint’s kind is after a call or execution, the return message can also be
inspected and altered. The joinpoint APT also contains the proxies to the sending
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and receiving component instance. Remote method invocations can be called on
those remote instances out of the advices. This can be required to pull state
of the component instances, that is needed in the advice, for example to evalu-
ate an authorization policy using application-level domain knowledge. Another
advantage of those proxies is that additional application-level behaviour can be
called out of the advice.

Ezxecution semantics of advice. Advice is considered a normal remote method
invocation when it is called from the joinpoint context and executed at the re-
ceiving component. It is advisable like any other method invocation. The sending
component of an advice is the component instance in whose context the advised
joinpoint is situated. In case of a call, the sending component instance of the
advice is the sending component of the invocation that currently is being ad-
vised. In case of an execution, the sending component instance of the advice is
the receiving component of the invocation that currently is being advised.

Defining Distributed Instantiation Scopes. Instances of advising components are
created implicitly. Aspect scopes [5,7] define the creation moment and usage
scope of the instance. Typical instantiation scopes in single-process AOP systems
are: per joinpoint, per class, per instance, per thread, per VM. The per instance
instantiation scope, for example, means that there is one instance of the advising
aspect for each object instance that is advised. For every new object a new aspect
instance is created. That instance is reused for all advised method invocations
on the advised object. DyMAC supports distributed instantiation scopes for
components that are used to remotely advise in a distributed system, and thus
includes scopes beyond process boundaries.

— Singleton : one instance in the distributed system.

— Per hostgroup : one instance per group of hosts.

— Per host : one instance per host.

— Per application domain : one instance per application domain.

— Per application : one instance per distributed application

— Per component type : one instance per component type in the distributed
system

— Per component instance : one instance per component instance in the dis-
tributed system

— Per logical thread : one instance per logical thread (or distributed thread),
which is used for remote control flows.

Example. We define the AO compositions of the load balancer and the secure
logger in detail. They illustrate true remote around advice and after advice,
but also the supported kinds of pointcuts and their evaluation on contextual
properties. The load balancing composition in listing 1.3 expresses first that
the LoadBalancing component is used as a singleton for this composition. The
pointcut refers to all calls from the workstations hostgroup to the components
with the IBasicBanking interface. They are advised by the LoadBalancer using
the method Balance as around advice. Based on load and availability of the
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application servers, the load balancer decides to proceed with the message or it
calls one of the backup servers itself, thus replacing the original call of the client.
We assume that the BasicBanking service is stateless, and therefore, all remote
invocations to the instances can be redirected to another instance on another
server. The location of the LoadBalancer is transparent in this composition. It
is defined in a separate deployment descriptor.

The composition of the SecureLogger in listing 1.4 specifies that advice log is
called after each execution on the authentication server. This log method uses
the joinpoint API to check the return message. If it contains an exception, an
authentication failure is logged with the contextual properties of the caller in
the joinpoint. The binding with the authorization server is similar.

The concrete syntax of the application descriptor is XML based in the .NET
implementation of DyMAC, but for readability and conciseness we use the Java
configuration file syntax. The structure or abstract syntax of the composition is
the same in both notations.

Listing 1.3. LoadBalancer Listing 1.4. SecureLogger
ao—composition{ ao—composition{
AdvisingComponent: LoadBalancer; AdvisingComponent: SecureLogger;
Scope: Singleton; Scope: Singletonj;

Binding{ Binding {

Pointcut { Pointcut {

Kind: call; Kind: execution;
MethodMessage: * * (..); MethodMessage: * *(..);

Caller { Callee{
Hostgroup: workstations ;} Host: AuthenticationServer;}}
Callee{ Advice{

Interface: IBasicBanking;}} Kind: after;

Advice{ MethodMessage: Log;

Kind: around; 1}

MethodMessage: Balance; Binding {

1} //authorization logging
1}

3.3 The Middleware Architecture

In this description of the middleware architecture we first describe briefly the top-
level global architecture and its distributed deployment on the network. Then we
focus on the essential subsystems that support the key features of the component
and composition model: the aspectbinder and interception core that process the
remote pointcuts at loadtime and at runtime, the distributed joinpoint archi-
tecture that supports advanced remote pointcuts with acceptable performance
overhead, and the advice coordination infrastructure supporting multi-threaded,
remote around-advices. In addition we discuss instance management, especially
the component factory and instance registry for distributed instantiation scopes
of advising components.

The top-level architecture. Each DyMAC framework can host multiple appli-
cation domains for different distributed DyMAC applications. The framework
middleware offers a remote interface framework facade to deploy, startup, stop
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and undeploy applications on the framework. The deployer distributes the ap-
plication binaries and descriptors to the framework middleware to store them on
the application repository. Then the distributed application can start up. The
framework middleware first instantiates an application domain and loads the ap-
plication middleware into it. The application middleware loads and manages the
different components that are deployed in its application domain. A deployment
scenario for the framework middleware, application domains, application mid-
dleware and some application components is depicted in Figure 2 . We now focus
on the different subsystems of the middleware. An overview of these subsystems
is depicted in Figure 3. The following subsystems are involved in the load-
ing process. First the application descriptor is handled by the ApplicationParser
and an ApplicationSpec model is built. After parsing successfully, the application
domain loads the binaries and the Application Verifier checks the Application-
Spec model to verify if it conforms to the component model, and whether all
binaries referenced are loaded. If the ApplicationSpec is sound, the application
builder builds an application metamodel (Application Type). This model contains
a component type for each component spec in the application spec model. Each
component type contains a list of dependencies with a list of method definitions.
The component type also contains a list of provided method definitions. In this
step of the loading process all method definitions have an empty advice chain.
The AspectBinder then handles the bindings defined in the AO compositions.

The AspectBinder. We first explain the common approach for call-pointcuts as
well as execution-pointcuts in the bindings. Then we refine the explanation for
each kind of pointcut. For each binding, the properties of the pointcut that are
known at loadtime are evaluated. If the loadtime known properties of a method
definition match, an advice thunk is inserted into the advice chain of the method.
Advice thunks define a set of properties to evaluate at runtime (the pointcut
residue[6]) and an advice method to be called when the runtime properties
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evaluate to true. In case of an erecution pointcut, the method signature and
the properties of the callee in the pointcut are evaluated at loadtime. The prop-
erties of the caller can only be evaluated at runtime when a method message
arrives at the component. In case of a call pointcut, the method signature and the
properties of the caller in the pointcut are evaluated at loadtime. The properties
of the callee are evaluated at runtime when the message is sent to the compo-
nent instance that is bound to the dependency. This binding can be different
at runtime because of possible runtime changes to the component satisfying the
dependency, such as its location.

Once the application is running, the interception core processes the remote
invocations between components. This interception core has two important ser-
vices. The first one is the distributed joinpoint infrastructure, that manages the
runtime representations of distributed joinpoints. The second service is the re-
mote advice coordinator. This service selects and evaluates the advice thunks
for a joinpoint, iterates the resulting advices and handles the execution of them.

The distributed joinpoint infrastructure. Joinpoints in DyMAC contain runtime
information about calling or executing method invocations between component
instances in the distributed infrastructure. Four different kinds of joinpoints are
distinguished at runtime : before a call, before an execution, after an execution
and after a call. The distributed joinpoint infrastructure creates a runtime rep-
resentation of these joinpoints, that localizes all information that is needed to
select and evaluate the advice thunk.

Before a remote invocation is called a before-call joinpoint is constructed using
the following information: (1) the contextual properties of the sending compo-
nent, which are locally stored in the component type model, and (2) the contex-
tual properties of the receiving component, stored in the proxy to the receiving
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component instance. The properties of the sending component are added to the
call context of the method message. The call context containing the caller prop-
erties is serialized as a piggy back on the remote invocation. Before a remote
inwvocation is executed at the destination component, a before-execution joinpoint
is created. The call context of the message is deserialized and the caller’s con-
textual properties are added to the execution-joinpoint. The callee’s contextual
properties are stored local in the typemodel of the receiving application middle-
ware platform and are added to the joinpoint After the execution the kind of the
before-execution joinpoint is changed to after-execution, and the return message
is added to the joinpoint. After the call, the call-joinpoint’s kind is changed to
after-call and the received return message is added to the joinpoint.

Architectural decisions about the management of the contextual properties
are incorporated to avoid chattiness. Chattiness could have occurred when the
information that is remote to the location of a joinpoint is pulled from the remote
host by meed. This could have occurred during call-joinpoint evaluation, when
information about the callee is needed and during execution-joinpoint evalua-
tion when information is needed about the caller. It could have occurred when
contextual information about caller and callee is accessed using the joinpoint
APT at the execution location of the remote advice.

Therefore, when a component is instantiated, its contextual properties are stored
in its proxy. Every remote client of the component receives the contextual prop-
erties along with the proxy. This does involve an initial transport overhead when
the proxy is created, but the properties of the callee are always local for the call-
joinpoint. To achieve locality of the caller-properties for an execution-joinpoint,
the properties of the caller are added as a piggy back on the remote message to the
callee. This omits a call-back of the callee to the caller to query contextual infor-
mation during runtime evaluation. When the remote advice methods access the
contextual properties of the joinpoint parameter, that information is local. The
joinpoint object is a composite value object, and therefor a complete local copy is
available in the execution context of remote advice methods.

The remote advice coordination infrastructure. The interception core of DyMAC
coordinates remote advice with the advice handler. The advice handler of DyMAC
is instantiated when advice needs to be executed for a certain joinpoint. The list of
advices matching the joinpoint is handed over to the new advice handler instance.
In case the advice chain contains a remote around advice, the advice coordinator
is a remotely accessible instance. This remote access is necessary to give back the
control flow in case a proceed is called in the remote around advice. In case the
advice bindings do not contain remote around advices, the advice handler instance
isalocal object. This avoids expensive instantiation of a remotely accessible advice
handler. In case the advice is local around advice, the proceed call to the advice
handler is also local, and no remote advice handler is needed. In case the advice is
remote before advice or remote after advice, the control flow returns to the local
advice handler automatically after the execution of advice. We show the message
flow for the execution of the withdraw operation in figure 4. Only the around advice
of the load balancer and the AdviceHandler at the client are illustrated.
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Fig. 4. Remote AdviceHandler for Remote Around Advice

Component Factory. Instantiation of components is supported by the DyMAC
factory. This service provides a create-operation with as first argument a de-
pendency name and then a variable number of arguments. When the create-
operation is called, the factory looks up the dependency name, binds a compo-
nent to it and creates an instance of the component, using the appropriate con-
structor in the implementation. This instance can be remote, depending on the
deployment location of the component. The remote interface of the application
middleware containing the component is called to create the remote instance.

Distributed instance registry. The instance of an advising component is implicitly
created when it is needed in an AO composition. It is registered in the aspect
registry at the deployment location of the component. If a new instantiation
request arrives at the instance registry, the registry checks if there is already
an instance bound to the requested instantiation context. This can be deducted
from the caller properties that are a piggyback on the instantiation call. If such
an instance exists, a proxy to the existing instance is returned to the requesting
advice binding.

The application middleware of an application domain has a local cache of
the aspect registry. It contains the proxies to the remote instances that are re-
lated to the application domain. This avoids expensive remote lookups before
advice is executed, and also reduces chattiness. Concretely, the application mid-
dleware has a hash-based cache structure that is divided into substructures for
the different instantiation scopes : group, host, framework, application domain,
distributed application, component type and component instance.

For the logical thread instantiation scope, DyMAC supports another opti-
mization for the distribution of the instance proxy along the distributed call
flow. The proxy is piggy backed with a method message whenever the call flow
is transferred to the next application middleware instance. This again avoids
a lot of chattiness. Chattiness could have occurred due to lookups for the re-
mote component instance handling the advice. In fact, these lookups would be
performed at every application domain.

3.4 Prototype Implementation

The DyMAC middleware platform has been prototyped on .NET 2.0. It is imple-
mented as a framework and does not involve any language extension. Component
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interfaces and implementation can be defined in any CTS/CLS compliant lan-
guage. Remote method invocations are normal method calls and do not involve
any meta object protocol as in some other AO middleware approaches [15]. This
implies that components and their interactions are statically verified by a pro-
duction .NET compiler.

The InterceptionCore in the middleware is built on the Context Bound Object
technology to intercept remote messages. This interception happens in the .NET
CLR. The CLR then activates the DyMAC message sink of the InterceptionCore,
which creates a runtime joinpoint and starts the DyMAC AdviceCombiner. This
way of dynamic interception does not require byte code weaving on components
and does not require the CLR to run in debug mode.

The remote method invocations between component instances are imple-
mented on .NET remoting. Piggy backs added by the DyMAC middleware are
stored in the call context of a remote message. This is a hashtable associated
with the call flow and .NET remoting serializes this information along with the
remote method invocation.

4 Evaluation

We evaluate the runtime overhead introduced by the middleware platform to
support the features of the component model. This runtime overhead is evalu-
ated in terms of three kinds of resource usage: increased data access, increased
network usage and increased usage of computation resources. We compare the
runtime overhead of a DyMAC based application with an application based on
state-of-the-art distributed component technology. For this comparison we use
the .NET implementation of DyMAC. The distributed aspect-component model
of DyMAC.NET is built on top of .NET remoting. So the first version of the
application has been built on DyMAC, the second version of the application uses
only the .NET remoting infrastructure.

Performance analysis. The runtime overhead of the DyMAC is evaluated in
terms of increased data access, increased number of remote messages, increased
size of remote messages, and increased usage of computation resources. DyMAC
does not introduce additional data access at runtime. The application descrip-
tors and configuration files are loaded at startup time of the application. So
in case data access is involved in an application operation, that latency is the
main performance bottle neck, because it is orders of magnitude larger than
the networking and computing overhead. If we ignore data access, then the net-
work overhead is the next important performance overhead. We evaluate network
overhead in the next paragraph in detail. The overhead of calculating advice ac-
tivation caused by the middleware layer is neglectable in comparison with the
latencies of the network access. However, when using the framework for pure
single-process, single-user AOP applications, without network communication
or data access, the framework’s overhead is significant. Offering features like
client-specific middleware extensions and dynamic adaptability does involve a
large computation overhead, due to the use of runtime interception, reflection
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and access of data-structures containing component metadata. That overhead is
acceptable for large-scale distributed enterprise applications, and even unavoid-
able for the features required in that domain. °

Network overhead. The network overhead of DyMAC has to be evaluated on
two properties : the number of additional messages involved, and the increased
message size. If a remote before or after advice is used in stead of an ordinary
method message, the number of messages stays the same. If an around advice is
used with a proceed call, the proceed call seems to involve an additional remote
call: i.e. the call-back to the advice coordinator. But, implementing the behav-
iour of around advice in the pure .NET remoting environment also involves two
normal method messages: one to query if the remote message should be exe-
cuted, and then another message to execute the behaviour that normally would
come after the proceed call. The second element to compare is the overhead
caused by increased message sizes. A method message in DyMAC carries addi-
tional information about the caller in its call context. This causes overhead in
the transmission time. The parameter of advising method messages in DyMAC
is a value copy of the joinpoint object, which contains kind and distributed con-
text information. This also introduces a transmission overhead. To measure the
network overhead, we compare the execution time of four kind of messages:

1. A pure .NET remoting method message with empty body, no parameters
and no return value. We call this a minimal method message.

2. A DyMAC method message with the caller properties piggybacked.

3. A DyMAC advising method message, with caller properties piggybacked,
but without the joinpoint object (the parameter is null).

4. A DyMAC advising method message with the joinpoint object.

First, the messages are sent between two processes on the localhost and second,
between two different hosts on a 100MBit network. The first test simulates an
optimal network. The second one compares messages in a real-life network. Timing
started after 10 calls, to avoid delays by the .NET JIT compiler, because that
would scale down the overhead. The timing results for each 1000 executions are:

Localhost : 100 Mbit:

1: 1.1093750 sec 1: 1.3785850 sec
2: 1.1875000 sec 2: 1.4935000 sec
3: 1.1875000 sec 3: 1.5175150 sec
4: 1.4075000 sec 4: 1.7695000 sec

The caller properties add a 6 to 7 % overhead maximally, on a minimal method
message. The runtime joinpoint object adds another 18-20 % compared to the
minimal method message. These overheads are calculated for minimal method
messages and thus are an upper limit. As the method message gets more or

 For AOP systems focusing on single-user, single-process applications, different re-
quirements exist. It is one of the key features to minimize overhead of activation of
advice added by aspects. The application domain of one of the first AOP papers was
the implementation of computation intensive algorithms for image processing[4]. In
that domain, the performance overhead of activating added advice is crucial. Ap-
propriate AOP tools, focusing on optimal advice weaving should be used then.



True and Transparent Distributed Composition of Aspect-Components 59

larger parameters, the relative overhead gets substantially smaller. In distributed
enterprise applications, the facade pattern [8] is applied for remote components.
In this pattern, remote messages have more parameters, and also have larger
value objects as parameters or as return value. The average overhead will be
smaller in that type of applications.

Based on our initial measurements, we claim that the runtime overhead of
DyMAC is acceptable in a distributed application. We have illustrated that the
penalty of fully distributed aspect-oriented middleware can be limited to network
(message size) overhead as no additional messages are required to support remote
pointcuts and remote advices. Recall that the figures presented above present an
upper limit. Moreover we are working on optimizations that leverage pro-active
distribution of useful context information, again without additional messages.

5 Related Work

This section focuses on existing AO middleware technologies that support to a
certain extent distributed aspects with a notion of remote pointcut and remote
advice: JAC[9], CAM/DAOP[15,16] and AWED][18].

JAC (Java Aspect Components [9]) is a Java-based framework that offers
an aspect model to advice objects locally. Using this aspect model, a lot of
internal middleware services of the framework itself are developed as aspects on
the framework. The framework also supports distribution of components and
distributed deployment. Both services are even implemented as aspects on the
framework. JAC simulates the semantics of remote advice by executing local
advice on a local copy of the aspect (aspects are replicated on each host). The
states of the aspect instances are synchronized at each state change. The example
from section 2 cannot be modeled using JAC. For instance, the security of the
authentication service would be broken by duplicating private keys. Moreover,
the workaround in JAC causes a lot of extra communication (chattiness). Finally,
JAC has a limited join point model when it comes to evaluating distributed
context information.

CAM/DAOPI15,16] is a framework for distributed applications that offers
aspect-components and regular distributed components supporting broadcast-
ing, events, synchronous and asynchronous messages. The aspect-components
can offer remote before and after advice on sending and receiving messages.
The CAM component model supports defining provided and required interfaces
for components and aspect-components. DAOP does not offer remote around
advice. The example from section 2 needs remote around advice for security
services and for load balancing. The security services could be simulated with
critical aspects, in which the before advice has to evaluate to true in order to let
the message continue. But for the load balancing service this is not a solution.
DAOP also has very limited pointcut expressions that do not allow to evalu-
ate on contextual properties apart from the sending and receiving component
role. Support for context properties concerning the distributed location or other
component-related properties like interfaces are not supported.
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AWED(18] is a language for distributed AOP and offers explicit remote point-
cuts and explicit remote advice. The pointcut language offers the keyword host()
to evaluate on the host of the joinpoint. Remote advice is explicitly remote us-
ing the on() keyword to specify the host on which the advice should execute.
AWED’s approach to distributed aspects and remote around advice does not
offer the abstraction of around advice in a fully distributed way. The proceed
statement in the remote around advice has local semantics. The original inter-
cepted message is executed at the host where the around advice is executed. This
approach only works if the destination component is a static class or singleton
deployed in every VM. In the example of section 2, the effect of the proceed call
is that the messages to the application server are executed on the reverse-proxy
server. AWED deploys each aspect and each class on every host to realize this.
AWED also doesn’t support transparent execution of remote advice: the host on
which the advice should be executed is explicitly stated in the pointcut using the
on() construct. Defining the deployment location of the advising component in
the pointcut destroys the separation of composition and deployment. This also
mixes up the separation of the specification of pointcut and advice. A pointcut
should express the events in the system that need to be advised. The host of the
advice itself is not part of that, but part of the advice’s deployment specification.

Other approaches have been proposed to integrate AOP into middleware, but
without integrating the component model, only the class model of the program-
ming language: JBOSS AOP[12,21], AspectWerkz[23], Spring AOP[22]. This de-
sign choice is clearly reflected in the kind and context of joinpoints that can be
specified in pointcut expressions. The above mentioned approaches do not offer
true support for distributed aspect composition anyway: they do not support a
distributed joinpoint model, remote pointcuts or remote advice. AspectJ2EE[20]
however, has the same approach offering a local AOP framework on Java classes,
but with the difference that it offers one special kind of pointcut: remotecall, to
advise remote calls from clients to EJBs. The use of contextual properties about
location or components is not supported.

6 Conclusion

Complex compositions cannot be expressed effectively in state-of-the-art mid-
dleware and AOSD is a promising technology that can assist in improving the
situation. In this paper we presented DyMAC middleware. The AO middleware
platform offers true and transparent distributed composition by means of ad-
vanced remote pointcuts that can evaluate on distributed context, transparently
remote advice with full semantics and a unified distributed component model.
To our knowledge, this is the first middleware architecture that transparently
and completely extends the power of aspect composition (join point model and
advice execution) in a distributed context. We have prototyped DyMAC in a
.NET environment and initial benchmarks show promising performance results.
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Abstract. We present our policy-based middleware, called Manageable and
Adaptive Service Compositions (MASC), for dynamic self-adaptation of Web
services compositions to various changes. MASC integrates and extends our
earlier middleware called the Web Services Message Bus (wsBus). In particu-
lar, we discuss MASC support for customization of Web services compositions
to address business exceptions and wsBus support for correction (fault man-
agement) of Web services compositions to improve reliability. We have evalu-
ated the former support on a stock trading case study and the latter support on a
supply chain management case study. Our solutions are complementary to the
existing approaches and provide: coordination of fault management between
SOAP messaging and business process orchestration, greater diversity of moni-
toring and control constructs, specification of both technical and business as-
pects used for adaptation decisions, higher level of abstraction easier for use by
non-technical people, and externalization of monitoring and adaptation actions
from definitions of business processes.

Keywords: Web services middleware, Web services composition, policy-based
management and adaptation, Microsoft .NET.

1 Introduction and Motivation

Web services compositions (orchestrations and choreographies) are rapidly becoming
a dominant approach for implementing business processes and building open distrib-
uted systems. The widely accepted Web services technologies (the Web Services De-
scription Language — WSDL, SOAP, and the Universal Description, Discovery, and
Integration — UDDI) are not enough for implementing Web services compositions [4].
Several languages for describing Web services compositions have appeared and the
Web Services Business Process Execution Language (WSBPEL or BPEL) is the most
widely accepted among them. A number of additional technologies (often named
‘WS-*’) have been developed to address requirements such as security, reliable
messaging and transactional service coordination. However, a number of important
issues are not completely solved. Many of them are related to building more powerful
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middleware to support creation, execution, and management of Web services compo-
sitions. Such an important research question, discussed in this paper, is how to build
more powerful middleware to enable autonomous self-adaptation of Web services
compositions to various runtime changes.

In preparation for this research, we had studied different types of adaptations of
Web services composition and decided to classify them based on 3 dimensions, each
orthogonal to the other 2. The first dimension is whether the complete class of com-
positions (e.g., an abstract process in BPEL) is changed or whether only a particular
composition instance is changed. In this paper, we focus on the latter, because the
need for such adaptations is much more frequent. The second dimension is the rela-
tive time when a Web services composition instance is changed. Adaptation is static
when a composition instance is changed before it is started, while it is dynamic when
a running composition instance is changed without being stopped and restarted from
the beginning. In this paper, we focus on dynamic adaptation, because it is much more
challenging. The third dimension describes the reason why the adaptation is done,
which impacts how the adaptation is done. On this dimension, adaptation can be: a)
customization — to add/remove/replace activities specific to the composition instance
(but not to the complete class of compositions); b) correction — to handle faults re-
ported during execution of this composition instance; c¢) optimization — to improve
extra-functional (usually performance or billing) issues noticed during correct execu-
tion of this instance; or d) prevention — to prevent future faults or extra-functional
issues before they occur. This classification is similar to the classification of software
evolution into adaptive, corrective, perfective, and preventive [17]. In this paper we
focus on customization and correction. While we have some results related to optimi-
zation, they will be discussed only in relationship to using corrective adaptation (i.e.,
fault management) to improve reliability of Web services compositions. A long-term
goal of our research is to study and enable all identified adaptation types.

Special cases (‘business exceptions') can occur relatively frequently in business
processes. Such a special case has almost all activities as in a regularly occurring base
business process, but some activities are removed or replaced and/or new activities
are added. An example is when a company has set up a complex business process for
domestic business partners (e.g., within one country), but an unexpected request
comes to set up a version of this business process for some international partners with
additional activities to handle payment in multiple currencies. This special case can be
addressed with customization of the base business process for domestic partners. Such
a customization can be performed in different ways. One way is to add into the de-
scription of the base business process (e.g., in BPEL) appropriate new exceptions,
event handling constructs (e.g., timeouts), compensation activities, and/or message
correlation. While this is a simple and straightforward approach, it has several draw-
backs, which reduce its applicability to advanced scenarios. The most important
drawbacks are that (1) it enables only static and not dynamic customization (i.e.,
change of running process instance), and that (2) it cannot be applied in cases when
the base business process is defined by a standardization body and its description can-
not be changed easily. The latter drawback can be addressed if the base process de-
scription is copied and then manually changed into a description of a new business
process. However, this approach also does not address dynamic customization.
In addition, it significantly reduces maintainability because if a change in the base
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process occurs, descriptions of all customized processes have to be updated manually.
When dynamic customization is needed, it is usually advantageous to externalize de-
scriptions of specifics of individual cases from the description of the base process.
This simplifies development, composition, and management activities (and corre-
sponding software) and fosters reuse. Such separation of concerns is used frequently
in software engineering, e.g., in aspect-oriented programming, and distributed sys-
tems and network management, particularly policy-based management [12].

Additionally, various faults can occur relatively often and unexpectedly in distrib-
uted systems. For example, remote computers can be down or unavailable (e.g., due
to denial of service attacks), network links can be congested or broken, or remote ap-
plications can produce unexpected results due to semantic misunderstandings. In Web
services compositions, the diversity of possible faults is particularly high because
implementations of Web services have to be treated as ‘black boxes’, participants in
business-to-business (B2B) interactions usually relinquish no or very little control to
other participants, and SOAP communication mostly uses unmanaged Internet infra-
structure. On the other hand, Web services compositions often implement business-
critical processes whose correct and uninterrupted operation is paramount. Therefore,
to achieve dependable business processes, Web services compositions have to be
made reliable. Reliability can be defined as the continuity of correct service delivery.
This implies zero or, at worst, relatively few failures and rapid recovery time. Reli-
ability of Web services compositions is a complex and challenging task that has to be
addressed at several layers: service provider layer (e.g., service hosting containers),
transport layer, SOAP messaging layer, and business process layer. Some reliability
aspects (e.g., invocation retries) can be solved at different layers with different trade-
offs, but some reliability aspects are best solved only at one particular layer (e.g., in-
fluences of dependencies between activities on the reliability of the whole process can
be determined only at the business process layer). In our approach, events can trigger
cross-layer adaptation that could span both the process layer and the messaging layer.
Among the advantages of the adaptation at the messaging layer is the potential reus-
ability across process instances and process types. In particular, executing faults han-
dling policies at the messaging layer shields faults from the process orchestration.

During the last several years, a number of academic papers (e.g., [13]), industrial
standardization efforts (e.g., WS-ReliableMessaging, WS-Reliability, WS-
Transaction), and industrial products have made contributions to improving reliability
at different layers. However, they have limitations, particularly in the diversity of
events (e.g., QoS degradations that cause faults) that they can monitor and handle,
customizability and diversity of actions (apart from rollback and compensation) that
they can perform in different contexts, specification of technical (e.g., performance,
security) and business benefits/costs of particular actions, and cross-layer integration
of reliability solutions at different layers (e.g., retries considered only at the SOAP
messaging layer could cause business process timeout). One of the recent research
trends to address reliability issues is augmenting Web services middleware with
autonomous behavior capabilities such as self-healing and self-configuring [15]. Our
work belongs to this emerging direction.

Policies can be used for representation of all types of adaptation and monitoring
activities. The term 'policy' is used in different ways in the literature. A general defini-
tion is that a policy is a declarative, high-level description of goals to be achieved and
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actions to be taken in different situations. There are different types of policies, but in
this paper we focus on Event-Condition-Action (ECA) rules [9]. Such a rule specifies
a triggering event (e.g., arrival of a message, start of a process instance, runtime fault,
or performance problem), additional conditions to be satisfied (e.g., referring to proc-
ess state or history), and actions to be taken (e.g., change of a process instance) when
the event occurs and the conditions are satisfied. The main advantage of policies over
alternatives (e.g., aspect-oriented programming) is that policies are higher-level ab-
stractions, so humans (e.g., business analysts) can specify them more easily.

In this paper, we present our work on policy-based middleware, called Manageable
and Adaptive Service Compositions (MASC) (http://masc.web.cse.unsw.edu.au), for
dynamic self-adaptation of Web services compositions to various changes. While
some of our previous publications, particularly [6], also discuss some aspects of our
work in this area, this paper complements them by providing both an overall picture
of our research and additional technical details about our recent solutions. MASC is
an evolution of our previous research of middleware for Web services. It integrates
and extends our previous middleware-related projects, the Web Services Message Bus
(wsBus) [5] and AdaptiveBPEL [7]. In addition, we have performed a technology
switch — while our previous projects were built with Java-based technologies, the new
implementation of MASC is based on the novel Microsoft NET Framework 3.0 tech-
nologies and C#. An important aspect of our work on the MASC middleware is that
we aim to provide policy-based adaptation (particularly optimization and prevention)
based on maximizing business metrics (e.g., profit). This complements current works
on dynamic adaptation of Web services compositions, which mostly focus on maxi-
mizing technical QoS metrics (e.g., throughput), but rarely ([11]) study business met-
rics in detail.

This section provided an introduction to our research and summarized our motiva-
tion. The second section presents MASC middleware solutions for customization of
Web services compositions. We elaborate our .NET-based architecture and imple-
mentation and explain their evaluation on a stock trading case study. The third section
presents our middleware solutions for corrective adaptation of Web services composi-
tions to improve their reliability. We discuss our Java-based architecture and imple-
mentation of wsBus and its evaluation on a supply chain management case study.
wsBus is now a part of the MASC project, so their relationships are discussed in the
third section. The fourth section compares our research with related work, while the
last section summarizes conclusions and outlines our future work.

2 Middleware for Policy-Based Customization

To be able to perform policy-based management, it is necessary to define an appro-
priate machine processeable and precise format for policy specification. We have
been developing a novel XML (Extensible Markup Language) format, called WS-
Policy4MASC. Its goal is to enable specification of policies for monitoring of func-
tional and QoS aspects (such as performance and reliability) and different types of
adaptation for Web services and their compositions, in a way that can be used
for automatic configuration of our MASC middleware presented in this section. Our
language is an extension of the Web Services Policy Framework (WS-Policy) [16], an
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industrial specification standardized by the World Wide Web Consortium (W3C). In
WS-Policy, policies are collections of policy alternatives, which are collections of
policy assertions. WS-Policy Attachment defines a generic mechanism to associate a
policy with subjects (e.g., WSDL elements) to which the policy applies. WS-Policy is
a general and extensible framework for specification of policies for Web services and
it has very good properties in this respect. However, it does not contain detailed rules
for specification of policies in particular areas, such as security, QoS monitoring, and
adaptation. Specification of such detailed rules is left for WS-Policy extensions. Un-
fortunately, only extensions for security, reliable messaging, and a few other man-
agement areas that are not the focus of our project have been suggested. Therefore,
we had to develop a new WS-Policy extension for use in our middleware. WS-
Policy4AMASC is also compatible with other Web services standards such as WSDL
and BPEL, as well as Microsoft .NET 3.0 technologies. Since our MASC middleware
has ambitious goals in several areas, WS-Policy4AMASC offers a number of constructs
for powerful and precise policy specification. Details and examples of the WS-
PolicydAMASC expressive power and syntax will be given in a future publication. We
only provide here a short overview of the current support for customization policies.
An adaptation (including customization) policy in the current version of WS-
Policy4AMASC can define events which cause its evaluation, optional conditions on its
relevance (e.g., a policy may be relevant only in particular contexts), a state in which
the adapted system (e.g., a Web services composition) should be before the adapta-
tion, additional conditions on the adapted system (e.g., historical values of QoS met-
rics), a set of actions to be taken if all previous conditions are met, a state in which the
system will be after the adaptation, and change of business value (e.g., monetary
payments) associated with this adaptation. The basic adaptation actions include re-
moval, addition, and replacement. In removal and replacement, an activity or an activ-
ity block in a base business process is deleted. All business processes, including base
processes and variation processes, are defined in appropriate other documents (e.g.,
BPEL files), so they are only referenced in WS-Policy4MASC policies. Thus, an ac-
tivity block is specified using beginning and ending points. In addition and replace-
ment, a new variation process or a single activity is inserted into a particular point in a
base process. If the inserted single activity is a Web services call, the policy can spec-
ify a particular Web service or a set of criteria for dynamically selecting the best Web
service from a directory. Data exchange (i.e., required parameters binding and value
passing) between a base process and a variation process/activity is also described.

2.1 Architecture of MASC Support for Customization and Its Implementation

To enable different types of adaptation of Web services compositions, we have been
developing the MASC middleware. It extends the new Microsoft .NET Framework
3.0 (currently in pre-release - http://www.netfx3.com/), particularly its components
the Windows Communication Foundation (WCF) and the Windows Workflow Foun-
dation (WF). For the MASC solutions presented in this section, the extensions of WF
are more important. WF provides an extensible framework for building processes
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Fig. 1. Architecture of MASC support for customization of Web services compositions

(workflows) and embedding them into .NET applications to orchestrate activities of
objects and services. In this respect, a WF process can represent a Web services com-
position (orchestration). WF processes are defined in Microsoft’s Extensible Applica-
tions Markup Language (XAML, but file extension for WF is ‘.xoml’) and not BPEL.
Translation between XAML and BPEL is promised for a future version. The glue
code for connecting activities, such as activity input validation, can be encapsulated
into a ‘code beside’ .NET class. To execute a process, WF has a lightweight WF run-
time engine that can be hosted in any .NET application. The WF runtime engine man-
ages the instantiation and execution of the workflow activities. Additionally, it takes
care of different middleware concerns through an extensible set of WF runtime ser-
vices (e.g., Tracking, Persistence and Transaction support are built-in). Therefore, we
designed and implemented another WF runtime service, named MASCAdaptation-
Service, for policy-based adaptation of Web services compositions implemented as
WF processes. It currently enables static and dynamic customization, while its future
version will provide support for static and dynamic corrective, optimizing, and pre-
ventive adaptation based on maximizing business metrics. The support for dynamic
adaptation means that MASCAdaptationService can use policies to change a running
process instance without any changes to process definition or implementation of ac-
tivities (e.g., composed Web services). The WF runtime engine can be configured to
include MASCAdaptationService and support its operation. MASC is a complex mid-
dleware with many modules (some of which are not yet implemented). For readability
purposes, we will describe in this section only MASC support for customization. The
overall architecture of MASC will be given in another publication.

The conceptual architecture of the MASC support for policy-based customization is
shown in Figure 1. We have implemented its prototype in C#. Monitoring and adapta-
tion policy assertions are stored in a policy repository, which is a collection of instances
of policy classes. The policy classes are generated automatically from the WS-
Policy4MASC schema, using an XML-schema-to-C#-classes generator (in our case, the
XSD tool from .NET). When the MASCAdaptationService starts, our MASCPolicy-
Parser imports WS-Policy4AMASC files, creates instances of corresponding policy
classes, and stores these instances in the policy repository. Static customization
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is started when the WF runtime raises an event that a process instance is created. Dy-
namic customization is started when the MASCMonitoringService module raises an
event that for a particular process instance it detected (e.g., by introspecting exchanged
SOAP messages and/or measuring QoS metrics such as response time) adaptation
pre-conditions specified in monitoring policies. Such events can also be raised by the
MonitoringStore database in situations when adaptation pre-conditions refer to several
different SOAP messages. For both static and dynamic adaptation, the raised events are
handled by MASCPolicyDecisionMaker, which determines adaptation policy assertions
to be applied to the process instance and sends an event to MASCAdaptationService.
Policy priorities are used to determine the order of execution if several policy assertions
apply per event. In case of dynamic adaptation, MASCAdaptationService suspends the
running process instance to be adapted. Then, it asks the WF runtime engine for a de-
scription of the process to be adapted and gets back a transient copy of the process’
object representation. For this copy, MASCAdaptationService performs the changes
specified in the policies, using primitives built into the WF runtime. If data exchange is
required between the base process and the variation processes/activities, our service also
takes care of required parameters binding and value passing between base processes and
their variation processes. When MASCAdaptationService passes the modified copy of
the process’ object representation back to the WF runtime, the latter applies the changes
using built-in algorithms. After this, the execution of the adapted process instance is
resumed.

2.2 MASC Evaluation on the Stock Trading Case Study

The MASC support for customization has been evaluated and demonstrated in various
adaptation scenarios using a simplified Stock Trading case study implemented with
C#, NET 3.0, and MASC. Parts of this case study are shown in Figure 2. The base
Trading Process is initiated when a human investor places an investment or redemp-
tion order with their FundManagerService. The latter, after verifying the order, in-
vokes the Financial AnalysisService to get a recommendation to enable an informed
investment/redemption decision. The Financial AnalysisService gets periodic notifica-
tions from the StockNotificationService about the current stock values and real-time
market surveillance, announcements, quotes, and other information. Based on this
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information, historical records, and predictive models built into the service (for our
prototype, we used very simple models), the Financial AnalysisService informs the
FundManagerService about how well certain stocks are performing. The FundMan-
agerService makes a decision which stock to buy/sell for the monetary amount re-
quested by the investor. (In our prototype, this decision is very simple, e.g., buy one
best stock or sell as many poorly performing stocks as needed to get the redeemed
money.) Then, the FundManagerService sends the buying/selling request to the
StockMarketService. The latter performs a simple trade matching between the buy
orders and the sell orders. When a trade match is formed, the StockMarketService
invokes in parallel the StockRegistryService to transfer the stock share ownership and
the PaymentService to transfer funds. Note that, with the exception of the FundMan-
agerService, there can be multiple different services of the same type in the composi-
tion. For example, there can be more than one FinancialAnalysisService, e.g.,
provided by different vendors and/or performing different types of financial analyses.

To evaluate MASC’s static and dynamic adaptation capabilities, we have con-
ducted several experiments to customize the base business process for national
stock trading, described above, to support international stock trading. WS-
Policy4AMASC was used for policy description. Among the conducted experiments
was dynamic addition of a CurrencyConversion Web service (CC;, CC,...CC,) to
convert stock prices of foreign stocks to a local currency. Also, depending on the
country of foreign stock, a PESTAnalysis Web service (PS;, PS,...PS,) was added
to assess the non-financial aspects (political, economic, social and technology) that
influence the trade. Additionally, monitoring policies were used to define con-
straints over the trade transaction amount and/or the customer's profile (e.g., per-
sonal investor vs. corporate investor) to dynamically add a CreditRating Web
service (CR;, CR,...CR,) before processing the trade. In terms of removing activi-
ties, we have experimented with dynamic removal of the invocation of Market-
ComplianceService when the trade amount is less than a particular threshold. The
conducted experiments were successful and demonstrated feasibility and usefulness
of the MASC approach in adding dynamic customization capabilities to existing
Web services compositions, guided by declarative policies specified in WS-
PolicydAMASC. MASC has provided a solution for policy-based static and dynamic
customization without any changes to either the process definition or the constituent
services implementations. All that is needed is a WS-Policy4AMASC document de-
scribing monitoring and adaptation policies to be enforced. When a WS-
Policy4AMASC document changes, these changes are automatically enforced the
next time adaptation is needed with no need to restart any software component. The
above scenarios will be further extended to evaluate MASC and WS-Policy4MASC
support for corrective, optimizing, and preventive optimization, once they are
completed.

3 Middleware for Policy-Based Corrective Adaptation

Our work addresses reliability at the business process layer and the SOAP messaging
layer by specifying and enforcing monitoring policies to help in fault detection and
corrective adaptation policies to guide fault correction. It is complementary to the
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existing approaches and provides: (1) coordination of fault handling across these two
layers, (2) greater diversity of monitoring and control constructs, (3) specification of
both technical and business aspects that can be used for adaptation decisions, (4)
higher level of abstraction easier for use by non-technical people, and (5) externaliza-
tion of monitoring and adaptation actions from definitions of business processes.

Our main past project in the area of reliability of Web services compositions was
the wsBus middleware built using Java-based technologies and an early version of our
WS-Policy extensions in this area (the name ‘WS-Policy4AMASC’ was not used at that
time). As mentioned in the introductory section, our focus has recently shifted to-
wards the more general MASC middleware built upon .NET technologies. WS-
PolicydAMASC grammar was also updated. We have been working on integrating
wsBus solutions with other parts of MASC, including .NET and C# reimplementation
and support for the new WS-PolicyAMASC grammar. However, since our results are
still more complete for the Java-based implementation of wsBus, we will describe it
in this paper and leave discussion of recent improvement for another publication.

Policies that can be enforced by the Java-based version of wsBus are specified in a
WS-Policy extension described and illustrated in [6]. The main types of actions in
these policies are: invocation retries, Web services substitution, concurrent invocation
of multiple equivalent services, skipping of activities, and relatively simple dynamic
changes of process instances (e.g., add/remove/skip an activity, change sequence of
activities, delay/suspend/resume/terminate process). Only the latter is at the business
process layer, while the others are at the SOAP messaging layer. In this way, they
complement the policies described in the previous section, which are all at the busi-
ness process layer.

3.1 Architecture of wsBus and Its Implementation

This section presents the architecture of wsBus with emphasis on the modules that
facilitate the enactment of adaptation policies. As shown in Figure 3, adaptation poli-
cies supported by wsBus work via injecting runtime inspectors and custom Message
Processing Modules into a messaging pipeline at different message processing stages
such as before sending a request and after receiving a response. These custom mod-
ules can be applied at different scopes such as the whole service, a particular endpoint
or a particular service operation. For example, the Invocation Retry Handler places
the messages that fail to be delivered in a retry queue and the queue reader tries rede-
livery using the pattern specified by the used recovery policy. Messages for which
processing repeatedly fails are placed in a ‘dead letter’ queue after exhausting the
maximum number of allowed retries and no further delivery will be attempted.

wsBus key architectural abstraction is the concept of a Virtual End Point (VEP). A
VEP allows virtualization by grouping a set of functionally equivalent services and
exposes an abstract WSDL for accessing the configured services (e.g., Web search
service exposing Google, Yahoo and MSN search as one virtual service). The
grouped services might have different QoS properties. The VEP acts as a recovery
block and various runtime policies can be associating with it.
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wsBus can be deployed either as a gateway to a Process Orchestration Engine or it
can act as a transparent HTTP Proxy. In the first case the Process Orchestration En-
gine should be configured to explicitly direct service calls to the virtual endpoints
configured in wsBus and the later routes request messages to the real services. The
VEP takes care of the dynamic Find, Select, Bind and Invoke on behalf of the BPEL
engine, using the configured selection and binding policies. The VEP does ‘on the fly’
selection of service provider or intermediary based on a selection criteria specified in
the policy attached to the VEP, such as message content and context (e.g., requester
profile), or the service provider’s capabilities or QoS of prior interactions. The VEP
then manages the automatic enforcement of adaptation policies (e.g., retry and substi-
tute policies) by inspecting messages going into and out of the composed services and
interposing additional Message Processing Modules along the message pipeline. To
decide the relevant Message Processing Modules applicable to a given message, the
VEP uses simple rules expressed as a regular expression or XPath query against the
header or the payload of the message. Additionally, the VEP provides middleware
services to service compositions such as QoS measurement and monitoring, conversa-
tion management and fault management. Our fault management approach is based on
two models: (1) the capturing model uses assertion-based monitoring to detect faults
and to notify the relevant middleware component, and (2) the handling model uses
adaptation policies represents to resolve faults. For example, a policy might stipulate
that for particular type of faults, the VEP should retry to the original service and if the
fault persists then it should select an equivalent backup service.

The enactment of adaptation policies is managed by the following key components:

1) QoS Measurement Service is responsible for management data collection and
analysis either through direct computation of QoS metrics (e.g., collecting statistical
metrics about the performance) or via periodic probing for management information
from other management intermediaries (e.g., third QoS measurement entity). The key
QoS metrics measured by this component are: (a) Reliability (calculated as a ratio of
successful invocations over the number of total invocations in given period of time);
(b) Response Time (the time interval between when a service is requested and when it
is delivered; (c) Availability: the percentage of time that a service is available during
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some time interval. Because the lack of space, the QoS measurement algorithms are
not presented is this paper.

2) Monitoring service continuously monitors interactions with the participating
services to verify that the configured monitoring policies are being satisfied and to
detect any condition changes such as faults. The monitoring policies specify the de-
sired behavior of the system in terms of (a) pre-conditions and post-conditions that
express constraints over exchanged messages (b) thresholds over QoS guarantees (e.g.
service response time) as stipulated in pre-established Service Level Agreements
(SLAs). The monitoring policies can be attached to Monitoring Points at various lev-
els of granularity such as a Service Endpoint or a Service Operation. For example, the
monitoring policies could specify that exchanged messages between participant ser-
vices must be validated to ensure conformance to the service contract expected by the
service composition. The Monitoring Service also supports events-based monitoring
to detect fault events and recognize their type. Various techniques are used to achieve
this. First, the Monitoring Service listens to fault messages returned by invoked ser-
vices as specified in their WSDL interface. Faults can also be identified based on
management events coming from internal or external management systems, such as
hardware or network failure faults. Also, the Web services Invoker component can
use timers to raise timeout faults when the service does not respond within the set
timeout interval.

The monitoring policy uses XPath to reference variables defined in the header or
the body of the WSDL contract of constituent services (e.g., the CustomerID of Pur-
chaseOrder message). During the evaluation of the monitoring assertions, the Moni-
toring Service might reference data from external sources to obtain data not available
in the exchange messages. The source of such external data as specified as Web ser-
vice calls in the monitoring assertions, such as calling a QoS measurement service or
querying the log of prior interactions to get some historical data.

When an undesirable condition is detected, then the Monitoring service uses ECA
rules to assign a meaningful fault type to the violation event, such as Service Unavail-
able Fault, SLA Violation Fault, Service Failure Fault and Timeout Fault. The fault is
then passed to the Adaptation Manager along with all the data required for recovery
(i.e., ProcessInstancelD of the process instance to be adapted, and a Context Collec-
tion that contains relevant data that could be needed during the adaptation.)

3) Adaptation Manager decides and coordinates the execution of appropriate adap-
tation action(s) to restore the system to an acceptable state using adaptation policies
configured at the VEP. Currently our adaptation policies use a rule-based approach to
specify the necessary adaptations per fault type. Such a rule-based approach is more
flexible as it can handle wider variety of faults whether coming from the infrastruc-
ture or from the partner services. Also the process specification is kept simple and
uncluttered through the separation of the process logic and fault handling policies.
The adaptation action could be simple or composite. It could be specified to be en-
acted either at the SOAP messaging layer (such as retry a service call) or at the proc-
ess orchestration layer (such as skip a process activity or add/remove activity) or
sometimes at both layers. For example, before retrying invocation of a faulty service,
the adaptation policy might stipulate that MASCAdaptationService should first sus-
pend the calling process instance (until the execution of the adaptation actions is
completed) or increase its timeout interval to avoid the calling process timing out. To



Policy-Driven Middleware for Self-adaptation of Web Services Compositions 73

be able to decide the process instance to be adapted, MASCAdaptationService trans-
parently adds the ProcessInstancelD of the calling process to outgoing SOAP mes-
sages (using the RelatesTo Message Addressing Header). When multiple adaptation
policies are specified per fault type, policy priorities are used to determine the order
of execution of the adaptation actions. For example, a policy could stipulate that the
VEP should first attempt n retries before failover to a known backup service. The
policy decision manager passes an object representation of the adaptation actions to
the relevant policy enforcement point(s) to execute the adaptation policy.

4) Web services Selection service manages the dynamic mapping of abstract Web
services defined in the composition to concrete Web services. This allows shielding
the orchestration engine from changes to available services. Hence, adding, modifying
and selecting among available services could be done without the need to complicate
the process with the routing logic for deciding which concrete services to use. The
selection of services among the equivalent services registered with a VEP is done
using various selection policies. A VEP can be configured to choose between regis-
tered services in round-robin fashion, or to select the best performing service (based
on the QoS metrics gathered from prior interactions or from other management enti-
ties), or to ‘broadcast’ the request message to multiple targets service providers con-
currently and consider the first one that respond, all pending invocations are then
aborted and their responses are ignored. The concurrent invocation of equivalent ser-
vices is accomplished by making a copy of the message and modifying its route, then
invoking multiple target services using concurrent invocation threads. This strategy is
more suitable for data lookup services and freely available services such as Web
search.

5) Message Inspectors/Processing Modules implements common handlers for en-
forcing typical adaptation policies. These handlers can be configured as a pipeline to
manipulate and pre/post-process both request and response messages as instructed by
adaptation policies. Among the handlers provided by this component is a Message
Logger to log the messages as they pass through the messaging layer. This is useful
for debugging problems, meter usage for subsequent billing to users, or trace busi-
ness-level events, such as transaction over a certain amount. It can also be used for
data inspection, or for service management.

6) Message Adaptation Service is a Message Processing Module that handles data
transformation and enrichment to resolve incompatibilities between services regis-
tered with a particular VEP (i.e., structural, value and encoding mismatches). Various
transformation patterns are supported, such as transform a message payload from the
one schema to another; attach additional data from external sources, such as Web ser-
vices calls or from database queries; split/merge messages; buffer multiple messages
and aggregate them into a single one before sending them to the destination service.
These transformation modules can be composed into a pipeline to transform and relay
messages.

3.2 wsBus Evaluation on the WS-I Supply Chain Management Case Study

We conducted a series of benchmarking tests to assess effectiveness (i.e., impact on
reliability) and efficiency (i.e., impact on performance) of wsBus in enhancing
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reliability of Web services interactions. Our secondary aim for these tests was to dis-
cover areas of the platform that need further improvement. We used an extended
Java-based implementation of WS-I (Web Services Interoperability) Supply Chain
Management (SCM) application [17]. The SCM scenarios, as shown in Figure 4, are
designed as Web services based interactions that simulate business activity of an
online supplier of electronic goods. First a Web client calls the Retailer service's get-
Catalog operation. When the user submits the order, the Web client calls the Retailer
service's submitOrder operation. To fulfill orders, the Retailer Web service manages
stock levels in three warehouses (WA, WB, and WC). If Warehouse A cannot fulfill
an order, the Retailer checks Warehouse B; if Warehouse B cannot, the Retailer
checks Warehouse C. When an item in a Warehouse stock falls below a certain
threshold, the Warehouse must restock the item from the Manufacturer's inventory
(MA, MB, and MC). Each use case includes a logging call to a Logging Service to
monitor activities of the services. A customer can track orders by using the getEvents
operation of the Logging Facility Web service. During the SCM process enactment,
participating Web services can log events by calling the logEvent operation of the
Logging Facility Web service. Optionally, there is a Configuration Web service that
lists all implementations registered in the UDDI registry for each of the Web Services
in the sample application.

Our experimental setup consisted of 2 run-time configurations: 1) wsBus was not
used and all invocations were direct (point-to-point) between the Web services, and 2)
wsBus was placed at the client side and acted as an intermediary (broker, mediator).
Both configurations used identical application logic implemented in Java. We simu-
lated multiple concurrent Web service clients, each of which invoked deployed
services multiple times. We used Apache's JMeter 2.1.1, a load generator toolset, to
generate the workload and to measure the observed performance. We deployed the
SCM backend Web services (Retailers, Warehouses, and Manufacturers) at a P4
2.8GHz, 1GB RAM server running Windows 2003, Tomcat 5.5 and Axis 2. JMeter
stress tool (acting as the client) and wsBus were deployed at a Windows XP laptop
with P4 2.8GHz and 500MB RAM. The machines were connected by a I00MB LAN.

To estimate the impact on reliability and robustness of the wsBus solution in re-
sponse to QoS changes and service failures, we wrote test code that occasionally (at
random times) injected exception events in the tested system. For service failures, we
randomly picked some of available services and made them unavailable for a random
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amount of time. For service QoS degradations, test code occasionally picked some
service instances and changed their QoS values (e.g., introduced delays). We have
defined monitoring policies and corrective adaptation policies for the experiments
using wsBus. Monitoring policies configured messaging pipeline inspectors to inter-
cept faults (e.g., fault message returned from the service provider, timeout fault mes-
sage returned from the Web services invoker, QoS degradation event raised by the
QoS constraints evaluator). When a fault was detected, the wsBus VEP used correc-
tive adaptation policies to decide the adaptation actions. For timeout faults, these
policies configured the VEP for the Retailers to first retry the invocation of the faulty
services three times with a delay between retry cycles of two seconds. After exhaust-
ing the maximum number of allowed retries, the policies configured the VEP to route
the request message to a different Retailer based on the response time gathered from
prior interactions. (In other experiments, we have defined policies that configured
concurrent invocation of the four Retailer services and considered the results coming
from the first responding service.) For the Logging service we have configured a skip
policy since the functionality provided by the Logging service is not business critical.

Table 1. Reliability and availability of direct interactions vs. channeling through wsBus

Reliability Availability

Direct Web services in- Only Retailer A used by | 105 failures per 0952
vocations without wsBus | the client 1000 requests )
mediation Only Retailer B used by | 81 failures per 0.992

the client 1000 requests )

Only Retailer C used by | 17 failures per 0.998

the client 1000 requests )

Only Retailer D used by | 91 failures per 0.983

the client 1000 requests )
Web services invocations | All 4 Retailer services 6 failures per 0.998
with wsBus mediation exposed as 1 wsBus VEP 1000 requests

In a representative experiment, we compared reliability and availability of the get-
Catalog operation in cases when a client directly calls one of the Retailer Web ser-
vices (which have occasional random faults) and cases when the client calls Retailer
Web services (with the same occasional random faults) through 1 VEP of the client-
side wsBus. Reliability was measured as a number of failures seen by the client per
1000 requests. Availability was calculated as mean time between failures divided with
the sum of mean time between failures and mean time to recover. The test results in
Table 1 show that reliability and availability in cases when wsBus was used improved
compared to cases when only direct interaction with individual Retailers was used.
This is a simple experiment that enabled us to perform quantitative comparisons.
Qualitative comparisons are more straightforward — when there are complex failures,
wsBus adds useful corrective adaptation. How much useful and appropriate the adap-
tation is in particular circumstances, depends solely on the policies and their priorities
—if a human defines an inappropriate policy, wsBus will try to enforce it.
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Fig. 5. Round trip time (RTT) for direct interactions vs. channeling through wsBus

To estimate the impact of introducing wsBus on performance of Web services
compositions, we used the implemented SCM Web services composition to measure
and examine 2 key performance metrics: round trip time and throughput. Round Trip
Time (RTT) is defined as the period from the time a service consumer sends a request
to the time when it successfully receives full reply from its service provider. It in-
cludes execution time of the service implementation, time consumed by the support-
ing provider-side software (e.g., application server, Web server, database server),
queue waiting time (if any) inside wsBus, and network delays. Throughput is defined
as the average number of successful requests processed in a sampling period.

Figure 5 shows round trip time for getCatalogue and submitOrder requests with
varying request sizes. Each data point represents the average latency value over three
independent runs of up to 2000 requests each and performed measures at different
load levels. The delay between requests is set to zero to increase the load on the
server. These data show that channeling of SOAP through wsBus is slower (usually
about 10%, which is not drastic) than direct SOAP-over-HTTP, due to the overheads
introduces by the added QoS features in wsBus. Our analysis of the main reasons of
delays introduced by wsBus points to the high number of threads created to serve the
requests. When a message arrives at the Listener component, a thread is created to
serve the request, and this does not scale well with high number of requests. This will
be avoided in our new .NET reimplementation of wsBus. Another important source of
wsBus delays is the need to import, parse, and process policies. In our .NET reimple-
mentation of wsBus we will minimize this overhead by working with object represen-
tation of policies, which is updated only when policies change.

4 Related Work

While Web services based business processes are gaining wider adoption, tools and
middleware frameworks in this space do not yet provide adequate support for model-
ing and enacting dynamic process adaptations. Several ongoing academic and indus-
trial efforts recognize the need to extend Web services composition middleware with
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mechanisms to provide dynamic adaptation. However, our work has unique character-
istics. We adopt a policy-based approach that builds on the established policy-based
management principles [12], while decoupling between sensors that monitor and de-
tect adaptation triggers and effectors that react to and handle such triggers. Our mid-
dleware performs different types of adaptation and contains solutions at different Web
services middleware layers. Also, our technological base is different (extensions of
WS-Policy and Microsoft. NET 3.0 have not been previously studied in detail), which
leads to different architectural solutions. Furthermore, the ultimate goal of our re-
search in this area is business-driven adaptation of Web services compositions, while
related works aim at improvement of technical metrics. We briefly discuss next how
our work differs from and complements the main recently published works.

Probably the closest related work is the service monitoring approach presented in
[1]. The authors proposed the Web Service Constraint Language (WS-CoL) for speci-
fying client-side monitoring policies, particularly those related to security. At de-
ployment time, WS-CoL constraints attached to a process are translated into BPEL
invoke activities that call the Monitoring Manager, the component in charge of run-
time evaluation of monitoring policies to detect anomalous conditions. This approach
is similar to ours in that monitoring policies are specified externally rather than being
embedded into the process specification. The proposed approach achieves the desired
reusability and separation of concerns. However, it only provides support for monitor-
ing and focuses mainly on security. On the other hand, our approach is more focused
on adaptation (rather than just monitoring) to customize the process to cater for spe-
cial cases or to handle faults and address anomalous situations.

Another related work is [3], which suggested an aspect-oriented extension to BPEL
to enable dynamic weaving of aspects into Web services compositions. In their work,
a process runs inside a process container that provides middleware services to BPEL
processes. However, we believe that some of the QoS aspects that they tried to ad-
dress, e.g. security and state persistence, can be addressed more naturally via intercep-
tion at lower-layer messaging middleware rather than augmenting a BPEL engine
with the ability to call low-level middleware services. We argue that a process should
focus solely on the control flow and message routing between composed services. On
the other hand, enforcement of adaptation policies in our approach can be either dele-
gated to the underlying SOAP messaging middleware that mediates the Web services
interactions or enacted by the process orchestration engine via dynamic adaptation of
Web services composition instances. This operation at the SOAP messaging layer can
shield the process orchestration layer from the need to provide fault management.

In [8], the authors presented RobustBPEL as an approach to improve reliability of
BPEL processes via automatic generation of exceptions handling BPEL constructs, as
well as generation of a Web services proxy for each participating service to discover
and bind to equivalent Web services that can substitute a faulty service. However, the
proposed approach does not consider potential dependencies between Web service
operations. Our approach is more general and controls adaptation using policies that
can be checked for consistency.

Significant progress (e.g., see [14]) has been achieved in the field of dynamic com-
position of Web services by leveraging artificial intelligence planning and semantic
Web services to obtain new Web service compositions when the measured QoS violates
a Service Level Agreement (SLA). However, such approaches incur considerable
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overhead and their practical applicability to business problems is still to be proven. We
argue that our approach is more practical and lightweight.

Our MASC middleware can also be seen as a complement to Web services man-
agement (WSM) systems, such as the Web Service Offerings Infrastructure (WSOI)
[16]. These systems provided mechanisms for measuring, evaluating, and managing
Web services to ensure that QoS objectives are met. The central concept in such sys-
tems is often an XML-based contract that formally specifies QoS assurances (e.g.,
about response time, throughput, availability, and reliability). However, most of the
proposed approaches focus on monitoring and/or QoS-based selection of individual
Web services. Our work aims to go beyond the past approaches towards self-adaptive
and more agile business processes implemented as Web services compositions.

The work in [2] proposed a general extension of the service oriented architecture
to support autonomic behavior of Web services, but the proposed architecture does
not address the requirements of adaptive business process execution.

5 Conclusions and Future Work

Dynamic adaptation of Web services compositions is an important step towards agile
business processes that need to continually adapt to keep fulfilling the functional and
QoS requirements of their dynamic business environment. In this paper, we presented
MASC - a policy-based middleware for monitoring and adaptation of Web services
compositions. The underlying design principle of our approach is the separation of
concerns between the process definition and the monitoring and control, considerably
simplifying Web services composition development and management. The benefits of
the work presented in this paper are of twofold:

(1) A novel language, WS-Policy4MASC, is used to declaratively specify monitoring
policies for detection of adaptation needs (e.g., special cases and faults) and adapta-
tion policies that guide process reconfiguration (e.g., fault correction). The externali-
zation and explicit definition of such policies helps in keeping the Web services
composition simple and uncluttered. Further, these policies can evolve independently,
while allowing potential reuse.

(2) The new MASC middleware architecture has been designed and implemented to
autonomously make and coordinate enforcement of runtime adaptation decisions
across both the business process orchestration layer and the SOAP messaging layer.
Currently, MASC supports both static and dynamic customization of Web services
composition instances, as well as corrective adaptation at the messaging layer.

The paper reports the progress on MASC middleware design and implementation
and highlights how our previous work on the wsBus and adaptation strategies fits into
the overall MASC architecture. To demonstrate feasibility and evaluate effectiveness
of our adaptation techniques at the SOAP messaging layer, wsBus was deployed in a
supply chain management Web services composition. The preliminary measurements
confirmed improved availability and reliability at an acceptable increase in latency.
Also, feasibility of our process-level static and dynamic customization was assessed
using scenarios from the stock trading domain.

Our ongoing work is on providing support for other types of adaptation, i.e., cor-
rective adaptation at the business process orchestration layer to handle process-level
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faults, optimizing adaptation to improve extra-functional properties, and preventive
adaptation to avoid future faults and/or QoS degradations before they occur. We are
also extending our middleware to enable making and enacting adaptation decisions
(e.g., optimal configuration of running Web services compositions) based on not only
event-condition-action rules, but also more abstract utility/goal policies describing
how to determine business benefits/costs and maximize business value by performing
adaptations. These ambitious extensions aim to position MASC as a middleware for
autonomic business-driven management of Web services compositions.
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Abstract. Application-level nondeterminism can lead to inconsistent
state that defeats the purpose of replication as a fault-tolerance strat-
egy. We present Midas, a new approach for living with nondeterminism
in distributed, replicated, middleware applications. Midas exploits (i) the
static program analysis of the application’s source code prior to replica
deployment and (ii) the online compensation of replica divergence even
as replicas execute. We identify the sources of nondeterminism within the
application, discriminate between actual and superficial nondeterminism,
and track the propagation of actual nondeterminism. We evaluate our
techniques for the active replication of servers using micro-benchmarks
that contain various sources (multi-threading, system calls and propaga-
tion) of nondeterminism.

1 Motivation

Replication is a common technique used to build fault-tolerant, distributed sys-
tems. The idea behind replication is the creation and distribution of multiple,
identical copies (replicas) of a component across a system so that the failure of a
replica can be masked by the availability of the other replicas. Determinism is a
fundamental property required in order for replication to work. A component is
said to be deterministic if it contains no characteristics that could cause replicas
to become inconsistent with each other. In other words, identical replicas, when
started from the same initial state and supplied the same ordered sequence of
input messages, should reach the same final state and produce the same output.

A simplistic, but effective, strategy is to disallow the use of any nondetermin-
istic functionality within applications that are to be replicated — effectively, this
forbids the use of multithreading, shared memory, local I/O, system calls, ran-
dom numbers, timers, etc. This is, in fact, the approach adopted by industrial
standards, such as Fault-Tolerant CORBA [14].

Clearly, this approach is unrealistic for real-world applications that wish to
use all of these nondeterministic functions. Current approaches to handling non-
determinism, covered in Section 8, allow nondeterminism to exist within the
application, but handle it transparently. Transparency has its accompanying
benefits, but does not exploit application-level information that might facilitate
the handling of nondeterminism. In addition, architecture/application program-
mers often need to able to exercise control and “want to worry about replica
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configuration, intervene in failure detection or enabling explicit synchronization
between replicas” [21]. With this motivation, we have developed a program-
analysis approach to handling all forms of nondeterminism (including system
calls and multithreading) — this allows us to exploit application-level insight in
handling nondeterminism. Active replication is the predominant replication style
that falls prey to nondeterminism. Therefore, our techniques are focused on how
to handle nondeterminism in architectures using active replication. However, our
techniques are easily applicable to other replication styles as well.

Contributions of this paper: Our previous research [18] showed that program
analysis could assist in handling one specific form of nondeterminism, namely,
system calls, such as gettimeofday. In our enhanced approach, Midas, described
in this paper, we handle all forms of nondeterminism, including multithreading
and contaminated nondeterminism. More specifically, the contributions of this
paper include the following;:

— Taxonomy and technique that distinguishes between nondeterminism that
is superficial (looks like a nondeterministic call, but its effects do not lead
to replica divergence) vs. actual (effects do lead to replica divergence) — this
allows us to be discriminating in that we only need to worry about addressing
the actual, and not the superficial, nondeterminism;

— Tracking the propagation (or “contamination”) of nondeterminism through
the application code — this allows us to capture the effects of nondeterministic
execution and variables on otherwise deterministic code;

— Design and empirical evaluation of various application-centric performance-
sensitive techniques that compensate for the nondeterminism that we detect
and track — these techniques range from re-executing the contaminated non-
determinism to transferring the entire application state.

2 Taxonomy of Nondeterminism

Program analysis allows us to identify the true causes in the divergence of repli-
cated state. Application state can be classified into one of three mutually exclu-
sive categories: pure nondeterminism, contaminated nondeterminism, and pure
determinism.

1. Pure nondeterminism: This covers any function that is the originating
source of nondeterminism and that affects the server’s state. Examples include
system calls such as gettimeofday or random, all inputs, and all read calls that
change the server’s state nondeterministically. An example is
for (int j = 0; j < 100; j++ ) fool j 1 = random();

Shared state among threads also falls within this category. However, we treat
shared state in a special way — each access of shared state by a thread is consid-
ered to be a separate source of nondeterminism. For example, consider a single
shared variable between two threads; if each thread accesses this variable four
times, then, there exist eight separate instances of pure nondeterminism. It is
immaterial that these eight instances happen to involve the same variable. This
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view of shared state among threads frees us from having to worry about thread
interleaving or the actual point in time when the threads execute.

2. Contaminated nondeterminism: This covers state that has any depen-
dency, direct or indirect, on an instance of pure nondeterminism. Contaminated
state captures the effect of pure nondeterminism when it propagates to the rest
of the application. In other words, the pure nondeterministic state marks the be-
ginning of nondeterministic execution. Anything that the pure nondeterministic
state then touches is contaminated. If there was no pure nondeterminism, then,
there would be no contamination. An example is the contaminated variable bar
that depends on the purely nondeterministic variable foo:
for (int j = 0; j < 100; j++ ) {

fool j 1 = random();

bar[ j + 100 1 = fool j 1; }

3. Pure determinism: This covers state that has no dependency whatsoever
on the identified pure nondeterminism. This category of state will always be con-
sistent across all server replicas. Assuming that the values in bar are initialized
to zero, an example is:

for (int j = 0; j < 100; j++ ) bar[ j 1 = bar[ j 1 + 10;

4. Superficial nondeterminism: This falls under the category of pure de-
terminism, but might be misclassified if a transparent approach to handling
nondeterminism were used. In this category, a nondeterministic call is executed,
but the end-result does not affect the application’s persistent state and does not
contaminate the rest of the application, either. An example is:

int a = random(); b = 5; return b;

Here, variable a is nondeterministic, but its value does not affect the server’s
state. More realistic examples of superficial nondeterminism are not shown here
due to lack of space. A significant source of superficial nondeterminism arises
in multithreaded applications where threads do not share any variables and do
not modify any persistent application state, or where the shared state is split up
across the threads such that each thread has its own distinct piece of state.

The value of this taxonomy, lies in its utility in compensating for nondeter-
minism. Only pure and contaminated nondeterminism need to be addressed for
replica consistency — the other categories (pure determinism and superficial non-
determinism) can be disregarded. Thus, the compensation overhead will depend
on the relative amounts of each category within an application.

3 Objectives

Our aim is to permit programmers to continue to create distributed applications
that are nondeterministic (e.g., containing performance features such as mul-
tithreading) and yet allow these applications to be made fault-tolerant. Midas
is independent of the target application and middleware and could be readily
applied to any distributed, nondeterministic application.
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In this paper, we exploit client-server middleware as the vehicle for exploring
the issues underlying nondeterminism. In particular, we target CORBA C++ ap-
plications for the application of Midas. MEAD [12], the fault-tolerant middleware
that we use, enables CORBA applications to be made fault-tolerant in multiple
ways, including active, or state-machine, replication [17]. With the active repli-
cation of a server, every server replica receives and processes each request; every
server replica also sends a response to the client, leading to duplicate responses
that need to be filtered. The MEAD infrastructure performs this filtering and de-
livers only one response to the client, thereby masking the server’s replication from
the client. Clearly, for active replication to work, the server replicas must receive
the same set of messages in the same order, which MEAD assures because it con-
veys messages over the underlying totally-ordered group communication system,
Spread [3]. Active replication traditionally requires the supported application to
be deterministic; however, we relax this requirement to allow MEAD to support
the active replication even of applications containing nondeterministic features.

Midas’ approach involves a synergistic combination of two aspects: compile-
time knowledge with run-time compensation. By exploiting program analysis to
isolate the possible places where nondeterminism can affect the system state or
behavior, we then perform code transformations (that do not violate application
semantics or expected functional behavior) to ensure consistent results across
all of the replicas. We offer the programmer various options to deal with nonde-
terminism. A side-benefit of our analysis lies in its software engineering aspect.
Because our program analysis tracks all live variables and their dependencies
on detected nondeterminism, we can assess to what extent nondeterminism per-
vades the application. This information can be beneficial to the application pro-
grammer in understanding the trade-offs and deciding between various choices
in compensating for nondeterminism.

Assumptions. Midas relies on having complete access to the application’s
source code, along with the ability to modify it prior to deployment. Specifi-
cally, we assume that we are allowed to modify the source code for the client,
the server, and the IDL interfaces of all objects. Both the client and server source
code must be available for analysis, although only the server is replicated. We
also assume that all of the application state can be determined statically — thus,
program analysis techniques that can handle dynamic state (e.g., dynamically
allocated variables whose size is unknown at compile time) are outside the scope
of this paper. Pointer-aliasing analysis is currently outside the scope of the tech-
niques highlighted in this paper; our most recent work does incorporate advanced
compiler techniques to handle dynamic memory and pointers.

For the purpose of this paper, and to describe how we handle application-
level nondeterminism, we assume the deterministic, reproducible behavior of the
operating system and the underlying middleware. While we make this simplifying
assumption in order to demonstrate our approach to handling nondeterminism,
we emphasize that Midas is general enough that we could apply it equally to
the middleware/OS source-code and address their inherent nondeterminism as
well, as describe in [19]. We also require homogeneous platforms, i.e., all of the
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replicas of the application must be hosted over identical hardware and operating
systems; future versions of our approach will be extended to cover heterogeneous
platforms. We assume an independent-failures model across distinct nodes and
replicas, and aim to tolerate crash and communication faults.

4 Program Analysis Framework

To perform program analysis, we needed to convert the C++ CORBA applica-
tion source-code into an intermediate format that is more suitable for program
analysis. We first transformed our target C++ applications into C code using
EDG [1], and then used the SUIF2 [2] compiler to transform the resulting C
code into the intermediate representation. Conversion from C++ to C allows
for easier analysis because it eliminates some complexities (e.g., object-oriented
issues) that C++ introduces. It also allows us to leverage current compiler tools
that expedite the transformation of C code into a workable, efficient intermediate
form (referred to as an annotated parse-tree henceforth).

As shown in Figure 1, Midas’ analyzer makes multiple passes through each
intermediate file, and highlights the sources of nondeterminism in the code. For
instance, a pass that discovers a nondeterministic call will annotate the return
value of that call and then track that variable as potential (contaminated) non-
determinism. For each source file, the analyzer creates a dependency file that
captures the nondeterministic behavior of the source code in that file. We then
modify the original application source-code to insert specific code-snippets for
the tracking and subsequent compensation of nondeterminism.

Enhancements to Analysis Framework. In our current program-analysis
framework, we use SUIF to generate the initial abstract syntax tree (AST). All
of the subsequent application analysis-passes are custom extensions to SUIF
because of our specific needs in analyzing nondeterminism. For instance, our
enhanced Midas framework supports thread analysis, as long as we can statically
determine the entry, exit, and launch of all threads. In addition, we perform a
complete dependency analysis to identify not only pure nondeterminism, but
also the contaminated state that depends on it.
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Some information is lost in the conversion from C++ to C, and we traverse the
C++ code to mark up the SUIF-generated AST tree to fill in this information.
The declaration of variables needs to be updated as scope is defined differently
in C and C++, and this can affect the dependency chain between variables. For
instance, in C++, the conditional block within an if, while, do-while, or for
is considered to be a new scope, unlike in C. Another example of lost information
relates to exception-handling code in try-catch blocks; try-catch blocks that
form the top-level statements of functions, constructors, or destructors must be
updated because they can affect the propagation of exceptions. Midas’ current
automated generation and insertion of code to handle our categorized nondeter-
minism includes:

— Tracking to assign unique identifiers to nondeterminism that is embedded
within specific elements of a non-scalar data structure (e.g., nondeterminism
that affects only one element of an entire array);

— Data structures to hold the variable-size state of the application;

— State-transfer operations (get state and set state) to copy state back and
forth from the application into the appropriate data structures for transfer
over the network;

— Execution that re-generates the contaminated state from the pure nondeter-
ministic state, only if the latter has been transferred.

Data-Flow Passes. We perform multiple passes over the annotated parse tree.
The first set of passes identifies all of the persistent state within the server code.
Ultimately, this represents the only state that might be affected by nondetermin-
ism and the state that we need to worry about for consistent server replication.
The second set of passes identifies the pure nondeterminism within the appli-
cation; these passes find and mark nondeterministic system calls, inputs, I/0O,
etc. Shared state between threads is initially considered as potentially nondeter-
ministic, and another pass is made to discover all accesses to this shared state;
these accesses are then marked as pure nondeterminism. Subsequently, these ac-
cesses are treated as sources of nondeterminism in their own right, and effectively
constitute state. def-use chains (that determine where a specific variable is de-
fined, and where it is used or assigned to another variable) are then calculated
for all marked pure nondeterministic variables — this represents the first phase
of dependency-tracking.

Control-Flow Passes. The next phase involves evaluating all of the possible
execution paths that the server code might take. We determine the order of
variable assignments along a particular control path, and for every discovered
control path, we link together the def-use chains that we determined in the pre-
vious data-flow phase. This allows us to calculate dependencies of every variable
for every possible execution path. Carrying this argument forward, we can now
mark as contaminated nondeterminism all of the state that depends on the pure
nondeterministic state identified in the data-flow phase. This is recursive — as
we mark more contaminated state, we need make further passes to determine if
there are further dependencies on this newly discovered contaminated state. We
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Fig. 2. Underlying approach for Midas’ various compensation techniques. The tech-
niques differ in the nature/amount of the information passed back and forth between
the client and the server, and in the actual compensation work done on the server-side.

perform an exhaustive search of the server source-code to ensure that all such
contaminated state is found. All persistent state that remains unmarked at the
end of the control-flow phase can be considered as pure determinism.

5 Midas’ Compensation Approaches

During our compile-time phases, we insert the compensation and state-transfer
code snippets that will actually execute at runtime within the application. In
this section, we describe how and when these code-snippets accomplish the com-
pensation. For the remainder of the text, we assume that the server is actively
replicated.

In our approach, the client is an integral participant in the compensation of the
server’s nondeterminism. Consider any two consecutive requests from the client
to the replicated server, as shown in Figure 2. Each server replica piggybacks
the relevant information(this information is specific to the technique described
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below) about its nondeterminism to the client in its response to the first request.
Then, this information, piggybacked onto the second request, is echoed by the
client to all of the server replicas so that they can perform individual, local
compensation actions before they begin to process the second request. All of the
piggybacked nondeterministic information, as well as its associated transfer and
compensation code, is generated by our compile-time phase, without burdening
the application programmer.

We emphasize here that the server replicas do not need to be in lock-step syn-
chronization in order to do this — each replica proceeds asynchronously to service
its incoming, totally-ordered requests and to return responses. Thus, through
the runtime execution of our inserted compensation snippets, each replica is
rendered logically identical with its peers before it starts to process any new
request from the client; between requests, the server replicas (if each’s internal
state is inspected individually) might, in fact, be divergent in state. However,
this out-of-band divergence does no harm because it does not compromise the
fault-tolerance of the application. If a replica fails or is recovered, it will simply
be rendered consistent with the others at the start of the next new request. In
Section 7, we address how this divergence becomes an issue when multiple clients
are involved, with each controlling some part of the compensation.

All of our performance-sensitive compensation techniques undergo two rounds
of client-server interaction for compensation, as shown in Figure 2. However, they
differ in the amount and nature of compensation work done at the server replica
and the amount/kind of relevant information transferred back and forth between
the client and the server replicas. While all of our techniques are common in ex-
ploiting program analysis, the range of choices allow an application programmer
to make an application-centric, performance-sensitive choice in compensating for
nondeterminism. The techniques described below can be broadly classified as:

— Transfer of state, or the transfer-* techniques:
transfer-ckpt, transfer-diff-ckpt, transfer-contam and
transfer-contam-track;

— Re-execution of code, or the the reexec—* techniques:
reexec—-contam and reexec-contam-track.

In Figure 3, we depict the decision process that an application/system devel-
oper would undergo in order to decide among the various techniques.

5.1 Full-Checkpoint Transfer (transfer-ckpt)

After processing each request, every replica marshals its entire state (checkpoint)
and passes this state, along with its response, to the client. The client accepts
the first response!, stores the identifier of the corresponding (selected) replica

! The client always sees only one response from the entire set of replicas because
MEAD delivers the first-received response from the replicated server and suppresses
the other responses. The replica whose response makes it first to the client is called
the selected replicain the processing of the client’s next request. The selected replica
can vary from one request to the next, and is not dictated by the client or the server.
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Fig. 3. Decision tree for determining appropriate technique for handling
nondeterminism in an application. (1) Yes: Nondeterminism must be dealt with;
No: Either no nondeterminism or can live with potential replica divergence. (2) Yes:
Application code cannot be modified or designer prefers a transparent approach; No:
Application code can be modified. (3) Yes: Pure deterministic code can be highlighted
by program analysis, enabling a more efficient transparent technique that addresses
only actual, and not superficial, nondeterminism; No: Program analysis cannot be
performed on application source code, requiring a transparent approach that unnec-
essarily handles even superficial nondeterminism. (4) Yes: Communication overhead
is an issue and a more efficient technique must be found. Only the state that has
changed needs to be handled; No: Communication overhead is not a constraint and
transfer-ckpt technique can be used. (5) Yes: Communication overhead is still a con-
straint and further analysis is required; No: Communication overhead is within reason
and transfer-diff-ckpt can be used. (6) Yes: Communication overhead is a greater
constraint than processing overhead, and reexec-contam can be used; No: Processing
overhead is a greater constraint than communication overhead and transfer-contam
can be used.

and that replica’s state. On its next request to the server, the client piggybacks
this saved information (including the checkpoint of the selected replica).

Each receiving replica examines this information to see if it was the selected
replica, at the client-side, for the previous request. The selected replica does
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not need to compensate and can proceed with processing the current request; a
replica that was not selected by the client in the previous round must apply the
piggybacked checkpoint before proceeding to service the current request. Thus,
these checkpoints are passed back and forth between the client and the server
to ensure replica consistency. Effectively, the compensation is as if a new replica
was started and a fresh checkpoint was transferred to it, except that, in our case,
the checkpoint is funneled through the client in its next request.

5.2 Differential-Checkpoint Transfer (transfer-diff-ckpt)

We instrument the application code in all of the places where the processing of
a request might modify its state. Clearly, not all of these potential state-change
points might actually be executed when the server processes a request. At run-
time, only the actually executed change-points are captured and the associated
state (called a differential checkpoint) transferred to the client. The remainder
of the technique is similar to transfer-ckpt. Compared to transfer-ckpt, we
have increased static code growth due to the additional instrumentation. There
should be a slight increase in runtime server-side latency due to the additional
scaffolding code required to track variables. This technique performs best when
the scaffolding latency is outweighed by the benefit in communication latency
obtained with transferring the differential checkpoint vs. the full checkpoint.

5.3 Transfer Contaminated-Nondeterminism (transfer-contam)

The transfer-ckpt and transfer-diff-ckpt techniques do not discriminate
between actual and superficial nondeterminism. In the transfer-contam tech-
nique, each server replica piggybacks only its actual nondeterministic state (both
pure and contaminated) back to the client.

Based on the output of our data-flow and control-flow analyses, we create a
server-side struct that holds the pure and contaminated nondeterminism within
each replica. Because this struct needs to be marshaled over the standard mid-
dleware protocol, we need to augment the IDL interface specifications of the
server so that this nondeterministic struct contains (and serves as) the return
value of the server’s methods and is also an input parameter to the server’s
methods — this allows us to piggyback the nondeterministic struct onto mes-
sages passed back and forth between the client and the server. The remainder
of the algorithm is similar to the transfer-ckpt technique, except that the
client-side and the server-side extract, copy, and piggyback the nondeterministic
struct instead of a checkpoint.

5.4 Reexecute Contaminated-Nondeterminism (reexec-contam)

We insert prepared portions of code that can be executed to re-generate the
contaminated nondeterminism, if provided the pure nondeterminism (i.e., the
origin of the contamination) as an input. In reexec-contam, every receiving
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server replica extracts the piggybacked nondeterministic struct, as in
transfer-contam. As with all of the other techniques, the selected replica for one
request has no compensation work to do for the next request. On the other hand,
each of the remaining (non-selected) replicas for a request performs compensa-
tion, before processing the next request, by first setting the pure nondeterministic
part of its state to the received nondeterministic struct, and then re-executing
the inserted code-snippets to regenerate the corresponding contaminated non-
determinism. At the end of this compensation, each replica is consistent and is
ready to process the current request.

Compared to transfer-contam, the reexec-contam technique should incur
lower communication overheads due to the reduced amount of nondeterminis-
tic state being piggybacked back and forth; however, the tradeoff is that run-
time latency is increased by the reexecution of the compensation snippets at
the server side. Also, reexec-contam requires more compile-time analysis and
source-code modification to the server-side than transfer-contam. This is be-
cause additional control-flow passes are needed to isolate the code that encapsu-
lates the contaminated nondeterministic state. The client-side code is the same
as in transfer-contam.

Obviously, reexecution is justified when the compensation overhead is out-
weighed by the communication overhead of the transfer-* techniques.

5.5 Incorporating Tracking (transfer-contam-track,
reexec-contam-track)

The complexity of the data structures that constitute application state, along
with the way these structure are accessed or referenced, affects how we track
changes in that application’s state. The nondeterministic structs that we create
for compensation purposes must be flexible and able to hold a dynamic amount
of information, ranging from no state all the way to a full checkpoint. We use
the CORBA sequence type for this purpose because it can hold, and marshal
over the wire, a dynamic amount of information.

If state variables are all scalar types (e.g., int a), then, there is no need for
tracking. However, if data structures are more complex or non-scalar (e.g., int
a[10000]) , then, additional information might be needed to track which of the
member items of the non-scalar structure have changed.

To cover the worst possible case, we identify each piece of state with an ad-
ditional identifier. This identifier can be used to directly reference its associated
piece of state. For example, if int a[500] is a part of the state, then another
shadow array of the same size is created to hold the indexes of array a[]. If
only one value in the array a[] changes at runtime, the shadow array tracks
the change and allows us to know which index in a[] changed. The additional
compile-time work to support tracking is minimal because it involves creating se-
quences of longs to hold all the identification information to reference non-scalar

types.
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5.6 Additional Clarification

The above techniques encapsulate all of the nondeterminism that is present
in a distributed application. However, nondeterminism might be introduced if
different replicas of the same server talk to different external servers. In other
words, we assume that a replicates server receives the same messages in the same
order using totally ordered multicast. Therefore, consistency is maintained and
nondeterminism is handled properly in the above techniques.

Midas’ techniques will handle all nondeterminism that is present in an appli-
cation. This, however, can present a problem if the nondeterminism is built into
the application for a specific reason and, therefore, should not be compensated
for. In order to allow for nondeterminism to exist in the application without
being compensated for, it is possible for a programmer to mark parts of code or
variables that Midas would consider deterministic and, therefore, would not han-
dle by its compensation techniques. Additionally, we could allow the programmer
to specify when and/or what replicas responses would be used for the compen-
sation. This would allow for greater control for the application programmer and
for more flexibility in the architecture. However, this is outside the scope of this
paper, even though the implementation would be relatively straight-forward.

The main idea behind using program analysis to handle nondeterminism is to
target only the nondeterminism that actually causes replica divergence. Thus, it
should not result in higher overheads than other transparent approaches, such
as full-state transfer. While it is possible that an application will be strife with
nondeterminism and, therefore, will involve significant overhead on Midas’ part,
this overhead should not exceed that of a basic transparent approach.

6 Experimental Evaluation

Because our techniques are non-transparent, the overheads that we incur should
be directly proportional to the amount of actual nondeterminism that exists
within the application, e.g., if only 5% of the application is actually nondeter-
ministic, our compensation overheads should be incurred only for that portion
of the application. We also note that the runtime overheads and behavior of
MEAD will undoubtedly influence our runtime overheads. Where possible, we
distinguish between MEAD’s performance and our compensation performance.

We conducted our experiments using the Emulab distributed environment
[22], with a homogeneous test-bed of nodes that each run the RedHat 9 Linux,
2.4.18 kernel operating system on a 850MHz processor, 256KB cache, and 512MB
RAM over a 100 Mbps LAN. We use MEAD version 1.5 that uses Spread version
3.17.3 as its group communication protocol. In our experiments, we do not load
the nodes with any other running programs other than MEAD, Spread, our
micro-benchmarks, and the native OS utilities that typically run on each node.
Each replica runs on a separate node.

We evaluate a number of metrics (communication overhead, compensation
overhead, server-side processing time, and round-trip time) under fault-free
conditions.
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Table 1. Description of the various micro-benchmarks

Compensation  no sha sha
technique micro-benchmark micro-benchmark
vanilla Replicas are nondeterministic Same as no sha, except that a
(baseline) and inconsistent; no compensa- 20-byte digest is computed and
tion performed stored at each replica at the
end of each request
transfer-ckpt Entire checkpoint piggybacked Same as no sha, with digest

on each server’s reply to the considered part of the check-
client, compensation according point and piggybacked on each
to Section 5.1 server’s reply

transfer-contam Pure and contaminated nonde- Same as no sha, with digest
terminism piggybacked on each considered part of the contam-
server’s reply to the client, inated nondeterminism
compensation according to Sec-

tion 5.3
transfer-contam Same as transfer-contam Same as transfer-contam
-track above, but with tracking above, but with tracking
enabled enabled
reexec-contam Pure nondeterminism piggy- Same as no sha, with digest

backed on each server’s reply needing to be re-computed as
to the client, contaminated a part of the re-execution
nondeterminism re-generated
through re-execution, compen-
sation according to Section 5.4
reexec-contam Same as reexec-contam above, Same as reexec-contam above,
-track but with tracking enabled but with tracking enabled

6.1 Micro-benchmarks

We have developed two micro-benchmarks to compare our various compensa-
tion techniques. The two micro-benchmarks are identical in many ways. They
both constitute a two-tier application, i.e., with a single client and a single repli-
cated server. Both micro-benchmarks use multi-threading with homogeneous
threads (to simplify experimentation), identical code at each of the server repli-
cas (except for the fact that each replica stores a unique, hard-coded server id
SID), and identical initial state to start out with. The difference is that the
sha micro-benchmark involves the computation of a 20-byte digest, and there-
fore, requires significantly more processing time at the server-side, as compared
with the no sha micro-benchmark. The two micro-benchmarks are compared in
Table 1. The sha version is used to give an example of an application that has
increased reexecution time.

Each micro-benchmark contains an array of 10,000 longs that represents its
state. Pure nondeterminism involves generating a random number and assigning
it to one of the elements in the array. Contaminated state is subsequently created by
performing arithmetic on the random number and assigning the result to
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Fig. 4. Compensation approaches with varying amount of contaminated state for 10%
pure deterministic state for the two micro-benchmarks. The cross-over between the
transfer-contam and the reexec-contam is visible for both the tracking and the no-
tracking cases.

another element in the array. The server state is changed in 15 different ways: vary-
ing the pure nondeterminism to 10%, 30% and 50%. For each value of pure non-
determinism, we vary the amount of contaminated nondeterminism to 10%, 20%,
30%, 40% and 50%. For each of the 15 state combinations, we evaluate each of our
five techniques: transfer-ckpt, transfer-contam, transfer-contam-track,
reexec—-contam and reexec-contam-track. Note that we can compare all of the
techniques for a given % of nondeterminism. However, we cannot fairly compare
a single technique for % vs. y% of nondeterminism because these represent two
entirely different applications (while the % of nondeterminism varies, the applica-
tion is, in fact, functionally different). The vanilla case simply serves as a baseline
for performance comparison. We also vary other parameters, such as the number of
replicas (1-4), amount of multithreading (2-6 threads), and amount of state (100,
1000 and 10,000 Longs).

6.2 Empirical Observations

Varying amount of contamination. Graph 4(b) shows the effect on the round-
trip time of increasing the amount of contaminated nondeterminism within the
no sha micro-benchmark. The amount of pure nondeterminism for these results
is fixed at 10%, and 3 replicas are used. Because pure nondeterministic state is
handled identically across all of our various techniques, the graph demonstrates
how each technique handles an increase in contaminated state.

The transfer-ckpt technique shows a fairly constant round-trip time regard-
less of the amount of contaminated state. The processing time increases slightly
across all techniques because additional work is done due to the increased amount
of contaminated state. However, the processing time is relatively small compared
to the communication overhead of passing the entire state of back and forth.
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The transfer-contam—-* techniques show a linear increase in round-trip time
with increased amount of contaminated state. This is because the communication
overhead is proportional to contaminated state. Note that transfer-contam-
track has the higher overheads of the two because more information is



96 J. Slember and P. Narasimhan

being passed by the replicas. Also, transfer-contam-track becomes worse than
transfer-ckpt when more than 50% of the state is nondeterministic.

There is very little change in the round-trip time of the reexec-contam-*
techniques with increased contaminated state because the communication over-
head dominates over re-execution time. Again, reexec-contam-track has the
higher overheads of the two. We observe that the reexec-contam—-* techniques
are better than their transfer-contam-* counterparts.

Figure 4(a) shows the effect on the round-trip time of increasing the amount
of contaminated nondeterminism within the sha micro-benchmark. The amount
of pure nondeterminism for these results is fixed at 10%, and 3 replicas are used.
Note that the shal algorithm has a significant amount of processing time; this
is readily visible when comparing these results with their no sha counterparts.

The same trends are seen as in Figure 4(b). The most interesting observa-
tion here is due to the fact that communication overhead does not dominate
processing time. For instance, with 10% and 20% contamination, transfer-ckpt
appears to have lower overheads. Once contamination reaches 30% or more,
reexec—contam once again displays lower overheads. This is because the in-
creased processing time outweighs the communication overhead for lower
amounts of contaminated state.

Varying degree of replication. In Figures 6.2 and 5(a), the amount of pure
and contaminated nondeterminism is constant, but the number of replicas is var-
ied. Figure 6.2 shows the sha micro-benchmark for 10% pure nondeterminism
and 10% contaminated nondeterminism. Figure 5(a) shows the no sha micro-
benchmark for 50% pure nondeterminism and 30% contaminated nondetermin-
ism. Note that, for every additional replica, the communication load increases
because all of the replicas send their nondeterministic state, along with their
responses, to the client.

In Figure 6.2, all of the techniques. except for transfer-ckpt, demonstrate a
minimal increase in round-trip time with increased number of replicas. This is be-
cause, apart from transfer-ckpt, which sends the entire state over, the other tech-
niques only deal with 10% pure and 10% contaminated nondeterminism. Because
the communication overhead is relatively lower due to the small amount of non-
deterministic state, reexec-contam performs worse than transfer-contamtech-
nique, except in the 4-replica case where the communication overhead overcomes
there-execution time. Thus, the number of replicas, along with the amount of trans-
ferred state, can dictate which technique is appropriate for a given application.

Figure 5(a) demonstrates lower processing time with higher communication
overhead. As in the previous case, the tracking counterpart of a technique adds
more overhead than its corresponding no-tracking version. Here, reexec-contam
is always better regardless of the number of replicas. In fact, with an increased
number of replicas, the relative performance of the reexec-contam technique
becomes markedly better.

Trade-offs. Figure 6 shows the round-trip time for the sha micro-benchmark
with the amount of pure nondeterminism fixed at 30% for 3 replicas, and with
the amount of contaminated state varying from 10-50%. We focus only on the
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performance of the reexec-contam and the transfer-contam techniques. The
reexec-contam technique shows relatively no change as contaminated state
increases because of the overwhelming communication overhead and the low
processing time. The transfer-contam technique demonstrates a linear increase
in overhead with respect to the amount of contaminated state. This graph clearly
shows the cross-over between the two techniques, demonstrating that no tech-
nique works for all cases to provide the best performance. Many factors, including
the number of replicas, the amount of contaminated state, the communication
overhead, the processing overhead, etc., need to be weighed in deciding which
technique is appropriate. Figures 6.2 and 5(a)also support our insights about
the trade-offs between re-execution vs. the transfer of contaminated state, based
on the relative amount of communication overhead and processing time.

Code growth. Code growth is inevitable in our technique. The transfer-ckpt
technique will typically have the least code growth because it is perform sim-
ple checkpointing. The transfer-contam technique is next in code growth;
transfer-contam-track will have even larger code growth. The reexec-contam
will likely have the largest code growth of the all of techniques, because of the
inserted compensation snippets. However, we note that reexec-contam will have
smaller code growth if the amount of contaminated state as large and the re-
execution snippets are small. Thus, while code growth matters and should be
considered, using it as a metric for comparison might be subjective since it de-
pends on the application’s functionality.

7 Future Work

We note that our current implementations of the transfer-* and reexec-*
techniques leave much room for optimization, but efficiency considerations form
a part of our ongoing investigation. Multi-tier applications and nested end-to-end
requests introduce increased complexity in handling nondeterminism, especially
with actively replicated tiers. The propagation of nondeterministic state is no
longer contained at the client or at any one tier. We need to handle any nonde-
terministic state or execution that propagates to other tiers. This is especially
evident when a failure occurs during an end-to-end request, resulting in some of
the replicas at every tier becoming inconsistent. Multiple clients can also compli-
cate the techniques described in this paper because each client is an active par-
ticipant in the back-and-forth compensation of nondeterminism, and we would
then require coordination across clients or some alternative way of ensuring con-
sistency across multiple clients. Both multi-tier and multi-client fault-tolerant
architectures are part of our ongoing research on the scalable compensation of
nondeterminism, but remain outside the scope of this paper.

8 Related Work

Gaifman [10] targets nondeterminism that arises in concurrent programs due
to environmental interaction. This technique involves backup replicas lagging



98 J. Slember and P. Narasimhan

behind the primary to ensure consistency. The technique is transparent to the
user, but the application is actually modified by transformations that han-
dle multithreading. The Multithreaded Deterministic Scheduling Algorithm [11]
aims to handle multithreading transparently by providing for internal and ex-
ternal queues that together enforce consistency. The external queue contains a
sequence of ordered messages received via multicast, while each internal queue fo-
cuses on thread dispatching, with an internal queue for each process that spawns
threads. Basile [5] addresses multithreading using a preemptive deterministic
scheduler for active replication. The approach uses mutexes between threads
and the execution is split into several rounds. Because the mutexes are known
at each round, a deterministic schedule can be created. This approach does not
require any communication between replicas.

Delta-4 XPA’s semi-active replication [4] addresses nondeterminism through
a hybrid replication style that employs primary-backup replication for all nonde-
terministic operations and active replication for all other operations. In SCEP-
TRE 2 [6], nondeterminism arises from preemptive scheduling. Semi-active repli-
cation is used, with deterministic behavior enforced through the transmission of
messages from a coordination entity to backup replicas for every nondeterminis-
tic decision of the primary’s. Similarly, Wolf’s piecewise deterministic approach
[23] handle nondeterminism by having a primary replica that actually executes
all nondeterministic events, with the results being propagated to the backups at
an observable, deterministic event.

The fault-tolerant real-time MARS system requires deterministic behavior
[16] in highly responsive automotive applications that are nondeterministic due
to time-triggered event activation and preemptive scheduling. Determinism is
enforced using a combination of timed messages and a communication protocol
for agreement on external events.

X-Ability [9] is based predominantly on the execution history resulting from
previous invocation. The approach is not necessarily transparent to the program-
mer because the proposed correctness criterion must be followed for consistency.
The advantage is that it is independent of the replication style. Slye et al. [20]
track and record the nondeterminism due to asynchronous events and multi-
threading. The nondeterministic executions are recorded so that they can be
replayed to restore replica consistency in the event of rollback.

The Transparent Fault Tolerance (TFT) system [7] enforces deterministic
computation on replicas at the level of the operating system interface. The ob-
ject code of the application binaries is edited to insert code that redirects all
nondeterministic system calls to a software layer that returns identical results at
all replicas. Hypervisor-based fault tolerance [8] involves a virtual machine that
ensures that all nondeterministic data is consistent across replicas. A simulator
executes all environmental instructions, and then requires system-wide lock-step
synchronization on this execution.

TCP tapping [15] captures and forwards nondeterministic execution informa-
tion from a primary to other replicas. The backup replicas gain information from
the primary after it has done the work. The approach is transparent, but involves
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setting up routing tables to snoop on the client-to-server TCP stream, with the
aim of extracting the primary’s nondeterministic output. Zagorodnov et al. [24]
target nondeterminism that is inherent to service protocols used by network
servers. The solution involves the interception of I/O streams of replicas, and
the appropriate handling of input and output streams.

9 Conclusions

We present Midas, a new approach, for living with nondeterminism in distrib-
uted, replicated applications by exploiting static program analysis on the ap-
plication’s source code, along with the runtime compensation of nondetermin-
ism. We identify the sources of nondeterminism within the application, discrim-
inate between actual and superficial nondeterminism, and track the propaga-
tion/contamination of nondeterminism within the application.

We describe two different techniques, one that involves the reexecution of
contaminated nondeterministic code and another that involves the transfer of
checkpoints or nondeterministic state. We can support even the active repli-
cation of nondeterministic applications in this manner. Our empirical evalua-
tion involves various performance-sensitive techniques for distributed middle-
ware micro-benchmarks that contain various sources (multi-threading, system
calls and contamination) of nondeterminism.
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Abstract. Many different overlays with different properties have been proposed.
Rather than using one overlay for all applications, it is likely that multiple over-
lapping overlays will be deployed on the same computing resources for different
purposes. We present an architecture, called ODIN-S, for mediating the resources
used by overlapping overlays. We can specify priorities for different overlays, and
then allow ODIN-S to allocate computation and bandwidth across the network to
respect priorities. The key features of ODIN-S include a common middleware
runtime supporting multiple overlay logics, and “filters” for throttling, ordering
and dropping messages in order to manage resources. We present experimental
results that demonstrate ODIN-S’s ability to manage resources between different
types of overlapping overlays.

1 Introduction

Middleware-level overlays have proven to be a useful abstraction for building scalable
distributed systems. Many different kinds of overlays have been designed and built; a
small sample includes [12,14,22,28,27,29,33,36]. Each of these overlays has strengths
and weaknesses, and each aims for different design goals, which means that different
kinds of overlays are useful for different applications. As a result it is unlikely that all
applications will be built on one, general purpose overlay. Instead, there are likely to
be many overlays using the same infrastructure resources, each deployed for a differ-
ent purpose. For example, an enterprise might deploy a Narada overlay for message
brokering, a super-peer overlay for information discovery, a Chord overlay for LDAP
directory services, and so on. A simple example of two such overlapping overlays is
shown in Figure 1. Several recently developed overlay toolkits have the ability to de-
ploy overlapping overlays, including P2 [23] and GridKit [18].

It is important to mediate resource usage between all these overlapping overlays. A
particularly resource intensive overlay should not starve other overlays that are not as
greedy. Moreover, in many cases we want to assign priorities to overlays, and to give
more resources to higher priority overlays (but again, without starving lower priority
overlays.) For example, an enterprise may give the highest priority to the messaging
overlay that is supporting its day-to-day operations, and less priority to an information
discovery overlay that merely supplements its internal document search apparatus.

How can we mediate resource usage between overlapping overlays? We must allocate
both bandwidth resources and processing resources in a fair but prioritized way between
overlays. Existing overlay toolkits lack the ability to trade off resources between mul-
tiple overlays, or do not enforce fine grained priorities over all of these resources. In

M. van Steen and M. Henning (Eds.): Middleware 2006, LNCS 4290, pp. 101-120, 2006.
(© IFIP International Federation for Information Processing 2006
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Fig. 1. Overlapping overlays. Solid lines represent a super-peer overlay; thick lines for connec-
tions between super-peers, and thin lines for connections to leaf-peers. Dashed lines represent a
flat mesh network, such as a Narada broker network or unstructured peer-to-peer overlay.

this paper, we present a middleware system we have built, called Overlay Dynamic In-
formation Networks - Shared (ODIN-S), that manages this resource mediation. The key
architectural aspects of ODIN-S are (1) a common middleware runtime that supports the
logic for multiple overlay clients on a single host, and (2) filters that manage the sending
and processing of messages by these clients to enforce fairness and resource quotas.

Filters are the primary mechanism in ODIN-S for trading off resources between over-
lays. Filters can be used to throttle, schedule and drop messages to enforce quotas and
overlay priorities. As such, filters must be used both to filter incoming messages and
outgoing messages sent by a peer. We describe how to construct filters to manage the
processing load, upload bandwidth and download bandwidth for a peer.

The primary contribution of this work is an architecture that integrates and adapts
multiple techniques from other domains for the purpose of mediating resource usage
among overlapping overlays. For example, we apply a weighted fair queuing disci-
pline [17,16], typically used in network routers, to the problem of scheduling messages
that are delivered and sent by the middleware. We develop an adaptive algorithm, in-
spired by a similar algorithm used in database replication [26], to allocate download
bandwidth among multiple upstream peers. We use the concept of ingress and egress
filters, typically used at network boundaries (for example, to detect and defeat denial
of service attacks) to manage message flows between individual peers. In this paper,
we describe how to combine and extend all of these techniques into a comprehensive
middleware system for managing the resource usage of multiple overlays.

The remainder of this paper is organized as follows. In Section 2, we place ODIN-S
in context with related work. Section 3 describes the overall architecture of ODIN-S,
focusing on the support for overlapping overlays. In Section 4 we demonstrate how to
use filters for a variety of resource management goals. Section 5 presents experimental
results, and we conclude in Section 6.

2 Related Work

General scheduling of resources for data flows is a well known problem. Queuing
disciplines for scheduling packets have been studied in depth in the networking do-
main [16,17,6]. Scheduling of flowing data has been studied both in operating systems
research [9] and database research [3]. We view the traffic on an overlay as a data flow,
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and then adopt and extend techniques from different domains to manage the resources
used by this traffic. Queuing of traffic from a single overlay is used in data stream sys-
tems such as Borealis [13] and overlay toolkits such as P2 [23]. We generalize this
approach to queue messages from multiple overlays to enforce priorities across general
overlay types. Some recent work has been done on scheduling for overlays, such as
operator scheduling for distributed data stream processing [32,27,13], or load-based re-
arrangement of query streams in peer-to-peer overlays [25]. Our work generalizes these
approaches for arbitrary, and overlapping, overlays.

In addition to throttling and scheduling, ODIN-S’s filters can be used for load shed-
ding, dropping messages when buffer resources are saturated. This approach is used to
drop packets at overloaded routers [19], and tuples in overloaded data stream proces-
sors [15]. Our current implementation provides only simple tail drop of messages, but
other policies could be easily added just by implementing a new filter. Moreover, it may
be desirable to implement application-level endpoint congestion control (such as the
congestion control schemes used in TCP) in addition to the in-network filters; we have
not yet explored this approach.

Our upstream/downstream filter sets distribute a fair queuing algorithm among multi-
ple upstream filters. A similar approach is taken in Core Stateless Fair Queuing (CSFQ)
[34], where packets entering a core network are labeled by multiple upstream edge
nodes to achieve approximate fair queuing behavior inside the core. Unlike the “core-
stateless” approach where the core has no fair queues, ODIN-S can place filters at all
overlay peers, ensuring per-link fair queuing and finer-grained control over resource us-
age. Other approaches to network QoS include Integrated Services (IntServ), in which
flows must reserve resources that will be needed [10], and Differentiated Services (Diff-
Serv), in which classes of flows (say, from the same ISP) are provided service based on
a service level agreement [8]. Our techniques borrow the notion of using control mes-
sages to configure resource management from these approaches. Furthermore, we inte-
grate aspects of each approach: our per-peer filters are similar to the per-router states
maintained in IntServ, while our approach to managing the traffic of an entire overlay
(as opposed to the flow of a single request) is similar to the classes of flows in DiffServ.

Packet and message filters are used in a variety of systems for different purposes.
Examples include security filters at network boundaries, message filters in Web mid-
dleware such as mod perl, content filters in publish/subscribe middleware [5], and so
on. We apply the concept of filters to provide pluggable middleware components for
managing resources in overlapping overlays.

Orthogonal to our approach to overlapping overlays is to have distinct overlays in-
teroperate, as in PPPP [4]. In this approach, the overlays are using different hardware
resources, and thus resource mediation is not as important.

3 Architectural Support for Overlapping Overlays

In this section, we describe the architecture of ODIN-S, focusing particularly on the
features that support overlapping overlays. ODIN-S is a middleware toolkit designed to
support various types of overlays, including unstructured peer-to-peer overlays [25,36],
structured overlays [33,28,31], message and event dissemination overlays [14], data
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Fig. 2. ODIN-S peer architecture

stream transport and processing overlays [27], and so on. In each of these overlay types,
many distributed “peers” or “nodes” are connected by middleware-level, logically per-
sistent communication “links.” For clarity in the rest of our discussion, we will refer to
“peers” to mean either “peers” or “nodes.”

The architecture of an ODIN-S peer is shown in Figure 2. We now describe each of
the components of the architecture. As a running example, we will use both a super-
peer network and a completely unstructured overlay (e.g. as in the original Gnutella
protocol). There are many other types of overlays, but these relatively simple overlays
are used to clarify the discussion. In a super-peer network, “leaf-peers” send a summary
of their content to “super-peers.” Super-peers, which typically are high capacity nodes,
handle all of the searching, both looking for matches in the summaries of their leaf
peers and forwarding messages to other super-peers. Leaf-peers are thus unloaded. An
unstructured network has only one type of peer, and each peer connects to some number
of neighbors. Each peer processes searches over its local content, and forwards the
search to some or all of its neighbors. The peer can “flood” the search (as in the original
Gnutella) by sending it to all of its neighbors, or may choose a more efficient routing
strategy [1,24,35,21,11].

3.1 Peer Logic

A peer logic handles the routing and topology management for a single overlay. A peer
that is participating in multiple overlays will have multiple peer logics, one per overlay.
In order to join a new overlay, the peer creates and starts a new peer logic. Similarly, to
leave an overlay, the peer stops and destroys a peer logic.

A peer logic in ODIN-S is comprised of two sub-components: the routing logic and
the topology manager. The routing logic receives messages from other peers, processes
them, and decides which neighbors (if any) to forward the messages. For example, a
routing logic for a super-peer will receive search messages from leaf-peers and other
super-peers, look for matching content in its indexes, return result messages if any con-
tent is found, and forward the search messages to other super-peers. In contrast, a topol-
ogy manager manages the set of neighbors that the peer has in the overlay, by making
and breaking connections to other neighbors based on the overlay’s neighbor policy.
For example, a topology manager for a super-peer will always try to have at least NV
super-peer neighbors, making connections to new neighbors if existing neighbors leave
the overlay. Similarly, the super-peer topology manager will accept connections from
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leaf-peers, possibly enforcing some upper limit on the number of connected leaf-peers.
By separating the peer logic into routing and topology components, we can easily
mix and match different routing and topology algorithms in different overlays. These
reusable components makes it easier to extend ODIN-S to support different overlays.

Peer logics in ODIN-S also provide some key functionality available in other overlay
toolkits [23,30]. For example, peer logics can set and respond to timers, and pass events
to and from the application (such as a GUI or other application logic.)

3.2 Communication Manager

The communication manager handles the setting up/tearing down of connections, and
the sending/receiving of messages, for all peer logics residing at a peer. The commu-
nication manager API allows peer logics to create connections to other peers and send
messages, abstracting away the details of the underlying transport layer. Thus, the same
unmodified peer logic could be used over a variety of underlying transports, including
raw TCP sockets, SOAP calls, JXTA connections, and so on. Our system currently uses
TCP sockets.

The communication layer also provides multiplexing and demultiplexing of mes-
sages from different peer logics over the same underlying transport. Each overlay is
identified by an integer overlay ID that is a constant value across the entire overlay.
This overlay ID is included in the header of each message sent, so that the receiving
communication manager can dispatch it to the appropriate peer logic.

In this way, the overlay ID “names” the overlay. For example, we could have differ-
ent but overlapping super-peer networks if each super-peer network was identified by a
different overlay ID. Creating a new overlay involves choosing a new overlay ID, start-
ing a peer logic for that overlay ID at some peer, and publicizing the overlay ID so that
other peers can join (for example, by advertising it on a registry). The only requirement
is that logically different overlays have different IDs (no overlay ID collisions). If the
overlays exists within a single organization, the organization’s IT department can hand
out overlay IDs. On the Internet, the problem of avoiding ID collisions is somewhat
more complex. There might be an ICANN-style service for handing out overlay IDs, or
IDs may be cryptographic hashes of some meaningful description string. If we choose
a large enough ID space (e.g., 256 bits), then we can even choose overlay IDs randomly
and have minimal chance of collisions.

3.3 Runtime

The runtime provides the base functionality for each peer. The runtime creates and de-
stroys peer logics, schedules timers, dispatches events between the application layer
and the peer logics, provides a logging facility, and provides other services. Creating a
peer means starting the runtime. The runtime will then construct a communication man-
ager. The runtime will also accept “create peer logic” events, and create the appropriate
peer logic according to a set of properties embedded in the event. The runtime is thus
like a simplified application server that creates and destroys individual components as
needed.
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3.4 Filters

The resource mediation capability in ODIN-S is provided by filters. In particular, filters
manage messages according to resource quotas and policies. Filters provide:

— Throttling of message rates to enforce quotas,
— Ordering of message sending and delivery to enforce priorities, and
— Dropping of messages to shed load when necessary.

For example, a filter might enqueue (and hence delay) messages to perform throttling,
prioritize the queue to reorder messages, and drop new messages if the queue of existing
messages reaches a pre-defined limit.

Two types of filters can be created. An ingress filter filters incoming messages be-
fore they are delivered to the appropriate peer logic. An egress filter filters outgoing
messages that are generated by a peer logic, before they are actually handed over to the
transport layer for sending. Both ingress and egress filters are installed in the commu-
nication manager and shared across peer logics, so that one filter can manage resources
shared across overlays. For example, an ingress filter can enforce a quota per minute
on the overall number of messages processed by the peer for any overlay; any incom-
ing messages over the quota in a given minute would be enqueued, regardless of which
peer logic they were destined for. At the same time, filters can be used to enforce poli-
cies for a particular overlay, passing through (without filtering) any message on other
overlays.

Filters are pluggable components, so that multiple ingress and egress filters can be
installed at a peer. For example, one egress filter might enforce an overall quota on the
upload bandwidth used, while another egress filter might be used to throttle the message
rate of a particular overlay. Filters process messages in the order they were installed,
and only if all filters approve a message will the message be delivered/sent (respec-
tively, for ingress/egress filters). If a filter delays a message, when it is eventually ap-
proved by that filter it will be passed to the next filter in the list before delivery/sending.
Filters can also be created dynamically, as needed. For example, when a peer in one
overlay joins a second overlay, it might dynamically create a filter to manage the two
overlays.

Filters do not have to be passive components, responding only to incoming or out-
going messages. Filters can also set timers, and be notified when the timer expires. In
addition, filters send messages to communicate with filters on other peers. In this case,
the filter receiving the message should install itself as an ingress filter so it can receive
the message and avoid its dispatch to any peer logic. (Because the same filter object
instance can be installed as an ingress and egress filter, this mechanism allows even
egress filters to communicate with each other.)

The generality of our filtering architecture means that filters can also be used to per-
form other functionality for overlays, such as gathering statistics about traffic, filtering
out ill-formatted messages, or logging messages for recovery purposes. Such function-
ality is outside of the scope of this paper, and we focus on using filters for resource
mediation here. We examine specific examples of using filters to mediate resources
among overlapping overlays in the next section.
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4 Mediating Resources Using Filters

We now illustrate how filters in ODIN-S can be used to mediate different types of
resources shared among overlays. We focus on techniques for mediating processing
load, upload bandwidth and download bandwidth. A typical peer will want to manage
its overall load, and thus will likely install filters simultaneously for all three goals. The
techniques presented here are representative examples; filters are a general architectural
feature that can be used to implement a wide range of load and resource management
techniques. Experiments in Section 5 demonstrate that the filters described here are
effective at trading off resources between overlapping overlays.

4.1 Processing Load — Priority-Based Ingress Filter

A machine hosting multiple overlays can experience CPU overload as it processes all of
the messages arriving on all of the overlays. Therefore, it is important to be able to limit
the amount of CPU used by the ODIN-S middleware. This limit can be enforced by
operating system mechanisms, such as UNIX “nice.” Another approach is to create an
ingress filter that enforces a limit on the messages processed per unit time. One advan-
tage of the ingress filter-based approach is that the limit can be expressed in high-level
terms (e.g., “process no more than 10 search messages per second”). A disadvantage
of enforcing an absolute quota using a filter is that if the machine is otherwise idle, the
spare CPU cycles will not be used by ODIN-S. Most likely, combining OS priority and
filter-based quotas will be useful.

In either case, ODIN-S will be given a limited amount of processing capacity in
which to handle messages. This capacity must be allocated to different peer logics in
accordance with the priority of their overlay. For example, if a machine is participating
in a high priority super-peer overlay and a low priority unstructured overlay, then pro-
portionally more processing capacity should be given to the messages from the super-
peer overlay (without starving the unstructured overlay.) We assume that each overlay is
assigned a global priority, for example by the enterprise using the overlays. If different
peers have different notions of priority for different overlays, then they can use ODIN-S
filters to enforce those priorities locally. However, in this case, there will be no global
enforcement of priority, which is appropriate given that there is no global agreement on
overlay priority.

A filter that implements queuing can enforce both an absolute quota on messages
processed (e.g., throttling) as well as enforcing priority (e.g., message ordering.) Ar-
riving messages are automatically enqueued. Messages are dequeued and delivered to
the appropriate peer logic in an order determined by priority. If the filter is enforcing
a quota, then messages are only delivered periodically. For example, if the quota is 10
messages per second, then a new message will be taken off the queue and delivered
every 100 milliseconds. If the filter is only enforcing priority (and not a quota), then
a new message is taken off the queue as soon as the previous message has been pro-
cessed. The filter can also enforce a maximum queue size, and drop messages according
to some drop policy when the queue is full.
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Priority-Based Ordering of Messages. An important consideration is the order in
which we dequeue messages. A simple approach is to always dequeue the message from
the highest priority overlay. However, as is well known from experience with network
routing and operating systems scheduling, such an approach can lead to starvation for
lower priority processes. Another possible approach is to divide the quota among over-
lays according to priority, for example giving 1/3 to the low priority overlay and 2/3
to the high priority overlay. However, this approach is not work-conserving: when the
super-peer network is not using all of its quota, the unused portion is wasted, when it
should be given the unstructured overlay. Instead, we need a fair and work-conserving
algorithm for dequeuing messages.

These properties are provided by a class of weighted fair queuing (WFQ) algorithms,
traditionally used to schedule packets in network routing. WFQ allocates an overloaded
network channel to a flow in proportion to the flow’s relative priority. Thus, if the sum
of flow priorities is P, and a particular flow has priority p;, that flow should receive
p;/ P of the channel bandwidth. WFQ is work conserving because it schedules packets
eagerly: if there are no queued packets for some other flow j, then WFQ schedules more
of flow i’s packets, beyond i’s guaranteed bandwidth proportion of p;/P. We adapt the
WEFQ approach to CPU scheduling in ODIN-S: if an overlay ¢ has priority p;, and the
sum of priorities over all the overlays the peer participates in is P, then the overlay ¢
should receive p; /P of the CPU (or of the CPU quota, if one is enforced.) Practically,
this means that if we dequeue P total messages in a time period, p; of those should
be from overlay :. If some overlay is not using its full allocation, the unused portion is
fairly divided among the remaining overlays, again respecting priority.

WFQ was proposed originally in [16]. We actually use a follow-on proposal called
start-time fair queuing (SFQ) [17] in ODIN-S. SFQ has two key advantages over the
original WFQ algorithm: 1. SFQ has less computational complexity than WFQ, and 2.
SFQ is more fair when the sender’s rate is not constant. SFQ also has advantages over
other queuing disciplines; these advantages are outlined by Goyal, Vin and Cheng [17].
Other queuing disciplines can be enforced by implementing an appropriate filter.

Briefly, SFQ operates as follows. (For more details, see [17]). Each message m that
is enqueued is given a start tag .S,,, and a finish tag F},,, and messages are dequeued and
serviced in order of increasing S, (with ties broken randomly). The start tag S, is set
equal to either the start tag of the message that was being sent when m arrived, or the
finish tag of the previous message enqueued for m’s overlay, whichever is greater. The
finish tag F,, is set equal to S,,, + ¢, /Pm, Where ¢, is the cost of sending the message,
and p,, is the priority of m’s overlay. The c,, value can be the length of the message
in bytes, the estimated processing time, or some constant (if all messages are roughly
equally expensive to process.) In this way, successive messages on the same overlay
are given progressively higher finish (and hence start) tags, while messages on different
overlays are given finish (and hence start) tags that are interleaved proportionally to their
Cm /Pm ratio, resulting in proportionally more service for higher priority messages.

4.2 Upload Bandwidth — Priority-Based Egress Filter

Another resource used by the peer is upload bandwidth (link capacity used for send-
ing messages). With asymmetric connections (such as residential DSL), the upload
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bandwidth may be different than the download bandwidth. Thus, we often have to man-
age the upload bandwidth separately from download bandwidth. Even with symmetric
connections (e.g. a machine connected to a LAN via Ethernet), it is important to manage
the number of messages sent in order to mediate the usage of the link bandwidth.

Upload bandwidth is managed by an egress filter. When any peer logic attempts to
send a message, the message is automatically enqueued. The filter takes messages off
the queue for actual sending according to the overlay priority. The filter can also enforce
a quota on the upload bandwidth used by sending (dequeuing) no more than /V bytes in
any time unit. In fact, the same priority based filter described in Section 4.1 can be used,
except that the filter is installed as an egress filter instead of an ingress filter. Therefore,
we can use SFQ (or any desired queuing discipline) here as well.

4.3 Download Bandwidth — Upstream/Downstream Filter Set

Download bandwidth is more difficult to manage than upload bandwidth, which can
be managed by installing a single egress filter. In contrast, a peer cannot manage its
download bandwidth by installing a single ingress filter; by the time the ingress filter
touches the arriving message, the download bandwidth has already been used. Instead,
a peer needs to cooperate with its neighbors in order to manage its download band-
width. Consider a peer ¢ that wishes to cap the amount of download bandwidth used for
overlay messages. Peer ¢ can contact each of its neighbors, regardless of which overlays
they participate in, and ask them to throttle their message sending rate so that the total
bandwidth used is no more than the cap.

Figure 3 shows an upstream/downstream filter set that implements the cooperative
management of download bandwidth. The upstream filter is installed at each of peer i’s
neighbors, while the downstream filter is installed at peer ¢ itself. The downstream filter
determines how much bandwidth can be used by each upstream neighbor, and sends
control messages to the upstream filters to ask them not to use more bandwidth. Both
the upstream and downstream filters are ingress filters so that they can receive control
messages. However, the upstream ingress filter creates egress filters on the upstream
peer to enforce the downstream peer’s bandwidth limitation requests. For example, if
peer ¢ asks peer j to send no more than 10 Kbps, then peer 5 will install an egress filter
with a quota of 10 Kbps. This egress filter will apply only to peer ¢, so messages sent
by peer j to peers other than ¢ will be passed through the filter without delay. In fact,
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peer j may create multiple egress filters, one per downstream neighbor that requests a
cap. However, peer j would only have a single instance of an upstream ingress filter to
respond to control messages and manage all of the egress filters.

Note that since connections in an overlay can be symmetric, 7 may be downstream
of ¢ as well as upstream. In this case, j will also have a downstream filter and ¢ will
have an upstream filter, and ¢ will install egress filters at j’s request (just as j installs
them at 7’s request.) Then, the total complement of filters at both ¢ and j would include:
a upstream ingress filter, a downstream ingress filter, and quota-enforcing egress filters.

If two peers are neighbors in multiple overlays, then the upstream egress filter must
enforce overlay priority as well as a download quota when determining which messages
to send to the downstream peer. To do this, the egress filter created by the upstream filter
can be the same filter as described in Section 4.2: the priority-based egress filter, perhaps
based on SFQ.

Allocating Bandwidth Quotas to Upstream Neighbors. Consider a peer ¢ that wants
to enforce a total quota of D bytes per second on its download bandwidth. Peer ¢ must
ask its upstream peers to throttle their message sending so that the total bandwidth is no
more than D for all messages sent by ¢’s neighbors. The simplest way to do this is for
1 to divide the quota equally among all of its neighbors: if ¢ has n neighbors, then each
neighbor is given a quota of D/n. However, this simple approach may waste quota,
since the same quota is given to each neighbor regardless of the number of overlays the
neighbor wants to send traffic on. Neighbors that want to send traffic on one or only a
few overlays will have a larger quota than is necessary. Similarly, it makes no allowance
for the fact that some neighbors may only be members of low priority overlays, and thus
should not get an equal allocation of the quota as neighbors who are members of higher
priority overlays.

We now describe how to allocate the quota D to upstream neighbors according to the
priority of overlays those neighbors are participating in. Our algorithm divides the total
quota proportionally based on the priority of overlays, and then further divides these
fractional quotas evenly among the neighbors that wish to send traffic on a particular
overlay. The algorithm operates as follows. Peer y tracks which upstream neighbors
want to send traffic on each overlay, either by tracking received messages or by having
upstream peers send control messages listing the overlays on which they want to send
messages. Periodically, peer y adjusts the quota assigned to each upstream neighbor as
follows. First, it divides the total quota into per-overlay fractional quotas, proportional
to the relative priority of each overlay: each overlay 4 is given quota d; = D x 3.
These fractional quotas are then evenly divided among the neighbors that wish to send
traffic: if there are ¢; neighbors sending traffic on overlay 7, each neighbor receives a
slice of the fractional quota equal to > x 1. The total quota given to an upstream peer
is the sum of the slices for that peer That is, define ¢; ; as 1 if neighbor x; wants to
send traffic on overlay ¢, and O otherwise, and m as the number of overlays. The quota
assigned to an upstream neighbor z; is Z:’;l i X 3 x 1. Each upstream neighbor
manages its quota using an egress (SFQ) filter.

As an example, consider a peer Y, with a download quota of 9 messages/second, and
its three upstream neighbors A, B and C'. A and B both want to send traffic on overlay
1. C wants to send traffic on both overlay 1 and overlay 2. Assume that overlay 2 has



Trading Off Resources Between Overlapping Overlays 111

twice the priority of overlay 1. Then, the total quota on messages delivered to Y from
any peer should be divided into one-third for overlay 1 and two-thirds for overlay 2.
The quota for overlay 1 (3 messages/second) will be divided evenly among A, B and C'
(each receiving 1 message/second). The entire quota for overlay 2 (6 messages/second)
will be given to C'. The total quota given to C' will be 7 messages/second.

It is also possible to extend this algorithm to give more quota to upstream neighbors
that wish to send more traffic on a given overlay. Then, instead of dividing the frac-
tional quotas into equally sized slices, we would divide the fractional quota based on
the observed traffic rate from each neighbor. However, experiments in Section 5 demon-
strate that in practice, this approach does not work as well as the equal division in the
algorithm detailed above.

5 Experimental Results

We have conducted experiments to determine how effective the ODIN-S architecture
is at fairly managing resources between overlapping overlays. Our experiments utilize
ODIN-S components both in a discrete event simulation, and as actual peers. Our simu-
lator allowed us to quickly examine many overlay combinations and parameter settings,
while the prototype allowed us to examine the real system in action. It is important to
note that the peer logic and filter implementations were the same in the simulator and
prototype; in other words, in the simulations each peer was processing and sending ac-
tual messages. This philosophy of simultaneously implementing a simulator and peer
client software using the same components was proposed in [30,20]. For the exper-
iments in this paper, we used the peer implementation to calibrate and validate our
simulations. Here, we report simulation results.

The primary metric we have considered is throughput, measured in terms of mes-
sages processed by the overlay per second. Although we are examining different over-
lays providing different functionality, this throughput metric allows us to examine a
common performance measure across all overlays.

5.1 Experimental Setup

We experimented with three types of overlays: an unstructured peer-to-peer overlay,
with searches routed via optimized random walks [1,24], a super-peer overlay, with
searches flooded between super-peers [36], and a multicast tree overlay, with a single
source multicasting updates to multiple clients. The multicast overlay is modeled on the
end-system multicast trees provided by the Narada system [14], although we have only
implemented the multicast tree construction and not yet the topology-aware optimiza-
tions that Narada provides.

In most of our experiments, there were 1,000 total peers participating in multiple
overlays. Each peer remained alive during the entire experiment. This scale and lack of
peer “churn” represents enterprise-scale overlays. A typical Internet peer-to-peer over-
lay would likely have more peers and more churn. Given the priority-based nature of
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our techniques, and the need to use a common runtime, we expect enterprises or other
similar organizations to be the most immediate target of our techniques. However, we
also examined the scalability of our techniques to larger networks: due to space re-
strictions, we do not report the results, which were consistent with the results for 1,000
peers. We also examine the effectiveness of our techniques in the presence of peer churn
(in Section 5.5).

For the unstructured and super-peer overlays, we downloaded HTML data from real
web sites, and each peer provided full-text keyword search over the data from one web-
site (using standard IR techniques: scored using a normalized cosine distance of TF/IDF
weighted queries and documents, and a document match had score > 0.1). If a peer par-
ticipated in multiple overlays, each peer logic searched documents from a different site.
We used real keyword searches from the search.com search engine. In the super-peer
network, only high capacity peers (capacity greater than the average) chose to become
super-peers, with a probability 0.1. In the multicast overlay, a single source generated
small (< 100 bytes) updates, and propagated the updates along the multicast tree. Each
multicast peer had up to five children in the tree.

Each peer was given a quota, measured in messages/second, that it could receive,
process, and transmit. Alternatively, the quota could have been measured in message
size, time to process, etc. We chose number of messages both because it generalizes
across bandwidth and CPU time (which would otherwise be measured in different
units), and different types of overlays (which would have different processing costs,
message sizes, and so on). To determine appropriate quotas for peers, we measured
the maximum throughput achievable with our current prototype. We started an unstruc-
tured overlay using real ODIN-S peers, each on separate, otherwise unloaded machines
connected by gigabit Ethernet. Each machine had dual 3.0 GHz Pentium4 Xeon CPUs
and 4 GB RAM. The maximum throughput measured was 135.5 messages per second.
We expect this type of machine to be in the mid to high range for overlay peers; some
machines (e.g. servers) will be more powerful while many will be less powerful (both
in terms of CPU and bandwidth.) Therefore, in our experiments, our simulation mod-
els machines as having capacity randomly chosen in the range 20-200 messages per
second. Of course, machines that are conducting other work besides hosting an overlay
node may decide to set a quota less than their maximum capacity. In such a situation, the
absolute values of the quotas would be less but the range (e.g., an order of magnitude)
would likely be similar.

5.2 Overlapping Unstructured Overlays

Our first set of experiments measured the throughput provided by ODIN-S for overlap-
ping unstructured overlays. We started with unstructured overlays because they are the
most traffic-intensive of the three overlay types we implemented, and thus they give a
sense of how the system performs under heavy load. Other overlay types are considered
in the next section. The experiments here examine two overlapping overlays; in other
results (not shown here) we have increased the number of overlapping unstructured
overlays and observed similar results.
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Ingress Filters for Managing Processing Load. We created two overlapping unstruc-
tured overlays: a low priority overlay, and a high priority overlay, with priority equal
to twice that of the low priority overlay. Each peer participated in both overlays. We
ran the system for 100 simulated seconds, generating a total of 25,000 search requests
per overlay during this time. In simulations of peers with unlimited capacity, this setup
results in an average of 99,000 messages per overlay per second (across the whole over-
lay). However, the limited capacity of peers sharply reduces the actual throughput.

Figure 4 shows the average throughput for no ingress filtering, ingress filtering using
a simple priority scheme (always prefer higher priority messages), and ingress filtering
using SFQ. As the figure shows, in each case the total throughput over both overlays
is about 44,000 messages per second. However, without filters, that throughput is allo-
cated unfairly: the low and high priority overlays receive the same service. The through-
put is also unfairly balanced with simple priority filters, as the low priority overlay is
starved (7,500 messages/second) compared to the high priority overlay (35,000 mes-
sages/second). In contrast, the SFQ ingress filters result in service that more properly
reflects the overlay priorities: the high priority overlay receives 60 percent of the to-
tal throughput. This result is not exactly the 2:1 ratio of high/low priority, and reflects
overlay-wide queuing effects that disproportionately affect the high priority overlay. In
particular, since more high priority messages are approved by filters at some nodes,
there are disproportionately long queues of high priority messages at other nodes, and
these queuing delays reduce throughput of the high priority overlay somewhat. Despite
this issue, the ingress filter using SFQ queuing most effectively preserves the overlay
priority. We also ran experiments with larger and smaller rates of search requests, and
observed similar effects.

Varying Priorities. In the next experiment, we used the same overlays and traffic as
in the previous experiments, but varied the priority ratio between the two overlays from
1:10 to 10:1 (each different ratio represents a different experimental run). As Figure 5
shows, the changing relative priority results in changing relative throughput. In the mid-
dle of the figure (for ratios near 1:1), the ratio of throughput nearly exactly reflects the
ratio of priorities. For larger ratios (on the left and right of the figure), the throughput of
the high priority overlay flattens, while the lower priority overlay receives less through-
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put. In all cases, the high priority overlay properly receives more service. The flattening
results from an increasing number of “bottleneck” peers as more high priority messages
are sent. Bottleneck peers are low capacity peers that have long queues and effectively
throttle the throughput of the entire overlay. Thus, even as more priority is allocated to
the overlay, the network simply cannot provide it more service. (This effect is the reason
the SFQ filter provides only a 60/40 throughput allocation in the previous section.)

Varying Traffic Rates. So far, both the high and low priority overlays have had the
same, constant rate of traffic to send. We also experimented with cases where the traffic
rates varied between overlays and over time.

First, we ran an experiment where the low priority overlay had twice the query rate of
the high priority overlay. Figure 6 shows the results. Without filtering, the low priority
overlay receives significantly more service than the high priority overlay. ODIN-S filters
properly preserve priority; even though the low priority overlay has more traffic to send,
it still receives less service than the high priority overlay.

Next, we ran an experiment where both overlays had the same query rate, except
that the low priority overlay experienced a load spike, doubling its traffic for 20 sec-
onds (starting at 50 seconds.) The results (not shown) indicate that the high priority
overlay is not affected, and continues to receive higher service than the low priority
overlay.

Third, we ran an experiment where both overlays had the same query rate, but the
high priority overlay was created halfway through the simulation. This models a sce-
nario where an overlay exists, and then another overlay is started using the same ma-
chines. As Figure 7 shows, initially the low priority overlay is receiving high service,
because it is the only overlay. In the no-filtering case, the low priority overlay continues
to receive the most throughput even after the high priority overlay begins to transmit
traffic. In contrast, with ODIN-S filters, when the high priority overlay starts, it quickly
achieves higher throughput than the low priority overlay.

These results all show that ODIN-S filters can effectively trade off resources between
overlays, even when the traffic rates change.



Trading Off Resources Between Overlapping Overlays 115

g

o
x
S

16000 [_IHigh-priority overlay|

14000
12000
10000
8000
6000
4000
2000

[ Low-priority overlay
[_IHigh—priority overlay|

o

o

0.5

Average throughput (messages/second)

Average throughput (messages/second)

0
Round robin  Traffic prop. Neighbor count No filtering ODIN=S filters

Fig. 8. Approaches to allocating quota to Fig. 9. Two overlapping multicast over-
upstream peers lays

5.3 Upstream/Downstream Filter Sets for Managing Link Bandwidth

Next, we examined the effect of our adaptive algorithm for allocating quota to upstream
egress filters. We used the same overlapping unstructured overlays and message load as
in the previous section. We compared three methods of allocating upstream quota:

— simple round-robin: the quota was divided evenly among upstream neighbors.

— adaptive, neighbor count: our algorithm from Section 4.3 was used to adjust up-
stream quota based on which overlays at neighbors participate in.

— adaptive, traffic-proportional: we extended our adaptive algorithm to adjust up-
stream quota based on the traffic rates at upstream neighbors.

The traffic-proportional algorithm gives more quota to neighbors that wish to send more
traffic. In this case, the upstream neighbor measures its traffic rate and sends updates
to the downstream neighbor. The total quota is divided proportionally based on overlay
priority into fractional quotas, and then further divided proportionally to the amount
of traffic that the upstream neighbors of each overlay want to send. In all cases, the
dynamically created upstream egress filters were SFQ filters.

Figure 8 shows the results. As the figure shows, in the simple round-robin method,
the throughput experienced by both overlays is roughly equal. In contrast, both adap-
tive algorithms allocate total throughput according to priority, such that the high prior-
ity overlay receives more throughput than the low priority overlay (again, split 60/40).
Another key difference between the three techniques is that the adaptive algorithms
provide greater total bandwidth over both overlays than the simple round robin. In fact,
the adaptive, neighbor count algorithm results in the highest total throughput, with 9
percent more total throughput than the traffic-proportional algorithm, and 11 percent
more total throughput than the round-robin approach. Round-robin wastes quota by al-
locating the same amount to neighbors that host only one overlay as to those that host
multiple overlays. The traffic-proportional approach would seem to effectively allocate
quota based on traffic rates (and in fact was our first approach.) However, our experi-
ments show that this approach also wastes quota when traffic is bursty. A burst causes a
large quota window to open on one neighbor, consequently reducing the quota on other
neighbors. When the burst is over, another burst typically arrives at another neighbor,
who now has a small quota. The result is that the large quota on the formerly bursty
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neighbor is wasted until the adaptive algorithm reallocates quota. The neighbor count
approach provides more stable quotas, but does so in recognition of the actual overlays
of neighbors, resulting in both fairness and larger total throughput.

5.4 Other Overlay Types

In addition to unstructured overlays, we also examined super-peer and multicast over-
lays. First, we present results where the overlapping overlays are of the same type, and
then we present results where the overlays are different.

Overlapping Overlays of the Same Type. We examined a network with two over-
lapping super-peer overlays. In this case, super-peers handle almost all of the overlay
messages, since search messages are never sent to leaf peers. Therefore, there is only
contention for resources when the same peer hosts super-peers for both overlays. We
again generated 25,000 searches per overlay. The results (not shown) demonstrate that
at the nodes where there is resource contention, the higher priority overlay receives
higher throughput, consistent with the relative priorities between the two overlays.

Next, we ran an experiment with two overlapping multicast trees. Each multicast
source generated 25,000 events. The high priority tree had twice the priority of the
low priority tree. Figure 9 shows the resulting throughput. As the figure shows, the
effect of filtering is less prominent. Although filtering results in the high priority overlay
receiving more throughput, the allocation is not as fair: the high priority overlay only
receives 57 percent of the throughput. In an application-level multicast tree, the total
throughput is heavily dependent on the capacity of the root peer and peers near the
root, since they are the bottlenecks for dissemination to the rest of the tree. If a peer
is a bottleneck node in both multicast overlays, then ODIN-S filters can mediate the
resources at the bottleneck; otherwise, the filters have only a minor effect. The result is
that ODIN-S filters allocates total throughput more effectively than in the no filtering
case, but not as well as for other types of overlays.

Because performance of the multicast overlay depends so heavily on the topology
and nature of the bottleneck nodes, to ensure an apples-to-apples comparison we had to
hardwire our system to construct the same overlay topology in both the filtering and no
filtering scenario. We do the same for multicast tree experiments in the next section.

Overlapping Overlays of Different Types. We examined four combinations of het-
erogeneous overlapping overlays: (1) unstructured + super-peer, (2) flooding-based un-
structured + random-walk based unstructured, (3) super-peer + multicast, and (4) un-
structured + multicast. These experiments are just a subset of all of the possible com-
binations of overlays. However, they allow us to examine how well ODIN-S trades off
resources between overlapping overlays of different types.

First, we ran an experiment where an unstructured overlay overlapped with a super-
peer overlay. We assigned the super-peer overlay twice the priority of the unstructured
overlay. In this case, the super-peer overlay’s resource requirements are concentrated
at super-peers (approximately 5 percent of the total nodes), which have high traffic
volumes. As shown in Figure 10, without priority filtering, the super-peers become a
bottleneck for both overlays, effectively starving the unstructured overlay. In contrast,
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with ODIN-S filtering, the unstructured overlay is given its fair share of priority at
the super-peers, reducing the bottleneck effect and resulting in more than a factor of
five increased throughput. This demonstrates how ODIN-S can prevent the topology
features and hotspots of one overlay from impeding the throughput of the other overlay.
Note that the super-peer overlay, which is high priority, sends relatively few messages,
since it is more efficient than the unstructured overlay. However, at peers hosting a
super-peer, the super-peer overlay is receiving twice the service of the unstructured
overlay, without starving the unstructured overlay.

Next, we examined two different types of unstructured overlays: a flooding-based
unstructured overlay (as in the original Gnutella) and a random-walk based overlay.
Flooding, which is not scalable for Internet overlays, might be used in enterprise-scale
overlays because it offers low result latency. For this reason, some domain-specific tools
use a flooding-based overlay [2]. Our results (not shown) indicate that despite the dif-
ference in routing method, ODIN-S filters result in both overlays receiving throughput
in proportion to their priority. Without filtering, both overlays receive approximately
the same throughput, despite their priority difference.

We also examined a super-peer overlay overlapping with a multicast overlay. The re-
sults (not shown) are similar to the case of the two overlapping multicast trees
(Section 5.4): filtering improves the fairness of the allocation of throughput, but the ef-
fect is not as dramatic as in the other overlay types. Again, the unique topology features
of the multicast tree (bottleneck nodes are near the root) means that unless a bottleneck
node and super-peer are hosted on the same peer, ODIN-S filters have limited effect.

Finally, we examined an unstructured high priority overlay overlapping with a low
priority multicast tree. The results are shown in Figure 11. As the figure shows, ODIN-
S has a large effect on the throughput, effectively allocating more throughput to the
high priority overlay, while no filtering allows the low priority multicast tree to grab
most of the service. In this case, the bottleneck nodes of the multicast tree are always
overlapping with a traffic-bearing node in the unstructured network (since all peers
in unstructured network forward traffic.) Then, ODIN-S can effectively allocate the
throughput at the bottleneck nodes between the two overlays, resulting in an overall fair
allocation of throughput.
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5.5 Dynamic Scenario

We examined a scenario in which overlay peers joined and left frequently, as frequently
occurs in many Internet peer-to-peer overlays. Although we primarily envision our sys-
tem being used for more stable networks where priority can be effectively assigned to
overlays (such as in enterprise networks), we wanted to see how a large amount of churn
affected the throughput. We used a real trace of peer joins and leaves from the Overnet
system [7], and extracted the first 1,000 peers from the trace (representing roughly the
first 14 hours of the trace.) This trace is highly dynamic: the average peer is alive for
only 5 hours, while the shortest lived peers are alive for 20 minutes. Figure 12 shows a
histogram for the distribution of peer lifetimes. Each peer participated in two overlap-
ping unstructured overlays. Since Internet peers are not usually dedicated but instead
used for multiple tasks besides the overlay, peers allocated 10 percent of their capacity
to the overlay; hence the capacity range was 2-20 messages/second.

Figure 13 shows the results. As the figure shows, even in the presence of high churn
the system performs as before: without filtering, both overlays receive the same service,
but with ODIN-S filters, the higher priority overlay receives an appropriately higher
level of service.

5.6 Summary of Results
We can draw the following conclusions from our results:

— ODINS-S is effective at enforcing fair allocation of resources between overlapping
overlays, respecting priority but avoiding starvation.

— Using the SFQ filter as an ingress filter is effective across different priority ratios,
traffic patterns, and overlay types. It is least effective for overlapping multicast
overlays, where the topology characteristics often outweigh what the filtering can
achieve. Even in this case, however, filtering is more fair than no filtering.

— The adaptive, neighbor-count algorithm for allocating quota to an upstream neigh-
bor is more fair, and results in better overall throughput, than a simple round robin
scheme (allocate equal quota to all neighbors), or a scheme where quota is allocated
proportionally to the traffic each neighbor wants to send.



Trading Off Resources Between Overlapping Overlays 119

— Heterogeneous overlapping overlays can have complex interactions as hotspots in
one overlay impact the throughput of another. ODIN-S filters can effectively miti-
gate the impact one overlay has on another.

— Our architecture is effective both for overlays with little or no churn, as well as for
overlays with a high amount of churn.

6 Conclusion

We have presented ODIN-S, a middleware system for trading off resources between
overlapping overlays. Our architecture can be used to mediate the resource demands
of different overlays deployed to provide different functionality on the same hardware.
The system demonstrates how to integrate and extend techniques from multiple domains
into a comprehensive middleware toolkit for deploying and managing multiple overlays.
ODIN-S provides a common runtime that supports multiple peer logics, one per overlay.
Our system also provides a flexible and extensible filtering mechanism. Filters can be
used for a variety of tasks, and we focus on their use for allocating resources to different
overlays based on priority. We describe ingress, egress and upstream/downstream filters
to manage CPU usage, upload and download bandwidth (respectively). Experiments
demonstrate the effectiveness of ODIN-S at enforcing fair, priority-based sharing of
resources among overlapping overlays.
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Abstract. Efficient subsumption checking, deciding whether a subscription or
publication is covered by a set of previously defined subscriptions, is of
paramount importance for publish/subscribe systems. It provides the core system
functionality—matching of publications to subscriber needs expressed as sub-
scriptions—and additionally, reduces the overall system load and generated traffic
since the covered subscriptions are not propagated in distributed environments.
As the subsumption problem was shown previously to be co-NP complete and
existing solutions typically apply pairwise comparisons to detect the subsump-
tion relationship, we propose a ‘Monte Carlo type’ probabilistic algorithm for the
general subsumption problem. It determines whether a publication/subscription
is covered by a disjunction of subscriptions in O(k m d), where k is the number
of subscriptions, m is the number of distinct attributes in subscriptions, and d
is the number of tests performed to answer a subsumption question. The prob-
ability of error is problem-specific and typically very small, and sets an upper
bound on d. Our experimental results show significant gains in term of subscrip-
tion set reduction which has favorable impact on the overall system performance
as it reduces the total computational costs and networking traffic. Furthermore,
the expected theoretical bounds underestimate algorithm performance because it
performs much better in practice due to introduced optimizations, and is adequate
for fast forwarding of subscriptions in case of high subscription rate.

1 Introduction

Content-based publish/subscribe systems are receiving growing interest with a large
number of relevant applications such as stock tickers, RSS news feeds, network mon-
itoring, traffic monitoring, and electronic commerce requiring selective information
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dissemination. Traditional content-based publish/subscribe systems usually employ high-
performance servers to handle high rates of publications and serve millions of sub-
scribers in static environments. They have been optimized for fast matching of publica-
tions to subscriptions [1,2,3,4] and typically maintain a special subscription index that
does not frequently change as the rate of subscription changes is negligible compared
to the publication rate.

Distributed content-based publish/subscribe systems traditionally assume static envi-
ronments and use a network of brokers to divide the publication and subscription load.
Brokers implement routing protocols to provide a consistent service with the goal of
reducing networking costs generated by publications and subscriptions [5,6]: Subscrip-
tions are typically routed through the network toward publishers to enable filtering of
publications close to their sources. Subscription traffic, on the other hand, is reduced
by not propagating covered subscriptions, as they are redundant, or by subscription
merging [7,8].

Although the importance of subscription set reduction for content-based publish/sub-
scribe systems has been stressed, e.g. in [8], existing deterministic algorithms [9,6,7]
focus either on efficient matching of publications to subscriptions only or rely on basic
heuristics for subscription set reduction such as pairwise subscription comparison or
subscription merging. In this paper we take a more fundamental approach to subscrip-
tion set reduction for (distributed) content-based publish/subscribe systems. In partic-
ular we show that when using general subsumption checking, where the covering of
subscriptions by multiple other subscriptions is exploited, important performance im-
provements can be achieved. However, efficient general subsumption checking is non-
trivial. Publications and subscriptions are typically modeled as logical expressions—
conjunctions of predicates—where each predicate defines a simple constraint on an at-
tribute. Geometrically, subscriptions can be viewed as convex polyhedra. Therefore,
the general subsumption checking problem corresponds to the problem of checking
whether a disjunction of subscriptions covers a subscription/publication, which can ge-
ometrically be interpreted as checking whether a convex polyhedron is contained within
a finite union of convex polyhedra. This problem was proven to be co-NP complete
in [10].

Since the general subsumption problem is practically unfeasible, for solving it, we
introduce a probabilistic ‘Monte Carlo type’ algorithm. This is the first probabilistic
approach to test the subscription coverage by a union of subscriptions. The algorithm
solves the subsumption problem in O(k - m - d), where k is the number of subscriptions,
m is the number of distinct attributes in subscriptions and d is the number of tests
performed to answer the subscription coverage question. The value of parameter d is
dependent on an acceptable predefined probability of error which is problem specific
and can be computed in polynomial time a-priori. Using this algorithm a subscription
set can be efficiently reduced to a minimized subscription set matching the same set
of publications. Experiments show that in practice our algorithmic approach performs
much better than the theoretical bound O(k - m - d). The same algorithm can also
be used to efficiently match publications from imprecise data sources, by representing
publications also as convex polyhedra, as it is advocated in recent publish/subscribe
models with approximate matching [11].



Efficient Probabilistic Subsumption Checking 123

The importance of subscription set reduction is highly significant in distributed
content-based publish/subscribe system for the following reasons:

— The publish/subscribe systems architecture is increasingly used in environments
with highly variable subscriptions, such as MANETSs and sensor networks, where
the assumption of both network [12] and subscription stability no longer holds.
The rate of subscription changes may drastically increase as a consequence of both
changing interests and context changes, and also may substantially exceed the pub-
lication rate if rare events are monitored; therefore, novel indexing techniques have
been investigated that trade-off precision to performance [13], however they do not
solve the essential problem of subscription set reduction.

— As publish/subscribe systems mainly target usage scenarios where a subscription
space is moderately populated and subscriptions typically overlap due to similar but
not equal interest, there is a higher probability of a subscription being covered by a
set of subscriptions rather than a single one. Covered subscriptions are redundant.
Therefore, they are not propagated further which reduces the total number of sub-
scriptions in the system saving memory and reducing traffic. This in turn reduces
computational costs for matching publications to subscriptions and new subscrip-
tions to existing subscriptions as the set of subscriptions is reduced.

— As publish/subscribe systems are growing in scale to very large networks of bro-
kers, the benefit of any reduction in the number of subscriptions forwarded locally
by a broker, is amplified exponentially in the network diameter while broadcast-
ing subscriptions in the broker network. Thus even modest local reductions lead to
substantial global reductions in network traffic during subscription propagation.

Due to the probabilistic nature of the algorithm a concern about lost publications
(false negatives) may be raised. However, many recent applications are tolerant to lost
publications, because e.g. the data sources are already unreliable themselves, as in sen-
sor networks. Furthermore, the error probability can be controlled and adapted to appli-
cation needs, trading off computational cost for precision. Therefore, we expect that for
a wide range of important applications the probabilistic nature of the approach is fully
acceptable.

To summarize, the algorithm has the potential to significantly decrease costs in terms
of computation, memory, and bandwidth consumption in content-based and distributed
publish/subscribe systems by fully exploiting the potential subscription set reduction
and achieving computational efficiency through a probabilistic approach. In our exper-
imental evaluations we verify both the performance gain with respect to subscription
set reduction by comparing to the standard technique of pairwise reduction and the
performance characteristics of the algorithm as compared to the pessimistic theoretical
bounds.

The remainder of the paper is structured in the following way. We review the basic
principles of content-based publish/subscribe communication model in Section 2. To
motivate the presentation, Section 3 sketches a usage scenario and formally defines the
subsumption problem. Section 4 presents our novel probabilistic algorithm with specific
optimizations, and we investigate it’s properties in a distributed setting in Section 5.
Section 6 presents an evaluation of the algorithm using extensive experimentation, and
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in Section 7 we compare it to the related work in the field. We complete the paper with
our conclusions in Section 8.

2 Distributed Publish/Subscribe Communication

The publish/subscribe interaction model enables asynchronous communication between
information publishers and subscribers. Subscribers express interest in receiving pub-
lications that comply to specific criteria by defining subscriptions that change the set of
active subscriptions maintained by the publish/subscribe system. When a publisher de-
fines a new publication, it is compared against all active subscriptions, and the system
notifies subscribers with a matching subscription about the published content. Thus, the
publish/subscribe service performs content filtering and enables push-style group com-
munication, where group members are determined dynamically per each publication.

In a distributed system a set of publishers P;,1 < ¢ < n and a set of subscribers
S;,1 < j < m interact over a set of nodes, brokers, B,1 < k < N. Brokers are re-
sponsible for matching publications to subscriptions and for disseminating publications
to neighboring brokers with subscribers interested in the published content. A publica-
tion matches a subscription if all publication attributes satisfy constraints defined by the
subscription. The simplest approach to route publications in a broker network is publi-
cation flooding, where end brokers perform publication filtering prior to final delivery
to local subscribers. This approach is an obvious solution for scenarios with a densely
covered subscription space where most brokers have interested subscribers for all pub-
lications; however, it wastes a lot of bandwidth in cases with few or no subscribers
interested in a large fraction of publications.

To decrease the publication traffic, subscriptions are disseminated through the net-
work close to publishers to enable publication filtering ’at the source’. Upon receiving a
new subscription, a broker will forward it to its neighbors that are potential publishers of
content matching the defined subscription. A commonly used technique for subscription
dissemination is flooding: A subscription is sent to all neighbors except to the one from
which it was received. Note that brokers maintain a routing table with a set of active
subscriptions per each neighboring broker, and consider this neighbor to be a subscriber
without knowing the ’real’ end subscribers. Upon receiving a publication, a broker B;
forwards it to its neighboring broker B; only if it matches any of B;’s subscriptions. In
other words, publications follow the reverse direction of subscriptions. The technique
originates from IP muticast and is commonly known as reverse path forwarding [5,6].

To reduce the subscription traffic, subscription covering and merging is applied. In-
formally, a subscription s; covers subscription so if all publications matching s will
also match s1, but the opposite does not hold. Since a covered subscription does not
influence the propagation of publications, there is no need to forward it to neighboring
brokers. Therefore, when a broker B; receives so which is covered by s1, it will not
forward so to B; if B; has previously forwarded s; to B;. Nevertheless, s3 has to be
stored in the passive set of subscriptions (s; would be an element of the active ser), be-
cause it must be activated in case s; expires, i.e. a subscriber unsubscribes from s,. The
process of merging proposes a single merged subscription for similar subscriptions, but
will not be discussed in detail as it is beyond the scope of this paper.



Efficient Probabilistic Subsumption Checking 125

3 Problem Statement

Scenario. To motivate the need for an efficient subsumption checking mechanism, we
introduce a usage scenario potentially generating a large number of subscriptions. Re-
source discovery in Grids assigns computation requests (jobs) to available services.
Current systems use server-based solutions and recently P2P-based solutions have been
investigated [14] to deal with the scalability problem caused by a large number of
jobs and services. Let us discuss the problem of resource discovery in terms of pub-
lish/subscribe. Services offering computational resources may announce their capabil-
ities and availability through subscriptions to enable efficient matching and scheduling
of jobs searching for available services. Jobs define their requirements from the ser-
vices using publications. An example subscription with two publications are presented
in Table 1.

Table 1. Subscription and publication examples

CPUcycles disk memory service time
s1 [3000, 3500] [40, 50kB] 1GB a.service.org  [2006-03-31T16:00:00,
2006-03-31T20:00:00]
p1 3500 45kB 1GB *service.org  2006-03-31T16:00:00
D2 1035 45kB 0.5GB * % org 2006-03-31T12:23:05

The basic characteristic of the presented usage scenario is the potentially large num-
ber of services and jobs that generate huge amounts of both subscriptions and publica-
tions. Dynamic changes of subscriptions are significant because as the context changes,
i.e. services get allocated to new jobs, subscriptions will consequently change. There-
fore, this scenario exemplifies a setting where context changes induce higher subscrip-
tion rate, as it can also be observed in mobile environments. Next, the subscription space
may have high dimensionality: Even in our simple example without detailed job and re-
source descriptions, 5 different attributes have been defined. Thus, we propose a method
for reducing the total number of active subscriptions in the system by means of group
coverage. Due to large numbers and inherently distributed characteristics of Grid ser-
vices, the publish/subscribe service for resource discovery would be distributed. As in
this paper we are focusing on the subsumption process performed within a single node,
we are not assuming neither an underlying network topology nor stability of the broker
network. It can be applied with various routing protocols, and our goal is to point out
potential impact of the proposed algorithm on the performance of a distributed system
regardless of its topology and applied routing strategy.

Let us consider the following example of subscription coverage in a 2-dimensional
subscription space. Table 2 defines two existing subscriptions, s; and s3, and new sub-
scription s. We want to determine whether s and s, jointly cover s. As it is visible from
the graphical representation of subscriptions in Figure 1, the subsumption relationship
indeed exists. Even though neither s; nor sy cover s, their union entirely covers s.
Note that constraints in this example define ranges to simplify the presentation, and can
straightforwardly be extended to finite sets [15].

Table 3 lists the notation used in the paper.
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Table 3. Notations

Symbol Meaning
s New subscription
P Publication
S Disjunction of existing subscriptions s;, 1 <1i < k
k |S|
Si Existing subscription s; € S
s §'" predicate in s;
x; Attribute j
m number of distinct attributes in S
T Conflict table
T/ Value in row %, column j of T’
ti Number of defined elements in row i of 1T°
fes Number of conflict-free elements in row ¢ of T'
1 Error probability
Pw Probability of guessing a point witness

Definition 1. Subscription s; is a conjunction of predicates s; = s} As?A...As. where
each sf is a simple predicate, and r; > 1, where r; is the number of simple predicates
forming subscription s;. Let us define m, as the number of distinct attributes in the set
of k subscriptions s;, 1 <1 < k.

Without restricting the applicability of the algorithm and to simplify the analysis, we
consider that each simple predicate defines a constraint on an attribute z;, 1 < 57 < m,
where each z; has a lower (z; > low;) and upper limit (x; < high;). Each attribute
is therefore defined as a range. Furthermore, we assume that all subscriptions define
constraints for the same number of attributes m; = mo = ... = m; = m, and since
there is a lower and upper bound on each x;, r = 2-m. In fact, this is not a restriction as
the bounds (—o0, +00) mean the attribute is not significant for a particular subscription,
and remains undefined.
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The general subsumption problem tests whether a subscription s is covered by a
disjunction of subscriptions, s C (s1 V s2 V ...V si), where k is the total number of
existing subscriptions.

Definition 2. A conflict table T is a k x (2 - m) table relating a subscription s to all
simple predicates defined by S = {s1 V s2 V...V si}. An element in table T', T} is
—s]if s A —s? is satisfiable or is otherwise undefined.

A conflict table points out conflicting and not covered intervals between a tested sub-
scription and a set of subscriptions. To construct the conflict table, we process each
subscription s; € S to verify the satisfiability of the negation of each simple predicate

s7 against subscription s. If the condition is true, 77 is assigned the value —s?, oth-
erwise it is assigned the undefined value. Thus, the decision whether a specific Tij is
defined is done in O(1) and the construction of the table requires O(m - k).

For the example in Table 2, s/\—|s} is not satisfiable, because the intersection between
sand —s] = {1 < 820} is empty, while s A —s7 is satisfiable because the intersection
between s and —s? = {z; > 850} is non-empty. Both s A —s} and s A —s{ are not
satisfiable and thus the corresponding table cells are unde fined. The same procedure

is performed to compare s to ss.

Table 4. Conflict table for the example in Figure 1

si w1 <low; x> hight x2 <low? za > high?
s1 undefined x1 > 850 wundefined undefined
sy x1 < 840 wundefined undefined undefined

The conflict table relating subscription s from Table 2 to the set of subscriptions
s1 and so is given in Table 4. The first row represents a template for the content of
the actual conflict table relating s to s; and so. The first line corresponding to s; has
only one defined element, —s? = {z1 > 850} because, as it is visible in the graphical
representation, s; does not cover s for 1 > 850. Analogously, the only defined element
in the second line corresponding to s is —s3 = {1 < 840}.

Definition 3. A polyhedron witness to non-cover is a set of elements from a conflict
table T, < T, ..., T}* ¢, such that sA—s{" A... A—sy¥ is satisfiable, defining a convex

polyhedron. In other words, a polyhedron witness is a convex polyhedron contained in
s, but not in S.

Let us consider the example graphically represented in Figure 2, defining two sub-
scriptions s; and sy that do not cover subscription s. The polyhedron witness to non-
cover is a rectangle in this case, and is defined by the intersection of s and the element
—s3 = {x1 > 870}. This rectangle is contained in s, but not in s1 nor sz.

Definition 4. A point witness to non-cover is a point that satisfies s, but does not satisfy
S. A point witness is inside a polyhedron witness, but not inside S.
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tion of a polyhedron witness and point witness

In the previous example, any point inside the polyhedron witness rectangle defined by
s A —s2 is a point witness. The following 2 corollaries are based on the properties of the
conflict table, polyhedron witness and point witness.

Corollary 1. If all Tij for 1 < j < r are undefined, then s is covered by s;.

Proof. If all T}, ..., T are undefined, then (s A—s}, ..., sA—sT) are all not satisfiable,
and thus (s C s}) A ... A (s C s7), or alternatively, s C (s} A ... A s7). In effect s is
covered by s;. Thus, as a side-effect, the use of the conflict table provides a sufficient
condition, tested in O(m - k), to check whether s is covered by any of the subscriptions
individually. a

Corollary 2. If all Tij for 1 < j < r are defined, then s covers s;.

Proof sketch. If all T}, ... | T} are defined, then (sA—s}, ..., sA—s?) are all satisfiable,
and thus s includes s; on all attributes. O

Corollary 3. Let¢;,, t;, ... t;, bethe list resulting from sorting ¢1, t2 . . . ¢ in ascending
order, where ¢; represents the number of defined entries in row ¢ of the conflict table 7.
Ifall t;; > j for 1 <i; <k, then s is not covered by S.

Proof sketch. If t;; > j for 1 < i; < k, then a polyhedron witness exists. It can be
constructed in the following way: Choose any element sgi’l to be part of a polyhedron
witness, and then eliminate any conflicting entries from other rows. Since each row will
have a maximum of one conflicting element with sgi’l , then at most one element in each
row will be eliminated. If this step is repeated %k times a polyhedron witness will be
derived. Thus, s is not covered by S. O

4 Probabilistic Cover Algorithm

In this section we describe the probabilistic cover algorithm to solve the defined sub-
sumption problem. This algorithm has direct implications on the effectiveness of rout-
ing both publications and subscriptions in a distributed environment, and the efficiency
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to discover matching publications. The probabilistic core of the algorithm is the ‘Monte
Carlo type’ Random Simple Predicates Cover part. It runs in a fixed number of itera-
tions, but may produce an incorrect result with a certain pre-determined probability of
error. The probability of error is problem specific, and we show that an upper bound on
this error is derived in polynomial time prior to the execution of the algorithm. Thus, the
performance of the algorithm can be decided in advance based on particular application
requirements. The Random Simple Predicates Cover can be executed independently or
in conjunction with the minimized cover set algorithm which reduces the original set
of subscriptions S to a non-reducible set against which a new subscription s has to be
checked. We also introduce a number of optimizations used for making fast decisions
under specific conditions that can be detected from the conflict table.

4.1 Random Simple Predicates Cover

The Random Simple Predicates Cover (RSPC) algorithm exploits the property of point
witnesses. If the algorithm guesses a point in s that is a point witness to non-cover for
the set of subscriptions S, then the subsumption problem is solved with a definite NO,
i.e. s £ S. On the other hand, in case a subsumption relationship exists, the algorithm
would try in vain to find such a witness. To prevent this situation, we define a threshold
d for the number of guesses, and the algorithm may output a probabilistic YES, i.e.
s C .S with a predefined probability of error.

Algorithm 1. Random-Simple-Predicates-Cover
1: /* Decide whether a subscription s is covered by the existing subscriptions set S */
2: fori =1toddo
3:  GUESS a point P inside s
if P does not satisfy subscriptions set S then
RETURN false
end if
end for
: RETURN true

P> R

Algorithm 1 defines the RSPC algorithm which executes a number of iterations d
to randomly generate a point satisfying subscription s and checks whether it is a point
witness. To generate a point within s costs O(m), and verifying whether it lies inside
any of s1, so, . . . S can be done in O(m - k) steps. Overall, the algorithmic complexity
of RSPC is d(m + m - k), or O(d - m - k). However, our experiments in Section 6 show
that this upper bound is a pessimistic estimate, since at any iteration, RSPC can output
a definite NO if the guessed point is indeed a point witness. In addition, the complexity
can be greatly reduced using the optimizations presented in Sections 4.2 and 4.3.

Proposition 1. RSPC returns NO when s is definitely not covered by S. It returns YES
with a probability error § upper bounded by

6= (1-pw)? (1

where p,, is the probability that a randomly generated point P inside s is a point witness.
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Proof. If RSPC returns NO then a point witness was found, and thus s is definitely
not subsumed by S. Therefore, the answer is correct. If s is not subsumed then RSPC
returns YES only if none of the guessed points is a point witness. For each trial this
happens with probability less than 1 — p,,, therefore for d trials the probability RSPC
returns YES is less than (1 — p,,)?, since d trials are randomly generated and are thus
assumed to be independent. a

In problems with specific probability of error §, we can compute the necessary number
of trials, d, to answer the subsumption question with the required §, using Equation 1
beforehand in polynomial time. The number of trials increases with a decrease of the
error probability. The value of p,, depends on the number of existing point witnesses
for the particular subscription s related to the set of subscriptions S, and the ‘size’
(number of integral solutions) of subscription s. Since the probabilistic algorithm may
produce a wrong answer only if s is not subsumed by .S, the worst situation is to as-
sume that s is indeed not subsumed by the set. To compute the upper bound on d,
we need to determine the lower bound on p,,, set by the smallest possible polyhedron
witness.

Algorithm sketch for computing d. In order to compute d, the algorithm needs the
value of p,,, which must be approximated, because knowing an exact value is equiv-
alent to solving the subsumption problem. We approximate the lower bound on p,, as
the product of the minimum distances for each attribute between the new subscription
bounds and the bounds of each subscription in the set (possible minimum non-covered
ranges). Then, the upper bound on d is extracted from Eq. 1, using the computed value
for p,, and the given §.

4.2 Minimized Cover Set of Subscriptions

To further reduce the number of subscriptions against which s needs to be checked, we
introduce another algorithm, the minimized cover set algorithm (MCS). From the set
of subscriptions .S, MCS constructs a non-reducible set of subscriptions, by ignoring
those that are redundant for the covering detection problem and filters out duplicate
subscriptions (those covering the same parts of s), and subscriptions that do not intersect
with s. The remaining subscriptions form the non-reducible set .S’ (which may not be
the minimal covering set) against which s is subsequently checked by RSPC.

Definition 5. Two defined entries in the table, T;"* and T} are said to be conflicting
if iy # i, and s A T]" A T} is not satisfiable. A defined entry T;" is said to be
conflict-free if it does not conflict with any other defined element Tij;Z, where i1 # is.

Conflict free entries are determined by comparing entries from the conflict table related
to the same attribute, for different subscriptions. If a constraint conflicts with any other
constraint defined by another subscription, the entry is conflicting. It is conflict free
otherwise.

Figure 3 visualizes the set of 3 subscriptions, s1, So and s3, as well as subscription
s defined in Table 6, and Table 7 shows the corresponding conflict table. We can observe
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Table 6. Conflict-free example: subscriptions

Subscription s
[x1 < 870 A xz1 > 830A
z2 < 1006 A 22 > 1003]
Subscription s1
[x1 < 850 A z1 > 820A
z2 < 1007 A zz > 1001]
Subscription s2
[z1 < 880 A xy > 840N
z2 < 1009 A 22 > 1002]
Subscription ss3
[x1 <890 A z1 > 810A
2 < 1005 A 22 > 1004]

%

1010

131

1009 -

1008 -

1007 -

1006 -

1005 -

1004 -

1003

1002

1001 -

1000

800

820 840 860 880

900

Fig. 3. An example with conflict free entries

Table 7. Conflict table for the example in Figure 3

Si
S1
52
S3

x1 < low} x1 > high;
undefined x1 > 850

r1 < 840 wundefined
unde fined undefined

xro < lowf

unde fined
unde fined
T2 < 1004

x2 > high?
unde fined

unde fined
x2 > 1005

that the defined entries for s3 are conflict free: they are not conflicting with the entries
from s; and s5. On the other hand, s; and s have conflicting entries because z; cannot
simultaneously satisfy both conditions, x; > 850 and x; < 840.

Proposition 3. If the number of conflict-free elements in the i-th row of T', f.,, is
greater than or equal to 1, or the number of defined elements in row i, ¢; > k, then s; is
redundant. Proof is given in [15].

The MCS algorithm consists of two main steps, as defined in Algorithm 2. First, starting
from the conflict table 7', it counts the number of defined elements for each subscription
s; in the corresponding row, ¢; and computes the number of conflict free elements,
fe.- Then, it removes from the set all subscriptions for which ¢; is equal to or greater
than the current number of subscriptions in the set. It also removes subscriptions that
have at least one conflict free element in the corresponding row of the conflict table.
These two steps are repeated until there are no more subscriptions that fulfill any of the
two conditions. The remaining subscriptions form the non-reducible cover set S’ for
answering the union covering problem.

Considering the conflict table from Table 7, in the first step none of the subscrip-
tions has more defined entries than the total number of subscriptions (f; = t2 = 1 and
ts = 2 which is smaller than 3), while only s3 has conflict free entries. Based on the
elimination conditions (in this case, f., = 2 > 0), MCS can remove subscription s3
in the first iteration. In the second iteration, still no subscription has more defined entries
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Algorithm 2. Minimized Cover Set

1: /* Find the minimized set of subscriptions S’ relevant for subsumption detection */
2: /* Construct and use the conflict table 7" */

3: repeat
4. S =8
5:  for every row i in T do
6: compute f., /* number of conflict-free elements in row 4 in 7" */
7: compute ¢; /* number of defined entries in row ¢ in T" */
8: if fo, > 0ort; > k then
9: remove row ¢ from 7’
10: remove subscription s; from S’
11: k=k—-1
12: end if
13:  end for
14: wuntil no s; can be removed
15: RETURN S’

than the total number of subscriptions (t; = t2 = 1 < 2) and there are no conflict free
entries, thus the algorithm stops. The minimized cover set is S’ = {s1, s2}.

Determining if a table entry is conflict free is O(m - k). Therefore computing each
fe, costs O(m? k), and in turn steps 1 and 2 in each iteration of the MCS algorithm cost
O(m? k?). Steps 1 and 2 may be repeated k times since each time step 2 is performed
at least one s; is filtered out. As a result, the overall cost of the algorithm reduction is
O(m? k?) in the worst case.

4.3 Fast Decisions Based on Sufficient Conditions

To summarize, in order to answer the subsumption problem, the algorithm first con-
structs the conflict table, runs the MCS algorithm to reduce the subscription set, and
then applies the probabilistic RSPC algorithm which produces either a definite NO or a
probabilistic YES. Nevertheless, for some specific cases, the algorithm can efficiently
give a deterministic answer. Here we briefly present three specific cases.

1. Pairwise subsumption: As stated in Corollary 1, it is possible to detect if a sub-
scription s is entirely covered by another subscription and produce a definite YES
by analyzing the conflict table. If the row in the conflict table corresponding to sub-
scription s; contains only undefined values, then s; covers the new subscription.

2. The outcome of the MCS algorithm can be an empty set, which means that there
are no candidate subscriptions that could jointly cover s, and the algorithm will
produce a definite NO.

3. Polyhedron witness: Detecting the existence of a polyhedron witness suffices to
detect a non-cover relationship and output a definite NO as stated in Corollary 3.
Based on the definitions of the polyhedron witness and conflict free entries, we can
detect the presence of such a witness, depending on the number of defined entries
in the conflict table without using either RSPC or MCS.
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5 Subscription Propagation in a Distributed System

As in a distributed system subscription propagation affects the overall system perfor-
mance, here we analyze the implications of incorrectly declaring a subscription as cov-
ered. Equation 1 gives the upper bound for the probability of error in incorrectly with-
holding the forwarding of a subscription, and therefore, it represents the likelihood of
not finding a matching publication if it is available at the next broker. In a distributed
publish/subscribe system, data is routed throughout the system, and we need to analyze
the influence of our probabilistic algorithm on subscription propagation. We consider
in Figure 4 a simple and illustrative case, where the new subscription s should be prop-
agated along a chain of brokers Bi, B, ..., B,.

Subscription s

s s:
p: Publication p
S of
p

p p p . The probability p
~arrives at B,

Fig. 4. New subscription propagation

We assume that the new subscription s is issued at broker B, while subscriptions
S1, 82, ..., S, have already been propagated down the path to all brokers. Let p be
the probability that a matching publication p (matches s but no s;) is issued at any of
the brokers B;. The overall performance of the probabilistic algorithm is given by the
probability of finding the matching publication, wherever it resides.

Proposition 4. The probability of finding the matching publication p under the con-
dition that s is erroneously found to be covered by S, where s1, so, .. ., s have been
propagated to all brokers along the path, and all brokers have equal probability of p of
receiving publication p is:

n

> ol =p)(1 = (1= pu) O, 2)

i=1

where p is determined by the network density and the communication distance of two
neighboring brokers, and n is the total number of brokers in the path.

Equation 2 gives the lower bound for the overall algorithm performance. However, as
we will show in the next chapter, the actual performance is much better in practice, even
for loose error probabilities. On the other hand, the reduction in the global subscription
traffic is more important for longer broker paths, reflecting the local reduction at each
broker, exponentially amplified in the network diameter.

Note that we do not present in this paper the mechanism for dealing with subscrip-
tions cancelation. This issue can be tackled by explicit forwarding of unsubscriptions
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between brokers or by associating an expiration time with each new subscription. Ac-
cording to our approach, the canceled subscription can either be covered, and then can-
celation has only the effect of removing it from the passive set, either be present in the
(active) subscription set, and then its covered subscription must be promoted to this set,
to replace it.

6 Experimental Evaluation

In this section, we evaluate the performance of the proposed probabilistic approach in
terms of efficiency and effectiveness using a number of subscription generation sce-
narios. Efficiency is measured as the number of actual algorithmic steps performed to
answer the subsumption question, and effectiveness as the ratio of recognized redun-
dant subscriptions to the total number of redundant subscriptions. Especially, we are
interested in potential gains and costs when using the MCS algorithm in specific sub-
scription generation scenarios. Next, we analyze the number of false decisions declaring
a subsumption relationship when there was no subsumption. Finally, we compare our
approach with the existing one for pair-wise coverage detection.
There are two main categories of subscription settings:

(1) Covering: s is covered by the set of subscriptions (with some of s; € S being
redundant).
(2) Non-cover: s is not covered by the set S (as such, all subscriptions are redundant).

In particular, we have considered the following subscription generation scenarios:

(1.a) Pairwise covering scenario; s is entirely covered by at least one subscription from
the set of existing subscriptions.

(1.b) Redundant covering scenario; s is not covered by any single subscription, but is
covered by the set, with a lot of subscriptions being redundant.

(2.a) No intersection scenario; s does not intersect with any existing subscription.

(2.b) Non-cover scenario; s is not covered by the set .S, but overlaps with existing
subscriptions over many attributes.

(2.¢) Extreme non-cover scenario; similar to (2.b), but s has only a very small non
covered gap.

(1-2) Comparison scenario; generate incoming subscriptions randomly.

Scenario (1.a) is straightforward as the covering relationship is determined efficiently
by applying Corollary 1 after the construction of the conflict table, therefore the cost of
detecting pairwise coverage is O(m - k). Scenario (2.a) is also straightforward because
MCS determines non subsumption after the first iteration by removing all subscriptions
from the set S’ because all s; € S have conflict-free elements in the conflict table. Sce-
narios (1.b), (2.b), and (2.c) are difficult settings for checking the covering relationship,
as there are no pair-wise subsumptions which could help to reduce the set S’. We inves-
tigated these scenarios using the following subscription generation principle: Existing
subscriptions overlap with a new subscription and each other for many attributes, but
there are no pair-wise subsumptions. The last scenario (1-2) simulates a realistic setting
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Table 8. Parameters used in simulations

135

(1.b) (2.b) 2.¢) (1-2)
no. of subscriptions k£ 10-310 (30) 10-310 (30) 50 1 to 5000
no. of attributes m 10, 15,20 10, 15,20 5 10, 15, 20
error § 10710 1071 107%,107%,107° 10°¢
no. of trial runs 1000 1000 3000 1
gap size 0 random 0.5-4.5% (0.5%) NA

assuming that user interests are similar, and that the popularity of attributes appearing
in subscriptions is Zipfian.

The parameters used in simulations are listed in Table 8. For the redundant covering
and non-cover scenarios, the setting is similar, while the extreme non-cover scenario
investigates different error probabilities. The comparison scenario is performed in a
single run by generating a sequence of subscriptions. In the figures, each plotted point
is the average of the values obtained over the number of trial runs.

6.1 Redundant Covering Scenario

This simulation scenario investigates algorithm performance when the subscription set
S subsumes s. A high rate of redundant subscriptions is introduced to test the influence
of the MCS algorithm on the overall performance: s is covered by 20% of the generated
subscriptions and the remaining 80% are redundant and partly cover s.
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Fig.5. Reduction for the redundant covering Fig.6. Theoretical number of iterations for the
scenario redundant covering scenario

Figure 5 shows the effectiveness of the MCS algorithm: It successfully removed be-
tween 80% and 100% of redundant subscriptions. The performance increases for higher
number of attributes because when increasing m, the probability of group coverage in-
creases due to the specific subscription generation scenario.
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Figure 6 shows the theoretically predicted number of iterations d needed to answer
the subsumption question. The log(d) plot is shown as a function of k, calculated using
Equation 1. The plot is given for the initial set of subscriptions .S, and the reduced
set S’ after running MCS. Due to the tight error probability, d is extremely high when
using only the RSPC algorithm. However, MCS significantly reduces the number of
needed iterations and becomes practically feasible: d < 105 for 100 subscriptions with
10 attributes, and decreases significantly for larger number of attributes. Further more,
as the results obtained for non-cover show, we could reduce the number of trials further.

6.2 Non-cover Scenario

For the non-cover scenario, the experiment is constructed by forcing the non-covering
of s by leaving a small range over x; uncovered. The values over the other attributes
are generated randomly. The whole set of subscriptions S is actually redundant as s
is not covered. In this scenario, the algorithm has always detected the non-coverage
relationship due to optimizations and a low probability of error.
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Figure 7 shows the effectiveness of the MCS algorithm which performs even better
than for the redundant covering scenario because most of the subscriptions are removed
quickly due to the non covering relationship.

Since non-cover can be detected prior to performing all d theoretical iterations, Fig-
ure 8 shows the actual number of iterations performed to discover a witness point. The
average number of performed iterations is extremely low (< 0.5), due to the fact that
in most of the cases, after running MCS, the reduced set is empty, thus d = 0. There
are some evident fluctuations for this scenario caused by the probabilistic nature of the
algorithm.

6.3 Extreme Non-cover Scenario

The extremeness of this scenario consists of covering the new subscription entirely, ex-
cept for a narrow slice over one attribute, where we enforce a gap. We investigate the
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total number of false decisions that result in non forwarding of a non covered subscrip-
tion and the average number of performed trials.

Figure 9 shows that the average number of guesses is similar for all probabilities of
error, even though the theoretical number of guesses increases for tighter error proba-
bilities. This behavior is expected, as the chances of guessing a point witness depend on
the ratio between the gap size and the total range size of the non covered attribute, but
it does not depend on the error probability. This result suggests that we can also reduce
the number of trials after which a subscription is declared covered.

In Figure 10 we can see the total number of false decisions increases with the error
probability and decreases with larger gap sizes. In fact, for probabilities of error lower
than 10~ and gap sizes of more than 1%, the algorithm always takes the right decision.
Even for a looser probability of error (10~2), the number of false negatives remains
quite low, if the gap is at least 2%. This shows that an error probability of 107 is
sufficient for detecting non-coverage in most application scenarios because it has a low
number of false decisions in case of a small non-covered subscription space while at
the same time reducing the theoretical number of iterations d.

6.4 Comparison

Due to the lack of real-world subscription set, we have simulated a setting using power
law distributions that are considered as good approximations of popularity both for
the selection of attributes and attribute ranges. From the set of m attributes popular
ones were chosen using a Zipf distribution (skew = 2.0). Attributes are generated in the
following way: The center of a range is generated with a Pareto distribution (skew = 1.0)
to simulate similar interests, while range sizes are generated with a normal distribution.

The experiment compares the growth of subscription set sizes in case of the pair-
wise ([7,8]) and group subsumption (our approach) reductions.

Figure 11 shows the growth of the total number of active subscriptions when in-
creasing the number of incoming subscriptions. It is interesting to observe the power
of subscription set reduction using subscription coverage both for pair-wise and group



138 A.M. Ouksel et al.

2500

m=10, pair-wise
m=10, group

2000}~ — m=15, group oor
m=20, pair-wise
m=20, group

o
®

1500

Size ratio
o
3

=)
S
S

Subscription set size

- 061

500 = |
- - -7 0.5

L L L L 04 L L L
0 1000 2000 3000 4000 5000 [ 2000 3000 4000 5000

No. of subscriptions No. of subscriptions

Fig. 11. Evolution of subscription set size Fig. 12. Ratio of subscription set sizes

coverage in case of partly covered subscription space. The group coverage shows
greater reduction compared to the pair-wise algorithm for all values of m. For m = 10
and m = 15 group coverage has reduced the original set of 5000 subscriptions to less
than 10%, and pair-wise coverage to approx. 15% of the entire set, while for m = 20
the reduction is still significant (around 33% for group and less than 50% for pair-wise
coverage). The set reduction is very important for subscriptions with a large number
of attributes which increases complexity because of the absolute subscription set size,
e.g. some brokers have limited resources and may not handle more than 1000 active
subscriptions. When increasing m, the actual number of active subscriptions is also
larger, and this is due to the fact that the probability of subsumption generally decreases
in the applied subscription generation scenario when increasing subscription space di-
mensionality.

Figure 12 quantifies the actual gain of group coverage compared to the pair-wise
coverage by showing the ratio between the subscription set sizes obtained with the
2 reduction mechanisms . The obtained results show the extreme reduction potential
when increasing the number of incoming subscriptions. In case of 1000 received sub-
scriptions, the ratio is between 70 and 80%, and keeps decreasing with new incoming
subscriptions showing a stabilization tendency after 5000 subscriptions. The ratio is
larger for large m, but still significant, and is almost similar for 15 and 20 attributes be-
cause the actual number of defined attributes does not significantly differ. Of course, the
obtained results are highly dependent on subscription generation, but since our distribu-
tions follow a realistic popularity-based setting, it can be concluded that group coverage
can greatly reduce the subscription set compared to the pair-wise approach.

To conclude, the reduction algorithm is both efficient and effective: It can signif-
icantly reduce the size of the subscription set with acceptable error probability and
computational costs. RSPC should be used in combination with MCS because it dra-
matically reduced the number of performed trials. Finally, the comparison shows the
supremacy of the group coverage algorithm over the classical pair-wise approach that
will in general largely decrease the number of subscriptions in different distributed pub-
lish/subscribe systems.
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7 Related Work

Most of the research efforts in publish/subscribe systems have so far focused on the
problem of efficient matching and forwarding of publications [9,7]. Pairwise covering
and merging of subscriptions are typically used to reduce the set of active subscriptions,
and all algorithms rely on some version of the counting algorithm, originally defined
in [16]. The importance of reducing the number of subscriptions in a distributed en-
vironment is stressed in [8]. The authors are dealing with a complementary problem—
merging a set of subscriptions to reduce their number. In [7], modified binary decision
diagrams are employed, to achieve pairwise covering and merging of subscriptions. The
trade-off with merging is that the new subscription might contain parts of the subscrip-
tion space not covered originally by the set, which leads to false positives, delivery of
unrequested publications. A recently proposed solution relies on clustering of subscrip-
tions based on a proximity metric in subscription space [17], and would greatly benefit
from global subscription set reduction for both the total number of subscriptions and
the generated traffic. None of these techniques supports group subsumption, and can
filter out fewer subscriptions than the proposed probabilistic algorithm.

8 Conclusion

The paper presents a novel probabilistic algorithm for determining whether a sub-
scription is covered by a set of subscriptions. Theoretically it solves the problem in
O(k - m - d). The probability of error is problem specific and very small, and an up-
per bound on the threshold d is determined in polynomial time prior to the execution
of the algorithm. Our experiments have shown that the algorithm performs much bet-
ter in practice when combing the probabilistic algorithm with the reduction algorithm
that removes redundant subscriptions against which a new subscription needs to be
checked. Even more, in case of the non covering relationship, it is possible to give a de-
terministic answer without applying the probabilistic tests. Therefore, we can conclude
that the proposed algorithms can efficiently decide whether a subscription is covered
by a group of subscriptions which is important for fast subscription forwarding and
network congestion control in distributed publish/subscribe systems. The experimental
results show that the algorithm performs much better than the pessimistic theoretical
bounds even for settings where group coverage is difficult to detect. Finally, compared
to the reduction based on the classical pair-wise coverage, the subscription set reduction
achieved with our approach is significantly better, which, correlated with its good effi-
ciency and the very tight achievable error probabilities, recommends it for distributed
publish/subscribe systems.
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Abstract. Distributed content-based publish/subscribe systems to date
suffer from performance degradation and poor scalability caused by un-
even load distributions typical in real-world applications. The reason for
this shortcoming is due to the lack of a load balancing solution, which
have rarely been studied in the context of publish/subscribe. This paper
proposes a load balancing solution specific to distributed content-based
publish/subscribe systems that is distributed, dynamic, adaptive, trans-
parent, and accommodates heterogeneity. The solution consists of three
key contributions: a load balancing framework, a novel load estimation
algorithm, and three offload strategies. Experimental results show that
the proposed load balancing solution is efficient with less than 1.5% over-
head, effective with at least 91% load estimation accuracy, and capable
of distributing all of the system’s load originating from an edge point of
the network.

Keywords: Publish/subscribe, load distribution, content-based rout-
ing, load balancing, load estimation, subscriber migration, offloading
algorithm.

1 Introduction

Brokers in a distributed publish/subscribe system located at different geograph-
ical areas may suffer from uneven load distribution due to different population
densities, interests, and usage patterns of end-users. A broker in a hotspot area
where there is high message traffic resulting from a large number of publish-
ers and subscribers may get overloaded in two ways. First, a broker can be
overloaded if the incoming message rate into the broker exceeds the process-
ing/matching rate supported by the matching engine. This effect is exacerbated
if the number of subscribers is large because the matching rate is inversely pro-
portional to the number of subscriptions in the matching engine [9]. Second,
overload can also occur if the output transmission rate exceeds the total avail-
able output bandwidth. In both cases, queues accumulate with increasingly more
messages waiting to be processed, resulting in increasingly higher processing and
delivery delays. Worse yet, a broker may crash when it runs out of memory from
queueing too many messages.

M. van Steen and M. Henning (Eds.): Middleware 2006, LNCS 4290, pp. 141-161, 2006.
© IFIP International Federation for Information Processing 2006
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Since the matching rate and both the incoming and outgoing message rates
determine the load of a broker, and these factors depend on the number and
nature of subscriptions that the broker services, load balancing is possible by of-
floading specific subscribers from higher loaded to lesser loaded brokers. Hence,
we develop a load balancing algorithm that distributes load by offloading sub-
scribers from heavily loaded brokers to less loaded brokers. Our contributions to
support this idea include (1) a load balancing framework described in Section 3
that isolates subscribers to the edge brokers in the network and organizes load
balancing activities into sessions between two brokers at a time; (2) a novel load
estimation algorithm presented in Section 4 that profiles subscription load using
bit vectors; (3) offload algorithms proposed in Section 5 to load balance on each
performance metric of the broker by selecting the appropriate subscribers to of-
fload based on their profiled load characteristics; and (4) experimental results
shown in Section 6 that demonstrates the behavior and performance of our load
balancing solution.

2 Background and Related Work

Content-based Publish/Subscribe is widely used in large-scale distributed
applications because it allows processes to communicate asynchronously in a
loosely-coupled manner. Publish/subscribe middleware can be readily found in
online games [3], decentralized workflow execution [11], real-time monitoring sys-
tems [15], and the Enterprise Service Bus (ESB) of Service Oriented Architec-
ture (SOA) infrastructures. In this communication paradigm, clients that send
publication messages into the system are referred to as publishers, while those
that only receive messages are called subscribers. Publishers issue publications
in the form of attribute key-value pairs. Subscribers issue subscriptions to their
nearest broker to specify the type of publications they want to receive. For the
remainder of our discussion, we will assume that a subscription maps to a single
subscriber. Subscriptions consist of predicates made up of attribute key-operator-
value tuples to specify the filtering conditions on each attribute. A set of brokers
connected together in an overlay network forms the publish/subscribe routing
infrastructure (see Figure 3). In essence, brokers forward publication messages
from the publishers to matching subscribers based on the routing paths estab-
lished by subscriptions. Optimizations such as subscription aggregation [5], sub-
scription merging [13], rendezvous nodes [14], and epidemic algorithms [7] may
be employed to make the system more scalable or robust. However, hotspots can
still arise because there is no load balancing mechanism.

The space of interest defined by a subscription’s filtering conditions is called
subscription space. A broker’s covering subscription set (CSS) refers to the set
of most general subscriptions whose subscription space is not covered by any
other subscription. For example, a broker with the set of subscriptions shown in
Figure 1a has a CSS identified by the subscriptions marked with an asterisk. For
more efficient retrieval of a broker’s CSS, the partially-ordered set (poset) [4]
is used to maintain subscription relationships. The poset is a directed acyclic
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Fig. 1. Example of the poset data structure

graph where each unique subscription is represented as a node in the graph as
shown in Figure 1b. Nodes can have parent and children nodes where parent
nodes have a subscription space that is a superset of its children nodes, while
subscriptions with intersection or empty relationships will appear as siblings. As
shown, the CSS is readily available as the immediate children nodes under the
imaginary ROOT node.

Load Balancing has been a widely explored research topic for the past
two decades since the introduction of parallel and distributed computing. Load
balancing solutions can be found in the network layer [8], operating system
layer [12], middleware layer [1], and application layer [2]. However, all of the
above approaches cannot estimate the load of a subscription nor account for
subscription spaces. These limitations prevent them from balancing load effec-
tively in a heterogeneous content-based publish/subscribe system.

Load Balancing in Content-based Publish/Subscribe was never di-
rectly addressed in the past although distributed content-based publish/
subscribe systems have been widely studied. Hence, the proposed solution in
this paper is to the best of our knowledge the first dynamic load balancing
algorithm for broker-based publish/subscribe systems to date.

Meghdoot [10] is a peer-to-peer content-based publish/subscribe system based
on a distributed hash table that distributes load by replicating or splitting the
locally heaviest loaded peer in half to share the responsibility of subscription
management or event propagation. In general, their load sharing algorithm is
only invoked upon new peers joining the system and peers are assumed to be
homogeneous. Chen et al. [6] proposed a dynamic overlay reconstruction algo-
rithm called Opportunistic Overlay that reduces end-to-end delivery delay and
also performs load distribution on the CPU utilization as a secondary require-
ment. Load balancing is triggered only when a client finds another broker that is
closer than its home broker. It is possible that subscriber migrations may over-
load a non-overloaded broker if the load requirements of the migrated subscrip-
tion exceed the load-accepting broker’s processing capacity. Our work differs
from Meghdoot and Opportunistic Overlay by proposing a dynamic load bal-
ancing algorithm for non-DHT-based publish/subscribe systems that accounts
for heterogeneous brokers and subscribers, and distributes load evenly onto all
resources in the system without requiring new entities to join the federation.
We also present a detailed subscriber migration protocol that enforces end-user
transparency and best-effort delivery to minimize message loss.
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3 Load Balancing Framework

The components that make up the load balancing solution are shown in
Figure 2. The solution consists of the detector, mediator, load estimation tools,
and offload algorithms that determine which subscribers to offload. The detector
detects and initiates a trigger when an overload or load imbalance occurs. The
trigger from the detector tells the mediator to establish a load balancing ses-
sion between the two entities, namely offloading broker (broker with the higher
load doing the offloading) and the load-accepting broker (broker accepting load
from the offloading broker). Depending on which performance metric is to be
balanced, one of the offload algorithms is invoked on the offloading broker to
determine the set of subscribers to delegate to the load-accepting broker based
on estimating how much load is reduced and increased at each broker using the
load estimation algorithms. Finally, the mediator is invoked to coordinate the
migration of subscribers and ends the load balancing session between the two
brokers. The following sections will describe the load balancing framework and
the operations of each component in greater detail.

3.1 Underlying Publish/Subscribe Architecture

The Padres! Efficient Event Routing (PEER) architecture organizes brokers into
a hierarchical structure as shown in Figure 3. Brokers with more than one neigh-
boring broker are referred to as cluster-head brokers, while brokers with only one
neighbor are referred to as edge brokers. A cluster-head broker with its connected
set of edge brokers, if any, forms a cluster. Brokers within a cluster are assumed
to be closer to each other in network proximity than brokers in other clusters.
Publishers are serviced by cluster-head brokers, while subscribers are serviced
by edge brokers.

PEER is designed with five goals in mind. First, PEER allows the load balanc-
ing scheme to move subscribers to control load in the edge brokers because they

! Our work is built onto the Padres [11] system.
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have no broker-to-broker through-traffic to route. Second, higher dissemination
efficiency is achieved by having cluster-heads forward publication messages to all
matching clusters almost simultaneously because cluster-heads have negligible
processing delays since they do not service any subscribers. Third, cluster-head
brokers may be load balanced by moving publishers and inter-broker subscrip-
tions, as will be the focus of future work. Fourth, PEER’s organization of brokers
into clusters allows for two levels of load balancing: local-level (referred to as local
load balancing) where edge brokers within the same cluster load balance with
each other; and global-level (referred to as global load balancing) where edge bro-
kers from two different clusters load balance with each other. Edge brokers only
need to exchange load information with edge brokers in the same cluster, and
neighboring clusters can exchange aggregated load information about their own
edge brokers. Fifth, local load balancing preserves subscriber locality by keeping
subscribers within their original cluster, assuming that subscribers connect to
the closest broker in the first place. On the other hand, global load balancing
trades off locality for a better balanced system by migrating subscribers between
edge brokers in neighboring clusters.

3.2 Load Detection Framework

In order for brokers to know when and which brokers are available for load
balancing, they have to exchange load information with each other. With this
data, a detection algorithm can then trigger load balancing whenever it detects
an overload or a wide load difference with another broker.

Protocol for Exchanging Load Information. Padres Information Exchange
(PIE) is a distributed hierarchical protocol for exchanging load information be-
tween brokers using publish /subscribe primitives. Brokers publish PIE messages
intermittently to let other brokers in the federation know of their existence
and availability for load balancing. PIE, as well as other load balancing con-
trol messages described in later sections, has a higher routing priority than
normal publish/subscribe traffic so that their delivery is not affected by the
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brokers’ load. A PIE message contains five attributes: (1) the broker’s three
performance metrics, specifically input utilization ratio, output utilization ratio,
and average matching delay per message; (2) load balancing states, which can
be one of OK, BUSY, N/A, or STABILIZING; (3) the set of edge brokers it
is currently balanced with (more on this in Section 3.3); (4) the identifier of
the cluster to which the broker belongs; and (5) the broker’s unique identifier.
Input utilization ratio (I,) captures the broker’s processing utilization as de-
fined by the formula: I, = RateO fIncomingM essages/M aximumM atchRate.
Maximum match rate is obtained by taking the inverse of the average matching
delay per message. Matching delay is defined as the time spent by the matching
engine between taking a message as input and producing zero or more messages
as output. Output utilization ratio (O,.) captures the broker’s output bandwidth
utilization as: O, = Output BandwidthU sed /T otal Output Bandwidth.

PEER’s bi-level structuring allows for local and global-level PIE messages.
Local PIE messages are published and subscribed by edge brokers within the
same cluster to enable local load balancing. Global PIE messages are published
and subscribed by cluster-head brokers to enable global load balancing. They
only propagate one cluster-hop away and contain averaged load information from
their cluster’s local PIE messages. Cluster-head brokers without any edge brokers
simply forward global PIE messages one extra hop to all of their neighbors.

Detection Algorithm. Detection allows a broker/cluster to monitor its current
resource usage and also compare it with neighboring brokers/clusters so that a
broker /cluster can invoke load balancing if necessary. Detection runs periodically
at a broker/cluster only if it has a status of OK, N/A, and STABILIZING. An
OK status means that the broker is available for load balancing, N/A means
that it is overloaded, STABILIZING means that it is waiting for load to stabilize
after load is exchanged, and BUSY means that it is currently in a load balancing
session with another broker/cluster. A diagram showing the transition conditions
between the local and global load balancing states are shown in Figures 4a
and 4b, respectively.
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The local detection algorithm running on an edge broker is composed of two
steps. The first step identifies whether the broker itself is overloaded by examin-
ing four utilization ratios, namely input, output, CPU, and memory utilization
ratio. The parameter lower overload threshold is introduced that prevents the
broker from accepting further load by updating the broker’s status to N/A when
one of its utilization ratios exceeds 0.9. If a utilization ratio exceeds the higher
overload threshold at 0.95, then load balancing is invoked immediately. In be-
tween the two thresholds is an inert period where the broker neither accepts
nor invokes load balancing. All utilization ratios can be associated with different
overload threshold values.

If the first step of the detection algorithm cannot find any overloaded resource,
then the second step is to check if any one of the input utilization ratio, out-
put utilization ratio, or matching delay differs from a neighbor by more than a
threshold. Recall, load information about neighoring brokers is gathered through
PIE. The threshold for utilization ratios is called the local ratio triggering thresh-
old, and for matching delay is local delay trigger threshold. Both are set to 0.1 by
default. The difference for utilization ratio is just the magnitude of the difference,
while for matching delay, the following formula is used:

di —do

N &)

d%Diff = }

dy and dp are the two delay values used in the comparison. Ny represents the nor-
malization factor and is set to 0.1 by default so that delay differences much less
than 0.1s do not yield high percentage differences and trigger unwanted load bal-
ancing. Then, a broker-action list of <load-accepting broker, performance
metric/offload action> is generated that is sorted in descending order of
highest performance metric difference. The list is passed to the local mediator
to establish a load balancing session with an available load-accepting broker.

After a broker just finishes a load balancing session, its load information
may mislead the broker into making an incorrect load balancing decision. For
example, brokers accepting load may not experience an increase in utilization
immediately. This may cause the broker to accept more load balancing sessions,
which may cause its resource consumption to overshoot. To prevent this from
occurring, both the offloading and load-accepting broker should inherit a status
of STABILIZING for stabilize duration period (default is 30s) before setting
its status back to OK (see Figure 4a). After this time, all performance metrics
should not fluctuate more than the stabilize percentage (default is 0.05) between
subsequent detection runs. When a broker has a STABILIZING status, it cannot
accept load balancing requests nor invoke load balancing unless the broker is
overloaded.

Alternatively, in place of their utilization ratio counterparts, it is also possible
for the load balancer to use input queuing delay and output queuing delay as
performance metrics. However, using queuing delay measurements do not accu-
rately indicate the load of a broker at the instant the metric is measured because
it is obtained after the message gets dequeued. Therefore, the measurement is
lagging by the delay measured.
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In the global detection algorithm, a cluster-head uses a subset of the status
indicators in local load balancing (see Figure 4b) to indicate its cluster’s load
balancing status. The only difference here is that a cluster is N/A if one or more
edge brokers are N/A. This allows the overloaded brokers to offload subscribers
to brokers within the same cluster first to promote locality. The global detection
algorithm is almost the same as the local detection algorithm, except that the
global detector uses different threshold values (namely, global ratio triggering
threshold and global delay triggering threshold, both default to 0.15) and it works
with aggregated performance metric values.

3.3 Mediation Protocols

All load balancing activities are coordinated by exchanging messages using the
underlying publish /subscribe infrastructure for simplicity and efficiency. Specifi-
cally, request-reply and one-way protocols are implemented in publish/subscribe
to coordinate broker and subscriber activities.

Mediating Load Balancing Sessions. Once the local detection algorithm
composes the broker-action list of candidate brokers for load balancing, the local
mediator sends a load balancing request sequentially to brokers in the sorted list.
When a load-accepting broker gets this request, its local mediator replies back
with its current status. If the status is OK, the request is accepted and both
brokers update their status to BUSY. In the OK case, the load-accepting broker
also appends its load information in the reply so that the requesting broker can
use this information for its load estimation and offload algorithms to compute
which subscribers are suitable for offload. For all other states, the load-accepting
broker rejects the load balancing request. In general, two or more load balancing
sessions between a pair of brokers can occur concurrently, but a broker cannot
participate in multiple load balancing sessions at the same time.

The global mediator running at the cluster-head broker uses the same protocol
as the local mediator to set up global load balancing. The difference here is that
after a successful handshake, both cluster-heads have to tell all edge brokers in
their own clusters to subscribe to the other cluster’s local PIE messages. This
allows edge brokers from one cluster to load balance with edge brokers in the
other cluster. Global load balancing ends when all edge brokers are balanced
with each other as indicated by the balanced set field in local PIE messages.
Local PIE subscriptions of the other cluster are undone by unsubscribing when
global load balancing ends.

Mediating Subscriber Migration. Once the offloading algorithm is done
with its computation, it returns back to the mediator a list of subscribers to of-
fload. The mediator has to migrate the indicated subscribers to the new broker
in the most efficient and timely manner with minimal delivery loss. First, the
mediator sends a control publication message to each subscriber in the offload
list telling them to issue their subscription to the new load-accepting broker.
Subscribers issue a subscription to the load-accepting broker containing the ID
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of the load balancing session and the total number of migrating subscribers.
These two pieces of information allow the load-accepting broker to know when it
has received all migrating subscribers in the current load balancing session. For
efficiency and best-effort guarantee of minimal delivery loss, the receiving broker
waits for N x migration timeout seconds for all migrating subscribers to connect,
where NN is the total number of migrating subscribers. Meanwhile, subscribers
need to detect and drop duplicate publications (by using a short message history)
because they are subscribing to the same subscription at two brokers simultane-
ously. When all subscribers have connected to the load-accepting broker, or when
the timeout occurs, the receiving broker sends a DONE control publication mes-
sage back to the offloading broker to terminate the load balancing session. This
message ensures that the publication paths for all migrated subscribers have been
set up to flow to the load-accepting broker. When the offloading broker receives
the DONE message, it tells the migrating subscribers to wait for all the messages
currently in its input queue to be matched and delivered from the output queues
before sending an unsubscribe message. This waiting period corresponds to the
offloading broker’s current input queuing delay, plus the matching delay, plus
the output queuing delay. Once the migrating subscribers unsubscribe from the
offloading broker, the migration process is complete. Note that all control and
duplicate messages are handled transparently by a thin software layer on the
client side that hides the intricate details of load balancing from the end-user
application.

4 Load Estimation Algorithms

Load estimation is used by the offload algorithms to estimate a subscription’s
load contribution in the form of additional input and output publication rate on
the load-accepting broker as well as the load reduced at the offloading broker.

4.1 Estimating Load Requirements of Subscriptions

Padres Real-time Event-to-Subscription Spectrum? (PRESS) is a space and time-
efficient technique for estimating the bandwidth requirements and common pub-
lication set of two or more subscriptions based on current events. It uses bit
vectors to record the matching pattern of subscriptions, hence the term event-
to-subscription. It does not require the publish/subscribe system to use adver-
tisements, nor does it assume that publications are in any sort of distribution.
The operation of PRESS is best explained as part of the local load balancing al-
gorithm after the mediation step where two brokers have agreed to load balance
with each other.

First, the offloading broker locally subscribes to the CSS of the load-accepting
broker (as supplied in the OK reply message from the replying broker). Locally
subscribe means that subscriptions are sent to the matching engine, but never get
forwarded to neighboring brokers. This is sufficient because the offloading broker

2 Real-time refers to sampling using live incoming publications to the broker.



150 A.K.Y. Cheung and H.-A. Jacobsen

Table 1. Bit vector example (...= [class,=,‘STOCK’])

(a) Candidate subscriptions to offload (b) Load-accepting broker’s CSS
Candidate Subscriptions Bit Vector  Load-Accepting Broker’s CSS Bit Vector

[class,=, ‘STOCK’] 110111 ..., [volume,>,50] 110000
..., [volume,>,15] 110100 ..., [volume,<,5] 000001
..., [volume,>,150] 100000 [class,=, ‘MOVIES’] 000000
[class,=, ‘SPORTS’] 001000 CSS bit vector 110001

only wants to know which publications it currently sinks are also received by the
load-accepting broker. Next, all client subscriptions in the matching engine are
allocated a bit vector of length N initialized to 0, where N represents the number
of samples. Sampling starts immediately after getting the load-accepting broker’s
OK reply message and ends after N publications have been received or a timeout
T is met, whichever comes first. Both N and T are configurable parameters
which default to 50 and 30s, respectively. The algorithm starts at the right-most
position of the bit vector for all subscriptions. A ‘1’ is set if the subscription
matched the incoming publication, ‘0’ otherwise, before moving onto the next
bit on the left. During the sampling period, the total incoming publication rate
is measured. Tables 1a and 1b show an example of the bit vectors measured at
the offloading broker with N = 6 for subscriptions at the offloading broker and
load-accepting broker, respectively, given the following publication arrival order:

1. [class, ‘STOCK’], [volume,O] 4. [class, ‘SPORTS’], [type, ‘racing’]
2. [class, ‘STOCK’], [volume, 10] 5. [class, ‘STOCK’], [volume,100]
3. [class, ‘STOCK’], [volume,20] 6. [class, ‘STOCK’], [volume,500]

Equation 2 shows the formula to calculate the publication rate matching a
particular subscription represented by spgr, where i, represents the total input
publication rate of the offloading broker, npg represents the number of bits set
in the subscription’s bit vector, and N represents the number of samples taken
in PRESS.

. n
SPR = ir - ]I\st (2)

For example, if the total input publication rate i, at the offloading broker is as-
sumed to be 3msg/s, then for the subscription [class,=, ‘STOCK’] having 5 out
of the 6 bits set, its publication rate comes out to 2.5msg/s. Moreover, the addi-
tional incoming publication rate for each subscription can be calculated by using
Equation 2 with the bit count obtained from the ANDNOT bit operation of the
candidate subscription’s bit vector with the aggregated load-accepting broker’s
CSS bit vector. Take the subscription [class,=, ‘STOCK’] as an example. After
the ANDNOT bit operation, the bit vector for [class,=, ‘STOCK’] is:

110111 ANDNOT 110001 = 000110 (3)

With a bit count of 2 in 000110, and reusing 3msg/s for i,., the additional incom-
ing publication rate on the load-accepting broker for this subscription is 1lmsg/s.
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In some cases, offloading a subscription may alter the CSS of the load-accepting
broker. With PRESS, it is not necessary to resample all subscriptions again be-
cause the aggregated CSS bit vector can be updated by merging it with the
offloaded subscription’s bit vector using the OR bit operator. For example, if
[class,=, ‘STOCK’] was chosen for offloading, then the load-accepting broker’s
CSS is updated to 110111.

Regarding the space and time efficiencies of PRESS: if there are 10,000 sub-
scribers with N set to 100, PRESS only uses 1Mb of memory. Given that
the load-accepting broker’s CSS is usually small (it is just one in the case of
[class,=,*]), an increase in the matching delay is negligible.

4.2 Estimation of Performance Metrics

Matching delay is estimated by the linear formula [9]:

d = (n+An) d (4)

n

where d/, is the new matching delay, d,, is the current matching delay, n is the
number of subscriptions in the matching engine, and An is the change in the
number of subscriptions. Estimating the input and output utilization ratios can
be done simply by using their original equations but with new estimated values
for incoming message rate and output bandwidth consumption using PRESS,
respectively.

5 Offload Algorithms

After profiling all subscriptions using PRESS, the offloading broker will use the
profiled data along with the load-accepting broker’s load information to feed into
the offload algorithm to compute the set of subscribers to offload. The offload
algorithm to choose depends on what performance metric to balance, which is
decided initially by the detector in the broker-action list as mentioned in Sec-
tion 3.2. Table 2 summarizes the key properties of the three offload algorithms.

5.1 Input Offload Algorithm

This algorithm is invoked by the offloading broker when the input utilization
ratio needs load balancing. The aim here is to reduce the offloading broker’s
input utilization ratio and increase the same metric on the load-accepting broker
with minimal effect on the other performance metrics. There are two strategies
to reduce the input utilization ratio: increase the rate at which messages are
matched, or reduce the rate of incoming publication messages. Increasing the rate
of matching is achieved by reducing the number of subscriptions in the matching
engine. However, this action conflicts with the match offload algorithm that is
trying to balance the matching delay and therefore is not applied here. Hence,
the incoming publication rate can only be reduced by offloading subscriptions
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in

Table 2. Properties of all offload algorithms

Offload Performance Metric Methodology Side Effects
Algorithm Being Balanced
Output utilization ratio
is also decreased at
offloading broker and
increased at load-
accepting broker

Offload subscriptions

Input Input utilization ratio in the CSS

Matching delay
Overloaded CPU
Match utilization ratio
Overloaded memory
utilization ratio

Offload subscriptions

with least traffic None

Offload subscriptions
with highest traffic None
in Phase-1

Output  Output utilization ratio Offload subscriptions
with highest traffic
and minimal side-
effects in Phase-11

Increases input
utilization ratio of
load-accepting broker

the CSS because their subscription space is a superset of all subscriptions

not in the CSS. With the poset [4], CSS lookup will take O(1) time. Once the
subscriptions in the CSS are identified, a report card is calculated for each of
them. A report card consists of the following fields:

1.
2.

Number of subscribers of this subscription to offload.

Resulting load percentage difference between the two brokers by offload-
ing this subscription, where a negative value indicates that the offloading
broker will become less loaded than the load-accepting broker. This value is
calculated using the estimated input utilization ratios of the two brokers in
the input offload algorithm, matching delays in the match offload algorithm,
and output utilization ratios in the output offload algorithm.

Boolean value indicating if this subscription is covered by the load-
accepting broker’s CSS.

Publication rate reduced at the offloading broker estimated using
PRESS.

Output bandwidth required per subscriber estimated using PRESS.

The number of subscribers to offload per unique subscription is restrained by

two conditions. First, the offload should not overload any of the load-accepting
broker’s resources. Second, the performance metric of interest of the two brokers
should be balanced within the balanced threshold, which is 0.005 by default; or
bring the offloading broker’s metric below the load-accepting broker’s. The per-
formance metric of interest for the input, match, and output offload algorithms are
the input utilization ratio, matching delay, and output utilization ratio,
respectively.
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After calculating the report cards to determine the number of subscribers to
offload for each subscription in the CSS, the subscription that results in the two
brokers’ input utilization ratio difference closest to zero is chosen for offloading.
This selection scheme ensures that subscriptions with the highest input publica-
tion rate are chosen first, which helps to reduce the number of subscriptions of-
floaded, and in so doing, reduces the impact on the load-accepting broker’s match-
ing delay. If all subscriptions will result in a higher load difference than before, then
the selection process terminates. This guarantees that all load balancing actions
will always converge to a state where the brokers have smaller load differences.

Subscriptions chosen to be offloaded are removed from the poset to prevent
future consideration for offloading. Load information about both brokers (the one
obtained in the mediation process) is updated with estimated values according
to the offloaded subscription’s report card. Updated load information about both
brokers are used on the next iteration of the subscription selection algorithm. The
selection process ends when no more subscriptions are available for offloading,
the offloading broker’s input utilization ratio is below that of the load-accepting
broker, or the absolute difference between the two brokers’ input utilization
ratios fall within the balance threshold.

5.2 Match Offload Algorithm

Although the input utilization ratio varies directly with the matching delay,
balancing the input utilization ratio does not balance the matching delay. The
objective of this offload algorithm is to balance the matching delays without
affecting the input and output utilization ratios of the two brokers. Intuitively,
subscriptions with the lowest publication traffic are most suited to this crite-
rion. Furthermore, subscriptions that introduce less incoming traffic into the
load-accepting broker are more favorable. In this algorithm, report cards are
computed for all subscriptions in the offloading broker, then they are sorted
by ascending output bandwidth. The number of subscribers to offload for each
unique subscription is almost identical to the algorithm outlined in the input
offload algorithm section. The only difference is that input utilization ratios are
replaced by matching delays.

If the match offload algorithm is invoked because the broker is overloaded
and wants to reduce its CPU utilization ratio, input utilization ratio, or memory
utilization ratio, then subscriptions should continue to be offloaded until the
CPU utilization ratio, input utilization ratio, and memory utilization ratio drops
below the lower overload threshold. After a subscription is chosen to be offloaded,
load information about both brokers are updated. The same criterion used in the
input offload algorithm applies here for terminating the match offload process.

5.3 Output Offload Algorithm

This algorithm attempts to balance the output utilization ratios of two brokers
by manipulating the amount of output bandwidth used at each broker. Prioritiz-
ing subscriptions for the offload process is divided into two phases. In Phase-1,
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subscriptions that are covered by or equal to the load-accepting broker’s CSS are
considered. These subscriptions are further classified into three types by using
the fields computed for every subscription’s report card. Offloading Type-I sub-
scriptions will reduce the input publication rate of the offloading broker. These
should be offloaded first because they reduce the overall input load of the system.
Type-1I subscriptions are similar to Type-I, except that they do not reduce the in-
put publication rate because all subscribers for a subscription cannot be offloaded
to produce a more balanced state. Type-III subscriptions are considered last in
Phase-I because they do not reduce the input publication rate of the offloading
broker even if all subscribers for that particular subscription are offloaded. The
algorithm for calculating the number of subscribers to offload for each unique sub-
scription is similar to the input offload algorithm shown previously, except that
input utilization ratios are now replaced by output utilization ratios.

After a subscription is chosen to be offloaded, load information about both
brokers is updated. If both brokers are balanced, then the algorithm stops and
forwards the subscriber migration list to the mediator. Otherwise, Phase-I1 is
invoked to further balance the output utilization ratio with some side-effects.
All subscriptions considered in Phase-IT are not contained in the CSS of the
load-accepting broker. Therefore, these subscriptions may have the side-effect
of significantly increasing the incoming publication rate of the load-accepting
broker. What may happen is that there will be an oscillation between the in-
put offload algorithm trying to balance the input utilization ratio disrupted by
Phase-II of the output offload algorithm, and Phase-II of the output offload al-
gorithm trying to balance the output utilization ratio disrupted by the input
offload algorithm. To prevent this unstable situation from happening, Phase-II
terminates when the input utilization ratios of both brokers are balanced, even if
the output utilization ratios are not. An exception applies if the offloading bro-
ker is output overloaded, in which case the ofloading broker will stop offloading
once its output utilization ratio is below the lower overload threshold. With this
exception, no oscillation occurs because the offloading broker cannot take back
any subscriptions since it has a status of N/A at the lower overload threshold.

The sorting and selection scheme in Phase-1I is exactly the same as in the input
offload algorithm with the use of load differences. If the subscription offloaded
in Phase-II covers other local subscriptions, then Phase-I is invoked to offload
those covered subscriptions because they are now covered by the load-accepting
broker’s CSS. Otherwise, if the subscription offloaded in Phase-II does not cover
any other subscriptions, then Phase-II continues to run.

6 Experiments

6.1 Experimental Setup

The proposed load balancing solution is implemented with 20,000 lines of Java
code in Padres [11], a distributed content-based publish/subscribe system devel-
oped by the Middleware Systems Research Group (MSRG) from the University
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of Toronto. The load balancer diagram previously shown in Figure 2 is inte-
grated into the Padres broker as the Load Balancer component illustrated in
Figure 5a. Our experiments are run with Padres brokers under a simulated envi-
ronment that accounts for all processing delays such as matching, queuing, and
bandwidth delays. Default values for the load balancing parameters are used
unless otherwise specified. Publishers on creation are assigned to publish stock
quote publications of a particular company at a defined rate. Publishers can be
configured to change publication rates at any point in time in the experiment.
Stock quote publications are real world values obtained from Yahoo! Finance
containing a stock’s daily closing prices. A typical publication looks like this:

[class,’STOCK’], [symbol, ’YHOO’], [open,25.25], [high,43.00], [1ow,24.50],
[close,33.00], [volume,17030000], [date, > 12-Apr-96°]

Subscribers are assigned to a fixed subscription based on one of the templates
with the probabilities shown below. SUB SYMBOL is randomly chosen out of the
known stock symbols, with SUB HIGH, SUB LOW, and SUB VOLUME replaced by a
randomly chosen value of the same attribute from the stock’s publication set.

20% [class,=, ‘STOCK’], [symbol ,=, ‘SUB_SYMBOL’], [high, >,SUB_HIGH]

20% [class,=, ‘STOCK’], [symbol ,=, ‘SUB_SYMBOL’], [1low,<,SUB_LOW]

20% [class,=, ‘STOCK’], [symbol,=, ‘SUB_SYMBOL’], [volume,>,SUB_VOLUME]
34% [class,=, ‘STOCK’], [symbol ,=, ‘SUB_SYMBOL’]

5% [class,=, ‘STOCK’], [volume,>,SUB_VOLUME]

1% [class,=, ‘STOCK’]

6.2 Local Load Balancing Experiments

The setup used for the local load balancing experiment involves four hetero-
geneous edge brokers connected to one cluster-head, labeled as B0, to form a
star topology. B0 has CPU speed of 2.0GHz with 256MB memory and 10Mbps
bandwidth. B! has CPU speed of 100MHz with 64MB memory and 0.6Mbps.
B2 has twice the respective performance of B1, and B3 has twice that of B2. B/
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has 10 times the respective performance of BI1. On experiment startup, brokers
B0, B1, B2, B3, and B4 are instantiated in order within the first 0.5s. After 5s
into the experiment, 40 unique publishers with a randomly chosen publication
rate between 0 and 60msg/min start publishing to broker B0. 2000 subscribers
join broker B1 at a time chosen randomly between 10s and 1010s using a uni-
form random distribution. Of all subscribers, 25% have zero traffic, which means
their subscriptions do not match any publications in the system. After 3000s,
50% of the publishers are randomly chosen to have their publication rates in-
creased by 100%. This shows the dynamic behavior of the load balancer under
changing load conditions. For the experiment on edge broker scalability shown
in Figure 6g, all edge brokers have 500MHz CPU, 128MB memory, and 3Mbps
bandwidth. All edge brokers are added to the same cluster.

Broker Load Distribution. Referring to Figures 6a, 6b, and 6¢, broker B1
becomes overloaded as all the subscribers attempt to connect to it as their first
broker while B! attempts to offload them to other edge brokers simultaneously.
At 1400s, B1’s utilization ratios drop to zero because it offloaded all subscrip-
tions to counter the 100% CPU utilization ratio before that. Finally at 1800s,
load balancing converges and all of the brokers’ performance metrics are within
the local triggering threshold, which was set to 0.1. The imbalance at 3000s
is neutralized automatically by the load balancing algorithm and arrives at a
balanced state at 3400s in the experiment. Although not shown here, by load
balancing on the input and output utilization ratios, the input and output queu-
ing delays are also balanced, respectively.

Client Perceived Delivery Delay. Figure 6d shows that an overloaded broker
(B1 in this case) can significantly increase the end-to-end delivery delay. In
this experiment, the delivery delay is increased by 750 times. By having a load
balancing algorithm in place, this overload period is dramatically reduced and
high delay periods are minimized.

Subscriber Distribution Among Brokers. Figure 6e shows that the load
balancing algorithm can account for heterogeneous brokers by assigning more
subscribers to more powerful brokers. For instance, B2 services twice as many
subscribers as B because B2 is twice as powerful as B1. The same pattern is
also observed for brokers B3 and B4 relative to BI.

Load Balancing Message Overhead. Figure 6f shows that the message over-
head is 1.5% in the presence of load balancing from 1000s to 2000s, and 0.2% after
load balancing has converged. Large spikes in this graph denote large batches of
subscribers migrating at that instance in time. The decrease in overhead ratio
in the first 2000s is because of the increase in publication traffic routed to new
incoming subscribers.

Edge Broker Scalability. Figure 6g shows that by increasing the number of
edge brokers in a cluster, the delivery delay is reduced because the load balancing
algorithm evenly distributes load onto all available resources in the system.
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Effect of Detection Threshold on Load Distribution. The input utiliza-
tion ratio difference between all edge brokers is always kept well below the de-
tection threshold as shown in Figure 6h. However, that is not the case for the
output utilization ratio because of the stability constraint in the output load
balancing algorithm.

Load Estimation Accuracy. Figure 7a shows the accuracy of the input uti-
lization ratio estimation. Graphs for the matching delay and output utilization
ratio estimation are not shown here because they have the same trends and ex-
ception cases as Figure 7a. Dots on the y = z line denote 100% accuracy. Looking
at the “offloading broker” and “load-accepting broker” data points, the
input utilization ratio accuracy is the lowest of all three performance metrics
with an average of 91%, including standard deviation. We expect the accuracy
for input utilization ratio estimation to be lowest because PRESS’ load estima-
tion of the future is based on present data. Estimation points taken from BI in
the face of incoming subscribers are plotted using different point styles labeled
as “Bl itelf” and “Bl’s load-accepting broker”. These points are under-
estimated because load estimation does not account for the load imposed by
newly incoming subscribers into the system that occurrs between 10s and 1010s.
Figure 7b shows that the estimated input utilization ratio reaches closer to 0%
error with less deviation as the number of publications sampled increases from
1 to 10. However, beyond 50 samples, the accuracy drops with higher deviations
because publications sampled in the early stages no longer accurately portray
the matching publication pattern of a subscription when sampling is done.

6.3 Global Load Balancing

The setup used for the global load balancing experiment involves 12 brokers
organized into 4 clusters, with 2 edge brokers per cluster. Brokers B11 and
B12 connect to their cluster-head B10, B21 and B22 connect to B20 as their
cluster-head, and so forth for B8z and B4z clusters. Cluster-heads Bz0 connect
to each other sequentially in a chain topology. All clusters have a cluster-head
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Fig. 8. Global load balancing results

broker with 3000MHz CPU, 1GB RAM, and 10Mbps bandwidth. The CPU
speed, memory size, and bandwidth of the edge brokers are given in Figure 5b.
At the start of the experiment, all brokers join the federation. After 5s, 40 unique
publishers with a randomly chosen publication rate between 0 and 60msg/min
start publishing to broker B10. After 10s, 2000 subscribers join broker B11. Of
the 2000 subscribers, 20% or 400 of them have zero traffic. At 8000s, 50% of
the publishers are randomly chosen to have their publication rates increased by
100%. For the experiment on cluster scalability as shown in Figure 8d, each clus-
ter has one cluster-head with 2GHz CPU, 512MB memory, and 10Mbps band-
width; and two edge brokers with 500MHz CPU, 128MB memory, and 3Mbps
bandwidth.

Cluster Load Distribution. The average load at each cluster is shown in
Figures 8a, 8b, and 8c. Whenever a cluster performs global load balancing with
another cluster, the two clusters’ loads are merged on the graph because both
clusters see the same set of edge brokers. Global load balancing takes longer
to converge because the clusters are arranged in a chain topology which lim-
its parallelizing load balancing sessions. For example, cluster BIz’s load re-
mains unchanged from 1000s to 3000s when B2z load balances with B3z as
shown in Figure 8a. After 4500s, global load balancing converges, ending up
with clusters further away from Biz having lesser load. The imbalance at 8000s
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results in a more balanced state for the input utilization ratios while the out-
put utilization ratios diverges slightly to promote stability of the load balancing
algorithm.

Cluster Scalability. When clusters are organized in a chain-like topology, there
is a load diminishing effect on clusters further away from the source of load,
namely cluster Blz. Figure 8d shows that with a global detection threshold of
0.15, clusters more than 3 cluster-hops away from cluster Biz no longer reduce
the overall delivery delay. This is consistent with the idea of preserving subscriber
locality at the expense of a fully evenly loaded system.

7 Conclusions

In this paper, we presented a load balancing solution with three main contribu-
tions: a load balancing framework, load estimation methodologies, and three
offload algorithms. The load balancing framework consists of the PEER ar-
chitecture, a distributed load exchange protocol called PIE, and detection and
mediation mechanisms at the local and global load balancing levels. The core
of the load estimation is PRESS, which uses an efficient bit vector approach
to estimate the input and output publication loads of a subscription. Each of
the three offload algorithms are designed to load balance on a particular per-
formance metric with minimal side-effects and proven stability. Both the load
estimation and offload algorithms are independent of the load balancing frame-
work. Our solution inherits all of the most desirable properties that make a load
balancing algorithm flexible. PIE contributes to the distributed and dynamic
nature of our load balancing solution by allowing each broker to invoke load
balancing whenever necessary. Adaptiveness is provided by the three offload al-
gorithms that load balance on a unique performance metric. The local mediator
promotes transparency to the subscribers throughout the offload process. Fi-
nally, load estimation with PRESS allows the offload algorithms to account for
broker and subscription heterogeneity. Experimental results show that our load
balancing solution is well-controlled and effective at reducing high processing de-
lays resulting from overload conditions while at the same time imposes minimal
overhead.

In the near future, we plan on expanding our load balancing scheme onto
cluster-head brokers, develop optimizations to our offload algorithms, and ex-
plore the possibilities of publisher migration in relation to load balancing.
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Abstract. We describe a method to order messages across groups in
a publish/subscribe system without centralized control or large vector
timestamps. We show that our scheme is practical—little state is re-
quired; that it is scalable—the maximum message load is limited by re-
ceivers; and that it performs well—the paths messages traverse to be
ordered are not made much longer than necessary. Our insight is that
only messages to groups that overlap in membership can be observed to
arrive out of order: sequencing messages to these groups is sufficient to
provide a consistent order, and when publishers subscribe to the groups
to which they send, this message order is a causal order.

1 Introduction

Publish/subscribe (commonly, “pub/sub”) is a useful design approach for large-
scale distributed information dissemination applications. Pub/sub systems sup-
port loosely-coupled asynchronous communication between information produc-
ers and consumers. Producers (publishers) inject messages into the system, which
routes messages to consumers (subscribers) that register interest in certain mes-
sages using subscriptions. In this paper, we present a protocol for providing an
ordered view of messages sent in a pub/sub system. The order we provide is
maintained across groups and users.

System Model. Subscribers join groups that represent interests. The pub/sub
system provides an API for nodes to join and leave groups, send messages to
any group, and receive messages. Although it is reasonably easy to order mes-
sages to individual groups—simply elect a node to give each message a sequence
number—ordering messages across groups is more challenging. Our ordering pro-
tocol enforces that the receive operation delivers messages in a consistent order
across groups. More precisely, messages to groups that share subscribers are or-
dered so that the subscribers deliver messages to those shared groups in the
same order.

1.1 Applications of Ordering

In the following applications, a centralized coordinator could order events. How-
ever, a single ordering authority limits feasible system size and introduces a single
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point of failure or compromise. We assert that a distributed protocol, such as
the one we present, enables large deployment.

Network Games

Consider a multiplayer online game deployed using the publish/subscribe model
[1], in which, for scalability, the virtual (game) world is divided into regions.
Each player subscribes to the groups that represent nearby regions that it can
affect or where events that can affect the player may occur [2,3]. If multiple
players have overlapping areas of interest, they must see the common events in
the same order to maintain consistency.

Ordered message delivery provides game consistency. Consider three players
that are near enough to each other that every event published by one player will
be received by the other two players. If one player shoots and hits another, all
should see the events in order, else physical rules are violated. Causal ordering
is essential for game correctness. However, unrelated events in distinct regions
need not be ordered.

Stock Tickers

Consider an application in which messages correspond to stock market trades.
Consumers at different brokerage firms may be interested in messages that sat-
isfy different filters—by company size, geography, or industry, for example. The
consumers will be members of groups based on their subscriptions, with every
group receiving the same set of messages. An ordering protocol ensures that up-
date operations that change state result in consistent states across the receivers
that apply those updates in the same order.

Messaging

Internet messaging applications loosely follow the publish/subscribe model. For
example, a user may choose to publish whether he is online or offline. Other users
may subscribe to be notified of when a friend comes on-line by adding the user to
their buddy list. A user may also join chat rooms (conferences) to converse with
other users in the same rooms. Although ordering is not critical for “correctness”
in messaging, enforcing that all messages appear in the same, likely causal, order
should make such a system easier to use. For example, responses should always
follow the messages to which they respond.

1.2 Overview of Our Ordering Protocol

We distribute the task of ordering messages across sequencing atoms. Sequencing
atoms assign sequence numbers to messages addressed to groups that share sub-
scribers. Our approach is scalable because sequencing atoms order no more mes-
sages than the most active receiver in the network—sequencing atoms exist to or-
der the intersections of group memberships, so do not order more messages than
receivers. We separate the task of sequencing across as many sequencing atoms
as possible for flexibility in distributing load, then rely on placing related atoms
on the same or nearby machines (sequencing nodes) to recover performance.
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The insight that makes this possible is that the only destinations that can
observe ambiguous order are those that subscribe to the same pairs of groups.
Only messages to groups with at least two members in common must be ordered.
By ordering those messages in the sequencing network and allowing unrelated
messages to be ordered by end stations, we remove the requirement of central-
ized sequencing or long vector timestamps. The sequence numbers provided by
sequencing atoms even allow events to be “committed” without ambiguity: re-
ceivers can tell when no prior messages are delayed.

For causal ordering, senders must subscribe to the groups to which they
send. This requirement is simple and reasonable because receiving sent messages
through the system also serves as an end-to-end reliability check. Our ordering
is not total across all the users in the system: messages to unrelated groups
may be delivered in any (perhaps globally inconsistent) order. Our distributed
approach enables performance optimizations such as placing sequencers close to
senders and receivers and trading message processing load against network load
by combining sequencing atoms on the same node.

Our primary contribution is a method to order messages across groups of sub-
scribers in a publish/subscribe system without centralized control. We present
theoretical analysis to establish the correctness of our method and simulation
results to verify its efficiency. Our broader goal is to develop primitives that
improve the publish/subscribe model, that are scalable because they require no
centralized servers or state, and that are practical by avoiding guarantees that
applications do not need.

This paper is organized as follows. We survey related work in Section 2. We
then describe the goals, assumptions, and procedures of our protocol in Sec-
tion 3. We use simulations to measure performance in Section 4. We conclude in
Section 5.

2 Related Work

The problem of ordered message delivery has been widely studied in distributed
systems. Défago et al. [4] present an extensive survey, which we summarize here.
Défago et al. organize algorithms by the assumptions they make on the underlying
system (synchrony model, failure model, communication model, oracle model) and
by the objectives they achieve. Here we focus on the ordering mechanisms.

Symmetric approaches are decentralized: each sender determines the order
by appending information to all outgoing messages. The appended information
reflects a causal order of messages, which may later be transformed into a total
order using a predetermined function. Receivers use the attached information to
decide whether to deliver or delay a message. Applications can append different
types of information; most use timestamps or sequence numbers [5,6,7,8,9]. In-
cluding this information in each message typically requires nodes to keep a view
of the messages they have received and sent.

In asymmetric protocols, order is built by a sender, destination, or sequencer.
In sender-based protocols [10,11,12], the sender can multicast a message only
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when granted the privilege, i.e., when it holds a token. In sequencer-based ap-
proaches, typically one node is elected as a sequencer and is responsible for
ordering messages [13,14,15]. More than one sequencer can be present, but only
one will be active or relevant at a time [16,17].

To preserve consistency among game states, networked multiplayer games
enforce an unambiguous order of events. Typically, a centralized coordinator
resolves all conflicts [18,19,20,21]. Although useful in a local area network, as the
network grows, centralized approaches do not scale well and provide a central
point of failure.

Although most work in decentralized ordering algorithms assumes only a sin-
gle group, a few consider overlapping groups [14,22,23,24]. Our approach is clos-
est to that of Garcia-Molina et al. [14]. In the taxonomy of this section, their
approach is asymmetric and sequencer-based: they order messages as they de-
liver them through a tree of subscriber nodes. A total order of messages results
when messages traverse this tree, assuming, among other typical assumptions for
fault-tolerant behavior, that message delay is bounded. The graph is arranged so
that messages are sequenced by the destination nodes that subscribe to the most
groups, and the task of sequencing messages is overlapped with distribution. We
separate these tasks to sequencing atoms, which may be placed on any nodes in
the network, and to a distribution tree, which may be tailored to perform well
despite distant nodes. Our sequencing atoms sequence only messages for double-
overlaps, in which groups share multiple members in common, not all messages
for a destination. Although we provide only causal ordering, we expect that our
design makes it possible for sequencing atoms to marshal fewer messages and do
less work for each message.

There has been little interest in applying these ordering protocols in dis-
tributed publish/subscribe systems [25,26,27,28]. As the network grows, cen-
tralized approaches do not scale because the sequencer becomes a bottleneck
and central point of failure. Furthermore, token-based protocols introduce long
delays when nodes must wait for the token or recover lost tokens. Distributed
approaches based on vector timestamps are more scalable but they incur pro-
hibitive network overhead due to the large timestamps. Our protocol is both
scalable and incurs low overhead. By distributing the task of sequencing across
a network of sequencers, we remove the requirement for a centralized coordina-
tor or large vector timestamps. Unlike vector timestamp approaches, the addi-
tional information we append to each message does not depend on the size of
the destination group and is proportional, in the worst case, to the number of
groups.

3 Ordering Protocol

Our model of an ordered message delivery system consists of three phases:
ingress, where messages move from senders to the sequencing network, sequenc-
ing, where messages traverse sequencing atoms while collecting sequence num-
bers, and distribution where packets leave the sequencing network and are sent to
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destination nodes. We focus on sequencing; existing multicast delivery schemes
can support ingress and distribution.

Our goal is to ensure a consistent ordered delivery of messages to members
of the same groups. A group is formed of all subscribers that share a common
subscription. Our key observation is that when messages are sent to groups with
overlapping membership, receivers may make inconsistent decisions about the
order of those messages. We call groups that have two or more subscribers in
common double overlapped, and our approach is to provide a sequence number
space for each double-overlapped set of groups. These sequence numbers remove
the possibility of inconsistent ordering decisions by receivers. By sending mes-
sages through sequencing atoms arranged into a sequencing network, the network
determines the order of related messages in a decentralized way.

The sequencing graph is arranged so that sequencing atoms (also called se-
quencers) instantiated for double-overlapped groups form paths that group mes-
sages can follow. A group may have many sequencing atoms because it may
have many double-overlaps with other groups. The paths of messages addressed
to doubly-overlapped groups intersect at the sequencer associated with the over-
lap, ensuring that these messages are ordered.

Sequencing atoms are virtual. They need not be placed on different hosts; in
fact, placing atoms on the same host may improve performance. A sequencing
node is a machine that hosts sequencing atoms. We assume that the group
membership matrix—which nodes belong to which groups—is globally known;
it can be kept in a distributed data store such as a DHT or it can be provided
by the underlying publish/subscribe system.

3.1 Operation
Each sequencing atom maintains the following state:

— A sequence number for its overlapped groups.

— A group-local sequence number for the groups it acts as ingress node for.

— A forwarding table to direct messages to the next sequencer for each desti-
nation group.

— A reverse-path table listing the previous sequencer in the network for each
group.

— An output retransmission buffer for each subsequent sequencer.

— A buffer to store received messages from previous sequencers.

Upon receiving a new message from outside the sequencing network, a se-
quencer assigns it a group-local sequence number. The message can be forwarded
immediately for distribution if its destination group has no double overlaps. Oth-
erwise, if a group has a double overlap sequenced at this sequencer, the current
sequence number for the overlap is added.

The message is then placed in the output buffer and transmitted to the next
sequencer (if any) in the path for the group. The message can be removed from
the buffer when this sequencer receives an acknowledgment from the next hop.
We assume that there is a FIFO channel between any two sequencers. If the
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message is leaving the sequencer network, it will be sent to a delivery tree and
on to group members.

This protocol provides two key properties. First, all members of the same
group see messages in the same order, which is a causal order if the sender is
also part of the group. Causal order expresses the “happens before” relationship
among messages, as defined by Lamport [5]. Second, all destinations can make
an immediate decision of whether to deliver or buffer arriving messages.

3.2 Sequencing Graph: Construction
The sequencing graph must meet two criteria:

C1: A single path must connect sequencers associated with each group.
C2: The undirected sequencing graph must be loop-free.

C1 ensures that each message is sequenced relative to all other groups with
which the destination group shares a double overlap. When leaving the sequenc-
ing network, each message has sufficient information that it can be ordered
relative to the messages to all overlapping groups. C2 prevents messages from
having circular dependencies, e.g., message a before b, b before ¢, and ¢ before a.
A loop in the sequencing graph could allow an atom to make an ordering decision
inconsistent with the ordering of messages not seen by that sequencing atom, as
we illustrate with an example in the next subsection. The group- and sequencer-
based sequence numbers and ordered inter-sequencer message channels ensure a
consistent order of related messages at destinations.

Operations on a sequencing network include adding, removing, and modifying
groups. They correspond to the operations of adding, removing and changing a
subscription in the publish/subscribe system. When a subscriber node A adds
a new subscription, if there is no other node with the same subscription, a
new group is created with A as its only member. Otherwise, A joins the group
that is associated with the subscription. Similarly, when A removes one of its
subscriptions, it will leave the group associated with the subscription. If A was
the only member of the group, the group is deleted.

We describe only addition and removal of groups; changing the graph when
group membership changes can be accomplished by adding a group with the new
membership and removing the old one. Figure 1 illustrates these operations.

Adding the first group GO is trivial: an ingress-only sequencer is created—this
sequencer orders all messages sent to the group. When the second group, G1 is
added, if the memberships of GO and G1 overlap with at least two nodes (are
doubly-overlapped), a new sequencer, Q0, must represent GO N G1. All messages
for both groups must transit this sequencer, and the GO-specific sequencer may
be replaced or removed. This sequencer is relevant for all nodes in GO N G1; the
rest need only use the group-local sequence number.

Adding each new group starts with the same basic procedure: a new sequenc-
ing atom is instantiated for any new double overlap. The new sequencing atoms
must then be connected to the graph to form a path for the new group so that
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(d) GO is removed: sequencer Q1 is no longer needed

Fig. 1. Adding and removing groups for a set of four nodes, A, B, C and D

C1 is satisfied. Unlike C1, C2 is difficult to maintain using only local informa-
tion. We use a global picture of the sequencing graph and subscription matrix
state to find a new sequencer arrangement that satisfies C1 and C2.
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Removing a group may eliminate the overlaps that justify a sequencer’s exis-
tence. Sequencers associated with a group can be removed lazily: adding ignored
sequence numbers to a message does not hurt correctness, only efficiency. To
remove a group, a termination message is sent to that group, signifying the end
of the sequence space for that group, much like a TCP FIN. Each sequencer
can inspect this termination message to determine if there is no longer overlap
between the nodes this sequencer operates for. If the overlap is gone, the se-
quencer may retire by informing its parent to forward messages to its child for
each sequenced group.

3.3 Sequencing Graph: Analysis

We present next an analysis of our protocol. We first describe how conditions
C1 and C2 affect the sequencing graph and then we prove the unambiguity of
the message delivery order across each group.

Let G be a group of subscribers that has double overlaps with other groups
in the system. Each double overlap is associated with a sequencing atom and,
according to C1, all the sequencers for the group form a single path in the se-
quencing graph. Since the graph is loop free and there are FIFO channels between
each pair of sequencers, any order of arrival of two messages at a sequencing atom
will be maintained by all the other sequencing atoms traversed by the messages
afterward. We denote the sequence number assigned by sequencing atom Q to a
message m addressed to group G by Q(m) and the group-local sequence number
with G(m). The path of sequencing atoms traversed by a message m is sp(m).

Definition 1. Let G be a group with |G| > 2, let A,B € G and M4,p be the
set of messages received by both A and B. We define a relation <4 p on the set
My g such that Ymq,me € Ma g, m1 <a p me if and only if Q(m1) < Q(m2)
when sp(my) and sp(ms) have a common sequencer @, or G(mi) < G(ma)
otherwise.

Theorem 1. VG,VA,B € G,A# B, <a.p is a total order.

Proof. <4 p is a total order if it is reflexive, transitive, antisymmetric and total.
For simplicity we refer to M4 p and <4 p simply as M and <x4.

Reflexivity: Ym € M, m < m.

The property is obviously true.

Transitivity: Ymy, mo, ms € M such that m; <aqr mo and my <y mg then
mi < ms.

Case I: If all three messages are addressed to the same group, and traverse a
sequencing atom Q then m; <jyq mo = Q(m1) < Q(ms2) and mg <pq m3 =
Q(m2) < Q(ms). Therefore Q(m1) < Q(ms3) and consequently my <q ms. If
the messages do not traverse a sequencing atom, transitivity is proved similarly
using the group-local sequence numbers.

Case II: If two of the groups are identical and different from the third, there
can be only one double overlap between them. All messages are sequenced by
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the sequencer associated with the overlap and the proof is identical to the first
subcase of Case L

Case III: We now consider the case when messages are addressed to three dif-
ferent groups and travel on sequencing paths sp(mq), sp(ma) and sp(ms). Since
a group may have different double overlaps with each of the other two groups,
the sequencing paths pairwise intersect. Therefore the paths of m; and ms must
have a common sequencing atom, Qq, which establishes the order between the
messages. The same applies for mo and ms3 (both sequenced by Q,) and for
m1 and mgs (sequenced by Q3). If the paths have more than one common se-
quencing atom, we pick the one closest to the sender as the most significant one.
Because the sequencing graph is loop-free, it is imperative that Q; C sp(ms),
Q2 C sp(mq) or Q3 C sp(mz). We assume that Q; C sp(mg)—for the other two
cases the reasoning is similar. Then, message m3 transits Q, (although it does not
receive a sequence number from it). From the hypothesis, we have m; <xq mao
and mo <aq mg, therefore Q1(m1) < Q1(me2) and Q2(ma) < Q2(ms). Because
meo arrives before ms3 at Qo and because the order of arrival of two messages at
all sequencing atoms on a path must be consistent, ms arrives before ms at Q.
my arrives before mo at Q; and, using the transitivity of the “arrives before”
relation, it results that m arrives before m3 at Q. The consistent arrival order
on sp(ms) maintains this property at Qs, which will assign a lower sequence
number to my. Since Q3(m1) < Q3(ms) then my <q ms.

Antisymmetry: Ymy,mo € M, if my <aq mz and mo <paq mq then m; = mo.

If my and mo travel through a sequencer Q then they will be assigned sequence
numbers Q(m1) and Q(m2). If my < mo and ma <pq my then Q(mq) < Q(ma)
and Q(mz) < Q(my) and the total ordering of the natural numbers implies that
Q(m1) = Q(ma2). A sequencing atom does not assign the same sequence number
to two different messages therefore my = ms. If m; and mso do not traverse any
sequencer they will be ordered based on the group local sequence number and
the reasoning is the same.

Totality: Ymy, mo € M, either mq <aq mo or mg <pq my.

Any two messages received by both A and B can either be addressed to a single
group or to two different groups. If their destination is a single group, the group
local sequence number will be used to establish a total order between them.
On the other hand, if they go to two different groups, they have to traverse
the sequencing atom instantiated by the overlap (A,B). The assigned sequence
numbers are used to determine the order. O

Any destination node can make an instant and deterministic decision of whether
to deliver an arriving message to the application or to buffer it. The order of
delivery is consistent over all members of the same group, but it does not reflect
causal relationships between messages. This is because the sender and the re-
ceivers are completely decoupled and the ordering is enforced by the sequencing
graph. We achieve causal ordering only when the sender is part of the group to
which the message is sent. This happens because only then the sender can be
aware of any a priori causal relationship between messages and can propagate
it across the sequencing graph.
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Fig. 2. Example of circular dependency among messages mi, ma and ms and how it
can be avoided; groups G0={A,B,D}, G1={A,B,C} and G2={B,C,D} are served by the
sequencers QO0, Q1 and Q2. Each sequencer assigns a sequence number to each message
that traverses it. (a) node B receives all three messages but cannot unambiguously
decide on their order; (b) message m; is redirected through Q1 and the ambiguity is
eliminated.

As mentioned in Section 3.2, a sequencing graph must meet two criteria to un-
ambiguously order messages. The first condition, C1, is easy to justify: multiple
paths create nondeterminism which may produce ambiguous sequence numbers
for messages. We illustrate the need for the second condition through the fol-
lowing example.

Consider four nodes A, B, C, D and three groups with the following member-
ships: GO={A,B,D}, G1={A,B,C}, G2={B,C,D}. Figure 2(a) shows the result-
ing sequencing network—without C2—with the sequencers labeled QO0, Q1, Q2.
Now, assume that messages mg, m1, mo are sent to groups GO, G1, G2. Without
C2, these messages will gain inconsistent sequence numbers, shown in the table
in Figure 2(a), by the following process. Messages mg and m; both traverse se-
quencer Q0 and receive a sequencer number. If mg reaches QO first, it is tagged
with sequence number 1 and m; tagged 2. Next, they continue on the path to-
wards the destination group, mg sent to Q1 and m; to Q2. Meanwhile message
meo is sent to G2 and reaches sequencer Q1 before message mg. Thus, at Q1, mo
is tagged with 1 and mg with 2. So far, message mg passed through both QO
and Q1, being assigned sequence numbers 1 and 2. Because these were the only
two sequencers through which it had to pass, mg can now be delivered to the
members of GO, nodes A, B and D. Message mq, on the other hand is forwarded
to Q2. If the connection between sequencers Q1 and Q2 is very slow compared
to the one between Q0 and Q2, mo reaches Q2 after my does. Then, at Q2, m.
receives sequence number 1 and msg sequence number 2. We show in the table
from Figure 2(a) the sequence numbers of each of the three messages after they
exit the sequencing network. Because each is the first and only message sent to
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its group, all have group sequence number 1. As the table shows, the three mes-
sages have a circular dependency. B cannot deliver mg because it waits for my,
which cannot be delivered because of mo, while ms depends upon the successful
delivery of myg.

We eliminate the circular dependency in Figure 2(b) by redirecting message
m1 through sequencer Q1 to make the sequencing graph loop free, condition C2.

3.4 Placing the Sequencing Atoms

Randomly scattering sequencing atoms throughout the network would lead to
poor performance: because messages must traverse the path of sequencing atoms
for the group, many needless network hops would result. We have developed a
two-step heuristic for co-locating sequencing atoms on the same machines. The
heuristic is based on the relationship between the double overlaps associated
to the sequencing atoms. In the first step, we place on the same machine any
sequencing atoms whose corresponding overlaps have a subset relationship be-
tween them. For example, let there be two sequencing atoms, Q1 and Q2, such
that Q1 is associated to an overlap containing nodes A, B and C and Q2 corre-
sponds to an overlap formed by A and B. Since {A,B} C {A,B,C}, Q1 and Q2 are
co-located on the same node. In the second step of the heuristic, we also co-locate
overlaps that do not have subset relationships between them but share at least a
common node as follows. For each overlap, we choose at random one of its nodes,
find all other overlaps that contain the chosen node and place the corresponding
sequencing atoms on the same machine. We impose the restriction that each se-
quencing atom be co-located only once. This arrangement of sequencing atoms
on the same sequencing node preserves our scalability goal—that no sequencing
machine sees more messages than the most loaded receiver—without needlessly
distributing related sequencing atoms throughout the network.

The selection of the machine on which to place a related set of sequencing
atoms is also important. Ideally, we want to minimize the extra delay that a
message experiences when it traverses the sequencing path. We abstract a related
set of sequencing atoms by a sequencing node and we seek to find an optimal
mapping between sequencing nodes and physical machines. We propose a simple
heuristic that is run on behalf of each group as follows:

— if no sequencing node associated to the group has been assigned to a physical
node yet, assign one at random

— if there are sequencing nodes already assigned to machines, then pick the
closest unassigned sequencing node on their sequencing paths and assign it
to neighboring machines.

The heuristic tries to put neighboring sequencing nodes on a sequencing path on
close machines in the publish/subscribe infrastructure. This placement makes
messages traverse relatively few extra hops to be ordered and helps us show that
acceptable performance is feasible.
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4 Results

In this section, we present simulation results to validate the performance of our
ordering scheme. We only focus on the properties of the protocol when group
membership is static or does not change very often.

4.1 Experimental Setup

We developed a packet-level discrete event simulator to evaluate the sequencing
protocol. We simulated using a 10,000 node topology generated by GT-ITM [29].
The simulator models the propagation delay between routers, but not packet
losses or queuing delays.

We attach hosts to the topology by grouping them into similar size clusters,
then distributing each cluster uniformly at random through the topology. Nodes
in the same cluster are placed close to each other. We choose this mapping
because it is consistent with online communities, in which users tend to clus-
ter around the lowest-latency server. We do not place any constraints on the
publish/subscribe system that uses the ordering scheme. Messages travel from
publishers to subscribers on the shortest path and any router in the topology
can serve as a forwarding node. This is acceptable because our experiments are
concerned only with the characteristics of the ordering layer. We are interested
in measuring the penalty in performance that our primitive introduces with re-
spect to the underlying layer. The mapping between the sequencing graph and
the underlying infrastructure is done using the heuristic described in Section 3.4.
Better heuristics may give better results—our intent in this section is to show
that acceptable performance is possible.

We vary the number of end-hosts between 32 to 128, and each host can sub-
scribe to zero or more groups. We vary the number of groups from 8 to 32. We
rank the groups based on their size and we generate the size of each group using
a Zipf distribution with exponent 1. The sizes are proportional to the function
r‘l/Hnyl, where r is the rank of the group, n is the number of hosts and H,, ; is
the generalized harmonic number of order n of 1. We choose the Zipf distribution
because it is known to characterize the popularity of online communities [30,31]

4.2 Latency Stretch

We evaluate the extra delay messages encounter when traversing the sequencing
network compared to taking the shortest unicast path. We measure the latency
stretch: the ratio between the time taken for a message to traverse the network
using the sequencers and the time taken using the direct unicast path. Similar
metrics have been described by Chu et al. [32] (RDP) and Castro et al. [28]
(RAD). RAD is defined per group and RDP per sender-destination pair; we
believe latency stretch better represents the performance of our protocol because
it captures the delay penalty of an individual node, when the node requires
unambiguous delivery. To measure the latency stretch, each node sends a message
to each of the groups it is part of, first using the sequencer network and then
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directly. We average the results and index them by destination nodes. We leave
group membership fixed during the experiment.

Figure 3 presents the cumulative distribution of the latency stretch computed
for 128 nodes subscribing to 8, 16, 32, and 64 groups. When there are fewer
groups, the sequencing network is smaller and traversing it takes less time. For
example, when we used 8 groups, latency stretch did not exceed 2.5. As the
number of groups increases, so do the number of overlaps and the number of se-
quencing nodes that must be traversed. The growth is sub-linear: for 64 groups,
the maximum latency stretch observed is less than 8. We quantify next how the
increase in delay incurred by ordering is distributed with respect to the actual
latency between the publisher and its subscribers. For this we compute the Rel-
ative Delay Penalty (RDP [32])—the ratio between the sequencing and unicast
delay for each sender-destination pair—and plot it against the corresponding uni-
cast delay between the sender and the destination. Figure 4 shows the results for
128 subscribers arranged in 64 groups. The highest values for RDP correspond
to the pairs in which the sender and the destination are very close to each other.

Increased delivery time in exchange for guaranteed order among messages is
an inherent tradeoff of our approach. Delaying message delivery may be accept-
able for Internet messaging or stock ticker applications, but generally it affects
negatively the performance of network games. However, this section presents
worst case results because we overestimate the performance of unicast: shortest
unicast paths are rarely followed. To obtain faster delivery, the mapping of the
sequencing graph should take into account the requirements of the applications
that need ordering as well as the characteristics of the pub/sub infrastructure.

4.3 Sequencing Nodes

We next consider how adding groups affects the number of sequencing nodes
and the stress on each node. We might worry that the number of sequencing
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nodes and the number of groups associated with each of them would increase
exponentially as we add more groups; such a protocol would be impractical. To
simplify presentation, we consider only the sequencing nodes that host non-
ingress-only sequencers: each group has at most one ingress-only sequencer,
so the ingress-only sequencers may grow at most linearly with the number of
groups.

Figure 5 shows the average number of sequencing nodes created as we vary the
number of groups. We vary the number of groups formed by 128 subscriber nodes
from 1 to 64, and run the experiment 100 times. The error bars range from 10th
to 90th percentile. As the number of groups increases, there are more overlaps
and thus more sequencing nodes. After 30 groups, the number of sequencing
nodes grows more gradually because many of the new overlaps have common
members with existing overlaps, and so can be mapped to existing sequencing
nodes.

We define the stress of a sequencing node as the ratio between the number of
groups for which it has to forward messages and the total number of groups. A
sequencer with a stress value of 1 forwards messages to all groups. In Figure 6, we
present the average, 90th percentile and maximum values of stress as the number
of groups increases. We observe the same behavior as in Figure 5. Initially, as we
add more groups, we also add more sequencing nodes and the stress decreases and
stabilizes around the value 0.2. After 30 groups, when the number of sequencing
nodes increases more slowly, the stress slightly increases because there are more
groups to be sequenced by the same number of sequencing nodes. The heuristic
we used to map sequencing atoms to sequencing nodes makes sure that all the
groups associated to a sequencing node share at least a member. As such, the
load of this member is an upper bound for the load on any sequencing node that
lies on the path to it.
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4.4 Sequencing Atoms on a Path

Although the number of sequencing nodes remains small, the number of over-
laps, and thus sequencing atoms, grows large. The size of the graph in atoms
is less important, however, than the number of atoms each message must tra-
verse, which represents how many sequence numbers a message must collect.
Our approach is most attractive when the path length through the sequencing
network is smaller than the number of nodes; that is, when the message over-
head of sequence numbers provided by the sequencing network is less than that
of system-wide vector timestamps. We compute the ratio between the number of
sequencing atoms on a path and the total number of nodes, for different group
sizes, and present it as a cumulative distribution in Figure 7. In the worst case,
the number of sequencing atoms in the path of a message is less than half of the
total number of nodes that participate. The path length through the sequencing
network is bounded by the total number of groups, since a group can have an
overlap with at most each of the other groups. As a result, our sequencer-based
approach is attractive whenever the number of nodes exceeds the number of
groups.

4.5 Varied Occupancy

Although we use a Zipf distribution to generate group sizes because we believe
it models likely usage, we also wanted to explore worst-case usage scenarios.
We define the expected occupancy as a measure of the density of the group
membership. The value of the expected occupancy can be interpreted as the
probability that a node is member of a group: an occupancy of 0 means that all
groups are empty, while an occupancy of 1 means that every node subscribes to
every group. Using 128 nodes and 32 groups, we vary the expected occupancy
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between 0 and 1 to see if the sequencing network approach is more efficient at
some group densities.

Figure 8 illustrates how the expected occupancy of groups affects the average
number of double overlaps and sequencing nodes. As the expected occupancy in-
creases, the number of double overlaps and necessary sequencing nodes increase
until approximately 0.2 occupancy. Beyond this, increasing group densities cre-
ates double overlaps that have common members with existing overlaps, and the
number of sequencing nodes gradually decreases. When the group densities are
very high (above 0.9), the overlaps include the entire population and the number
of sequencing nodes drops to one.

5 Conclusion

Our primary contribution is a method for ordering messages in a pub/sub system
without centralized control and without vector timestamps. We showed that it
is practical and scalable, because little local and global state is maintained,
because sequencing atoms can be placed to achieve good performance relative to
a centralized sequencer, and because sequencing nodes order no more messages
than destinations receive. Our insight is that only messages to groups with two
or more common members must be ordered, and this provides a causal ordering
when senders also subscribe.

This approach forms a new primitive for publish/subscribe systems. To in-
vestigate its applicability, we plan to apply the idea to the realistic workloads
of these and other systems and measure when group membership is (or can be)
geographically-correlated. We also intend to more completely understand the
dynamic behavior of our algorithm. When changes in the group membership are
infrequent or along existing patterns, we expect very little churn in the sequenc-
ing graph. However, we want to determine whether sequencing networks perform
well even when incrementally updated as groups and nodes join and leave very
often.
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Abstract. In many enterprise application integration scenarios, middleware has
been instrumental in taking advantage of the flexibility and cost efficiency of clus-
ters of computers. Web servers, application servers, platforms such as CORBA,
J2EE or .NET, message brokers, and TP-Monitors, just to mention a few exam-
ples, are all forms of middleware that exploit and are built for distributed de-
ployment. The one piece in the puzzle that largely remains a centralized solution
is the database. There is, of course, much work done on scaling and paralleliz-
ing databases. In fact, several products support deployment on clusters. Clus-
tered databases, however, place the emphasis on single applications and target
very large databases. By contrast, the middleware platforms just mentioned use
clustered deployment not only for scalability but also for efficiently supporting
multiple concurrent applications. In this paper we tackle the problem of clus-
tered deployment of a database engine for supporting multiple applications. In
the database case, multiple applications imply multiple and different database in-
stances being used concurrently. In the paper we show how to build such a system
and demonstrate its ability to support up to 300 different databases without loss
of performance.

Keywords: database clusters, scalability, replication, consistency.

1 Introduction

In many enterprise application integration scenarios, middleware has been instrumental
in taking advantage of the flexibility and cost efficiency of clusters of computers. There
exists a plethora of middleware solutions to create distributed deployments and to par-
allelize a wide range of application types. In addition, distributed deployment across a
cluster of machines is most effective when the same platform can be used for concurrent
applications. Thus, platforms such as J2EE or .NET are clearly designed to be used with
multiple concurrent applications. In spite of this, the piece of the puzzle that still mostly
remains a centralized solution is the database. Even though there is much work done
in the area of cluster and parallel databases [20], the emphasis is always on improving
access to a single database. This is not a trivial distinction. The problem with single
instance optimizations is that they often conflict with the goal of supporting multiple
database instances. For instance, crucial to be able to exploit clusters is the ability to
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Fig. 1. Managing 100 Databases (D Bx) on a DBFarm using 3 Master (M z) and 6 Satellite (Sx)
Servers. Each Database is installed on one Master and may be replicated on different Satellites.

freely move resources from machine to machine as needed and allocate more or less
machines to different applications as load fluctuates. In the single database case, the
clients simply connect to that database. In a cluster based solution, clients should see a
single image of the system even when databases are dynamically moved around. Sim-
ilarly, efficient use of the resources of the cluster imply that database instances might
share computing nodes. Care must be taken that work on one instance does not nega-
tively affect work on a different instance. Finally, clients should always see a consistent
state but consistency needs to be accomplished without limiting the scalability of the
cluster and without introducing unacceptable overhead.

These constraints point out to the need for some form of middleware based solution
since database optimizations mostly apply to single instances and somebody has to co-
ordinate the access to multiple, independent instances. The challenge in building such
a middleware based solution is that it must be very light weight so as not to limit scal-
ability. Handling, for instance, 100 databases each running 100 transactions per second
does not allow to spend too much time on each transaction (and our goal is to scale
well beyond that). Yet, that same middleware must guarantee consistency and a single
system image.

In this paper we describe the architecture and implementation of DBFarm, a clus-
ter based database server implemented as a thin middleware layer that can be used to
support several hundred database instances. DBFarm is based on using two kinds of
database servers: master database servers (see Figure 1) and satellites. Master servers
can be made highly reliable by using specialized hardware, RAID systems, hot stand-by
techniques, and sophisticated back-up strategies. This provides the necessary reliability
and does it in a way that the resources are shared among all databases. Scalability is
then provided by a cluster of unreliable satellite machines where copies of the individ-
ual databases are placed. A key aspect of DBFarm is that the users of the databases
are not aware of the fact that they may be working with an unreliable copy rather than
working on the master database. DBFarm ensures that they see a consistent state at all
times. Another key feature of DBFarm is that the load distribution between the master
databases and the satellite copies is done based on the read/write characteristics of the
operations requested by the users. Writes are performed at the master databases, reads at
the copies. This workload distribution allows to significantly reduce the load at the mas-
ters (and thus, be able to support a larger number of databases on the same machines)
while providing a high level of parallelization for the satellites (and, thus, the basis for
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high scalability). The distribution also reflects the characteristics of most database loads
where updates tend to be small operations with high locality while read-only transac-
tions typically cause much more I/O (to retrieve data and indexes) and computation
overhead (to perform operations such as joins, order, averages, or group by).

The feasibility and advantages of this approach are demonstrated through an ex-
tensive set of experiments. We show how DBFarm provides more stable and scalable
performance (in both response time and throughput) for a set of up to 300 TPC-W
databases than a stand alone database server installation. We also show the performance
of DBFarm using the RUBBoS benchmark (much larger databases with a more com-
plex load) and discuss how to assign priorities to individual databases so that they get a
better performance than others.

In terms of applications, DBFarm can be used in a wide variety of settings. It can
be used to turn a cluster of machines into a database service that is provided within a
LAN setting (a company, a university), thereby localizing the maintenance and admin-
istration of the databases and the machines on which they run. It can also be used to
implement database services as part of an Application Service Provider where small or
medium companies place their databases at a provider’s DBFarm. The sharing of re-
sources implicit in DBFarm makes this an efficient solution and its simple scalability
enables the support of a large number of users.

Our work exploits a novel form of replication and load distribution that is well suited
to many modern applications such as web servers. Unlike many existing solutions, it
provides consistency while remaining light weight. DBFarm does not involve complex
software or hardware layers (e.g., specialized communication infrastructures, shared
disks) or requiring the modification of the application (e.g., special clustering of the
data or submission of complete transactions). Our approach also includes innovative
algorithms for transaction routing across a database cluster that avoid many of the lim-
itations of current database replication solutions. Finally, DBFarm provides a highly
scalable clustering solution for databases.

2 Architecture

2.1 Load Separation

In order to provide scalability in databases, the load must be distributed across a num-
ber of machines. This is a well know problem in replicated, distributed and parallel
databases. In DBFarm the added complication is that the load separation must happen
on a per database instance basis while still maintaining consistency. There are many
ways to implement load separation in single instance settings. [2,5] use versioning and
concurrency control at the middleware level to route transactions to the appropriate ma-
chines. [17] relies on clients to produce a well balanced load over a cluster, different
cluster nodes are then synchronized using group communication primitives. [13, 18]
assumes the database schema has been pre-partitioned into so called conflict classes,
which are then used for load separation. [1] requires clients to specify the freshness
level of the data and directs transactions to different nodes according to the freshness of
the nodes (i.e., how up-to-date they are). This approach, however, already assumes that
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clients do not want to see the most up-to-date state and, thus, represents a relaxation of
concurrency.

Unfortunately, none of these methods is feasible in the context of a multi instance
cluster. Duplicating concurrency control at the middleware layer would result in a pro-
hibitive overhead per transaction (aside of a complex maintenance issue since the mid-
dleware would have to be aware and maintain versioning and schema information for
hundreds of instances). Group communication as a way to distribute load and maintain
consistency is also out of the question because of the overhead of membership (each
instance would have its own group membership) and the implicit synchronization of
cluster nodes. Similarly, the use of conflict classes requires to parse the incoming trans-
action load to identify the conflict class being accessed which will immediately put a
limit on the number of transactions the middleware can route per second.

The load separation approach used in DBFarm is a direct consequence of these
restrictions. Rather than relying on schema or data partition information, we simply
distinguish between read-only and update transactions. Update transactions are those
that perform an update in the database (can nevertheless contain many read operations
as well). Read-only transactions are those that do not result in a state change at the
database. Such a load separation can be efficiently implemented at the middleware
level without having to parse the statements of the transactions and without the need
to maintain information on the schema of each database instance in the cluster. Such a
separation also has important advantages. The update transactions determine the state
of each instance and define what is consistent data. We only need this stream of trans-
actions to determine correctness and consistency. Read-only transactions are used to
provide scalability by re-routing them to different cluster nodes in the system. This is
based on the nature of many database benchmarks (e.g., TPC-W or RUBBoS) that are
used as representative loads and where the load is clearly dominated by read-only trans-
actions (at least 50% of the transactions in most database benchmarks and typically far
more complex than update transactions).

Load separation based on read/write transactions results in scalability that is limited
only by the proportion of reads and writes in the load. Thus, DBFarm will not provide
any scalability to a database with 100% updates (but such load also results in no scal-
ability for any replicated solution -not just DBFarm- and would severely tax existing
parallel database engines). However, in the common case that read-only transactions
dominate the load, DBFarm provides significant scalability.

2.2 Master and Satellite Servers

As a direct result of the load separation technique used, DBFarm adopts a per instance
primary copy, lazy propagation strategy. The primary copy of an instance is called the
master database. Master databases are always located on master servers (masters). A
master server processes all the update transactions of the hosted master databases. As
such, it is always up-to-date. Each master database is responsible for maintaining its in-
ternal consistency using its own concurrency control and recovery mechanisms. Copies
of the master databases (so called satellite copies) are placed in satellite servers. Satel-
lites are used exclusively for executing read-only transactions. Hence, what is a con-
sistent state is always dictated by the master servers. As a direct result, recovery of
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failed satellites and spawning of new database copies is not a complex issue in DBFarm
(unlike other approaches where the transfer of state for creating or removing a copy
involves complex synchronization operations [12, 17]). In addition, the master database
of an instance is the fall back solution. If all copies fail, the master server allows clients
to continue working on a consistent version of the managed data (albeit with a reduction
in performance).

Generally, we assume the masters to be large computers with enough resources (main
memory and disk capacity) to accommodate a large number of databases (see the ex-
perimental section for details). We also assume the masters to be highly available based
on either software or hardware techniques. The capacity of a master will determine
how many different databases can be supported by that master and how high the over-
all transaction load can be. DBFarm reaches saturation once all masters reach the limit
of update transaction streams they can process. At that point, and unless they submit
exclusively read-only transactions, clients cannot increase the rate at which they sub-
mit transactions since the speed at which the update part of the load is processed is
determined by the masters which, at saturation, have no more available capacity. Scal-
ability can, however, be easily increased by adding more masters and redistributing the
databases across these machines.

Satellites in turn do not need to be as powerful as the masters, nor need they to be
very reliable. There can be an arbitrary number of database copies in each satellite.
Scalability for a single master database is provided by having copies in multiple satel-
lites. The limit in scalability, aside of the limit imposed by the proportion of updates
in the load, is reached when each concurrent read-only transaction executes in its own
satellite server. Beyond that, additional copies will remain idle. Such an extreme de-
gree of distribution can nevertheless be employed in a cluster without loss of efficiency
by placing copies of different instances on the same satellite. Since satellites might be
shared by different database copies, no resources are wasted because each copy is exe-
cuting a single read-only transaction. On the other extreme, in DBFarm it is possible for
an instance to be centralized and without any copy. In such a case, the master processes
both the update and the read-only transaction streams for that database.

An advantage of the approach taken in DBFarm is that it provides a solution for re-
alistic database applications. The master servers host normal databases. User defined
functions, triggers, stored procedures, etc. can all be placed at the masters and do not
need to be duplicated at the satellites. Most existing database replication solutions as-
sume such features are either not used (e.g., when concurrency control or versioning
happens at the middleware level) or require that they are replicated across all copies
and behave deterministically at all cluster nodes - something not entirely feasible in
the case of triggers in most existing database engines (e.g., when update propagation is
done with group communication).

2.3 Transaction Scheduling in DBFarm

While the load separation approach of DBFarm enables scalability and makes sure that
the master databases are always up-to-date, it does not by itself guarantee consistent
views when copies are being accessed. Therefore, as long as no other measures are
taken, the consistency from the client point of view will depend on how the transactional
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load generated by a client is split into read-only and update streams and how these
streams are forwarded to the different database machines in the cluster.

From a client’s perspective, what matters is what has been called strong session
serializability [8]. Briefly explained, strong session serializability requires that a client
always sees its own updates. In other words, a read-only transaction from a given client
must see not only a consistent state but one that contains all committed updates of that
client. This prevents the client from experiencing travel-in-time effects where suddenly
a query returns correct but stale data. Although in principle strong session serializability
would be enough, the approach we take in DBFarm goes a step beyond and makes sure
that a read-only transaction executed at a copy will see all updates executed at the master
database up to the point in time the read-only transaction has arrived at the system. In
doing so, DBFarm effectively becomes transparent to the clients' since they will always
read exactly the same they would have read using a single database server.

For simplicity in the explanations, and without loss of generality, we describe the
details of the DBFarm transaction scheduling with a single master database server. As
clients communicate only with masters, they are not aware of any satellites. Therefore,
incoming read-only transactions need to be forwarded by the master to the satellites in
a way that consistency is guaranteed. Update transactions for a given database instance
are executed locally on the master database. The result is, conceptually, a series of con-
sistent states of the database each of which contains the updates of all the transactions
committed up to that point. The master takes advantage of this conceptual ordering by
capturing the writesets of update transactions in commit order. A writeset is a precise
representation of what has been changed (i.e., the tuple id and the new value). The mas-
ter then uses this commit order to forward the writesets to all needed satellites using
FIFO queues. Satellites then apply these writesets in the same order they are received.
It is easy to see and formally prove that, if the execution of transactions at the master
database was correct, then the application of changes to a copy in the commit order
established by the master guarantees that the copy will go through the same sequence
of consistent states as the master database and will eventually reach the same correct
state as the master database.

Conceptually, the way this is done in a DBFarm is as follows. For every successful
committed update transaction, the master sends back to the client a commit acknowl-
edgment message. The latest sent commit acknowledgment therefore reflects the oldest
state that any client should see when sending the next transaction. Hence, if DBFarm
sends a commit acknowledgment to a client that executed transaction T}, then all later
incoming read-only transactions from any client must observe a state of the database
that includes the effects of writeset WS}, (the writeset that includes the changes done by
transaction 7},). Therefore, once a request for a read-only transaction arrives at the mas-
ter, the master can deduce (by keeping track of the sent commit acknowledgment mes-
sages) the minimum state of the database that the read-only transaction must observe.
Of course, the management of tracking commit acknowledgment messages and assur-
ing consistency for read-only transactions must be done by DBFarm for each database
separately. A possible approach to ensure that a read-only transaction sees no stale data

! Of course, by giving up transparency and using less strict forms of consistency, the system
could offer even more scale-out for read-only transactions.
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Algorithm 1: Master Transaction Handling

LN =

: INPUT DB: Database Name
: INPUT T: Incoming Transaction
: INPUT M: Mode of T, M € {Read-Only, Update }

. if M =="Update’ then

/* T must be executed on the master */
Start a local update transaction in database DB
for all Incoming statements S in T do
if S == "ROLLBACK’ then
Abort the local transaction
Send abort response back to client
RETURN
end if
if S =="COMMIT"’ then
ENTER CRITICAL SECTION
Commit the local update transaction
if Commit operation failed then
LEAVE CRITICAL SECTION
Abort the local update transaction
Send error response back to client
RETURN
end if
Determine T’s commit number CN
Set CN(DB) :=CN
LEAVE CRITICAL SECTION
Send successful commit reply to client
Retrieve T’s encoded writeset WS from DB
Forward (DB, WS, CN) to all satellites that
host a copy of database DB
RETURN
end if
Execute S locally
if Execution of S fails then
Abort the local transaction
Send error response back to client
RETURN
end if
Send result of S back to client
end for

: end if
: /* T is Read-Only, try to execute on a satellite */
: if 3 satellite N with a copy of DB then

Use load balancing to select a satellite N
MIN CN := CN(DB)

Forward (DB, T, MIN CN) to N

Relay all incoming statements S in T to N
RETURN

: end if

: /* Need to execute T locally */

: Start a local read-only transaction in database DB
: for all Incoming statements S in T do

if S € {COMMIT, ROLLBACK} then
Commit the local read-only transaction

62:

Send response back to client
RETURN

end if

Execute S locally

if Execution of S fails then
Abort the local read-only transaction
Send error response back to client
RETURN

end if

Send result of S back to client

end for

Algorithm 2: Satellite Transaction Handling

1:
2:
: INPUT CN MIN: Min. committed State needed to exe-

w

20:

INPUT DB: Database Name
INPUT T: Incoming Transaction

cute T

: Wait until CN(DB) > CN MIN

: /* Execute T locally in read-only mode */

: Start a local read-only transaction in database DB
: for all Incoming statements S in T do

if S € {COMMIT, ROLLBACK} then
Commit the local read-only transaction
Send response back to client
RETURN

end if

Execute S locally

if Execution of S fails then
Abort the local read-only transaction
Send error response back to client
RETURN

end if

Send result of S back to client

end for

Algorithm 3: Satellite Writeset Application

: INPUT DB: Database Name
: INPUT WS: Writeset
: INPUT CN: Committed State produced by WS

: Turn WS into a set of SQL statements

: Wait until CN(DB) == (CN - 1)

: Start a local update transaction in database DB
: Apply the produced SQL statements

: Commit the local transaction

. if Application of WS failed then

Report ERROR to the master
Disable further processing for database DB
RETURN

: end if
: Set CN(DB) :=CN

is to block it on the master and then only forward its operations to the target satellite
once it has reported the successful application of all needed writesets. However, this
approach has several disadvantages: first, there is additional logic, communication and
complexity; second, the master must implement transaction queuing; third, overhead
is introduced due to the round-trip times of the involved messages and, as a result,
read-only transactions may be unnecessarily blocked. In practice, the way the system
works achieves the same result but without blocking transactions longer than needed
and without imposing additional load on the master. The solution is based on a fagging
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mechanism. Every time an update transaction commits, the master not only extracts the
writeset, but also atomically creates an increasing number which gets shipped together
with the writeset. We call this number the change number for database D B (denoted by
CN(DB)). Note that the change number is no longer client specific but applies to all
update transactions executed on the database. When re-routing read-only transactions
to satellite nodes, the master fags the begin operation of such transactions with the cur-
rent change number of the respective database. This number is also maintained for the
copies of database D B: if a satellite applies a writeset to a copy, then the copy is known
to have achieved the writeset’s assigned change number.

A satellite that receives a tagged read-only transaction will only start executing it
after it has applied the needed writesets. This is how we make sure a read-only transac-
tion sees all updates performed up to the point it starts executing, not only those from
that particular client. The blocking of read-only transactions is therefore delegated to
the satellites, where it can be efficiently handled.

It is important to note that other than checking that every read-only transaction
observes the newest consistent state, no concurrency control is needed outside the
databases and scheduling therefore has a low overhead in our approach. This is in con-
trast to existing replication strategies that require additional concurrency control and
versioning mechanisms outside the databases [2, 6, 18].

The details of the algorithms used by DBFarm to handle transactions on the master
and satellite servers, as well as writeset handling, are given in algorithms 1, 2 and 3.

Algorithm 1 describes the routing on a master. Lines 4-38 handle update transac-
tions. These are executed locally on the master, statement by statement, until the client
either decides to rollback (abort the transaction, in line 8) or to commit (line 13). In
case of a rollback, the transaction can simply be aborted on the master. No further ac-
tion is required. If the client wishes to commit, then the master commits the transaction
on the master database DB, extracts the encoded (compressed) writeset and forwards
it to all satellites that keep a copy of the database. Also, the master atomically up-
dates the C' N (D B) value. The handling of read-only transactions is described in lines
39-62. Basically, such transactions are always tagged with CN(DB) and re-routed
if possible. If no copies are available, then the transaction has to be executed on the
master.

Algorithms 1 and 2 describe the handling of read-only transactions and writesets on
the satellites. Line 4 in algorithm 2 is where we make sure that read-only transactions
never observe stale data. Transactions re-routed to satellites are always started in read-
only mode. If a client inside a declared read-only transaction tries to update database
elements, then the underlying database will automatically abort the transaction.

3 Implementation

The current implementation of DBFarm runs on top of PostgreSQL 8.1. The core part
of DBFarm are the adapters, which are distributed middleware components used to
integrate the concepts of the previous section (see Figure 2). As the adapters make up
the main component of our implementation we are going to describe them first.
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3.1 The Adapter Approach

Clients access the DBFarm by establishing a connection to an adapter at a master server.
If the requested database instance is not locally hosted as a master database, then the
connection is transparently forwarded to the correct master. Database copies hosted on
satellites are not directly accessible by the clients. In Figure 2 the adapter on the master
(the master adapter) intercepts all incoming client connections and re-routes read-only
transactions to satellites. The actual routing is more fine grained, since clients never
send transactions as a block. The master adapter therefore needs to inspect the data
stream on each client connection and handle operations accordingly. To be able to iden-
tify read-only transactions the master adapter assumes that clients use the standard SQL
mechanisms to either declare the whole session as read-only or decorate the begin op-
eration of submitted read-only transactions with the READ ONLY attribute. In Java
clients, for example, this can be forced by executing the Connection.setReadOnly()
method. If a client does not give any information, then the adapter assumes that the
client is starting an update transaction.

The master adapter also extracts the latest changes produced by each update oper-
ation (the writesets) from the master databases and sends them to the corresponding
satellite adapters. In contrast to [6] we use writesets rather than the original SQL up-
date statements since it has been shown that they are a more efficient way to propagate
changes in replicated systems [14]. The writesets consist of a compact, encoded de-
scription of the tuples that need to be inserted, changed or deleted. At the target adapter,
they are translated and executed as a minimal set of SQL statements. The extraction of
the writeset for a given transaction occurs after the transaction commits and it is done
for the entire transaction. Thus, when the master adapter propagates changes, it does so
for all the changes of a given transaction.

Adapters on the satellites (satellite adapters) receive operations from read-only
transactions and execute them on the locally installed copies making sure that
consistency is preserved. To maintain consistency, satellite adapters constantly apply
the received writesets and respect the tags at the beginning of re-routed read-only
transactions.

Upon startup, each adapter configures and starts the local PostgreSQL installation
(each PostgreSQL installation typically contains several master databases or satellite
copies). All needed PostgreSQL configuration files are then dynamically generated so
that the PostgreSQL database software only binds itself to the local loopback network
interface. As a result, all PostgreSQL installations are not accessible by clients directly
from the network. After the local PostgreSQL installation is up, the adapter connects to
it and scans for installed databases. As a last step, the adapter starts its own listener on
the external network interface. However, unless an adapter has been further configured
by the administration console, it denies all client requests - until then it is simply not
aware if it is running as a master or satellite. Information about the overall DBFarm
configuration is at this stage centralized and provided by the administration console.
Only after a master has been informed by the administration console about its mode
and about other masters and the available satellite adapters (and the database copies that
they host) it can establish all needed writeset and transaction re-routing connections and
is then ready to process client transactions.
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Fig. 2. Adapters in an example DBFarm with one Master Server and a set of Satellites

Currently, only the master adapters distribute read-only transactions across the satel-
lites, for load-balancing purposes a round-robin assignment is used. At a later point
of time, we plan to explore more sophisticated assignments to improve overall perfor-
mance. The need for more sophisticated assignments arises from the fact that some
read-only transactions may take a long time to execute (hours in some cases). If the
scheduling would take load into consideration, it would do a better job distributing the
incoming transactions. Nevertheless, for the purposes of demonstrating the characteris-
tics of DBFarm, round robin scheduling suffices.

For efficiency reasons, connections from the master to other adapters are organized
in pools: for each local database and for each known peer adapter there is a connection
pool. The reason for using a pool for each local database (instead of one pool for the
whole PostgreSQL installation) lies in a limitation of the PostgreSQL on-wire protocol:
one cannot switch the selected schema and database user after a connection has been
established and authenticated. Connections to other adapters are mainly used for two
purposes: first, to send tagged read-only transactions and second, to stream writesets to
the satellites. Connections are generated lazily; once a connection is no longer used, it
will be put back into its pool. Pooled connections that are not used for a certain period
of time will be closed and removed.

The adapters have been implemented as a thin layer of Java software. The software
for the master and satellite adapters is the same, however, depending on its configuration
an adapter either acts as the master or a satellite. The advantage of having identical
adapters at both master and satellites is that it will eventually also allow us to move a
master to one of the satellite machines. This makes DBFarm more dynamic but also
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changes the properties of the resulting architecture since the satellites are, in principle,
unreliable. For reasons of space we do not further pursue such an approach in this paper
but use the idea to emphasize the flexibility that the DBFarm architecture provides.

3.2 Assuring Consistency

Following up on our previous work on consistent database replication [23, 24,22], we
use snapshot isolation (SI) [3, 25] as correctness criteria for the master and satellite
databases. Common database products that make use of SI are Oracle, PostgreSQL
and Microsoft SQL Server 2005. SI is used to prevent complex read operations from
conflicting with updates and viceversa. The way it works is by giving every transaction
a snapshot of the database at the time it starts (the snapshot contains all committed
changes up to that point). Since each transaction works on a different snapshot, conflicts
between concurrent reads and writes do not occur. In the original definition of SI, the
check for conflicts between transactions that perform updates is only done at commit
time: if concurrent transactions try to modify a common item, the first committer wins
rule is applied (the first one to commit succeeds, all others will be aborted). However,
real implementations all rely on more efficient, incremental conflict detection methods.
Read-only transactions are not checked for conflicts. SI avoids the four extended ANSI
SQL phenomena as described in [3] (which is a prerequisite for an implementation of a
SERIALIZABLE isolation level). However, one has to be aware that this is not the same
as the classic definition of conflict serializability, e.g., as given in [4]. Fortunately, this
does not impose problems in real applications, e.g., [11] has shown that transactions
can be re-structured so that running them in SI based databases leads to serializable
executions.

Using SI makes it relatively simple to implement consistency requirements by DB-
Farm to provide clients with a consistent view. Since a read-only transaction is executed
in a copy using SI and the copy will provide consistent snapshots, a read-only transac-
tion will always read a snapshot that has existed in the master database. This has im-
portant practical advantages since it allows a copy to constantly keep applying updates
without having to abort or interfere with concurrently running read-only transactions
from the clients.

3.3 PostgreSQL Frontend

In the current implementation of DBFarm a master adapter, as seen from the client side,
looks like a normal PostgreSQL installation (the adapter listens on TCP port 5432). We
have implemented server and client-side support for the low-level PostgreSQL proto-
col. The server side is used to implement the PostgreSQL frontend end, the client side
is used to communicate with the locally installed PostgreSQL databases. When rout-
ing transactions between different adapters, the adapters use a slightly extended vari-
ant of the PostgreSQL client/server protocol (e.g., it is possible to switch the database
schema/user for the current connection and transactions can be tagged with commit
numbers; in addition, the mechanism for transportation of writesets was added).

Since master adapters implement the standard PostgreSQL server interface, DBFarm
can be used by a plethora of application types a